

Using Non-transparent Bridging in PCI
Express Systems

By Jack Regula

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 2

USING NON-TRANSPARENT BRIDGING IN PCI EXPRESS SYSTEMS............. 4

INTRODUCTION... 4
INTRODUCTION TO NON-TRANSPARENT BRIDGING .. 4
Device Identification and Transparent/Non-transparent Mode Control 5
CSR Header .. 5
Reset Propagation ... 6
Scratchpad Registers... 6
Doorbell Registers .. 6
TRANSACTION FORWARDING WITH ADDRESS TRANSLATION .. 7
BAR Setup Registers .. 7
Direct Address Translation ... 8
Lookup Table Based Address Translation.. 8
Downstream BAR limit registers.. 9
Forwarding 64bit Address Memory Transactions .. 9
CSR Access Enable Control ... 10

REQUESTER ID TRANSLATION .. 11

REQUESTER ONLY BEHIND NON-TRANSPARENT PORT .. 12
TRANSLATION OF AN OUTGOING REQUEST.. 12
TRANSLATION OF AN INCOMING COMPLETION... 13
COMPLETER ONLY BEHIND NON-TRANSPARENT PORT ... 14
TRANSLATION OF AN INCOMING REQUEST... 14
TRANSLATION OF AN OUTGOING COMPLETION.. 15
BOTH REQUESTER AND COMPLETER BEHIND NON-TRANSPARENT SWITCH PORTS 15

COMPLETER ID TRANSLATION... 16

SPECIFICATION COMPLIANCE.. 17

SWITCH PORT OR ENDPOINT? .. 17
USE OF CAPTURED DEVICE NUMBER .. 18

INTELLIGENT ADAPTER USAGE MODEL ... 18

DUAL-HOST/FAIL USAGE MODEL ... 21

DUAL-STAR TOPOLOGY USAGE MODEL EXTENSION.. 23

FAIL OVER .. 24

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 3

ISSUES ASSOCIATED WITH HOT RESET CAUSED BY FAILURE OF THE PRIMARY HOST . 24
SECONDARY HOST REQUIRES NON-BLOCKING ACCESS TO CSRS................................. 25
THE FAIL OVER PROCESS.. 25

SOFTWARE INITIALIZATION AND CONFIGURATION.................................... 27

SERIAL EEPROM LOAD ... 28
INITIALIZATION BY THE LOCAL PROCESSOR .. 28
INITIALIZATION BY THE HOST PROCESSOR .. 29
DETAILED INITIALIZATION SEQUENCES.. 29
INITIALIZATION SEQUENCE 1 – CONFIGURATION DUTIES SHARED BETWEEN EEPROM AND
LOCAL SIDE SOFTWARE .. 29
INITIALIZATION SEQUENCE 2 – CONFIGURATION BY LOCAL SIDE SOFTWARE (NO EEPROM)
... 29
INITIALIZATION SEQUENCE 3 – EEPROM ONLY CONFIGURATION 30

APPENDIX B: MODE CONFIGURATION STRAPS ... 31

Figure 1 Direct Address Translation... 8
Figure 2 Lookup Table Based Translation.. 8
Figure 3 Use of Limit Register ... 9
Figure 4 Translation of 64-bit Addresses.. 10
Figure 5 System Model for ID Translation... 12
Figure 6 Requester ID Translation During Read of Host Memory 13
Figure 7 Requester ID Translation During Read of Intelligent Adapter Memory............ 14
Figure 8 Requester ID Translation When Both Requester and Completer are Behind Non-

transparent Switch Ports ... 16
Figure 9 Completer ID Translation... 17
Figure 10 Intelligent Adapter with PCI Express Native Devices 19
Figure 11 Software Model for the Intelligent Adapter Usage Model............................... 20
Figure 12 Address Translations for the Intelligent Adapter Usage Model....................... 20
Figure 13 Dual-host System Pre Fail Over ... 22
Figure 14 Dual-host System Post Fail Over ... 22
Figure 15 Dual-host System With Both Hosts Active .. 23
Figure 16 Dual-star Topology... 24

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 4

Using Non-transparent Bridging in PCI Express Systems

Introduction
Distributed systems are gaining popularity as they fill the need of next generation
systems. Multihost systems provide not only the ability to increase processing
bandwidth, but also allow greater system reliability through host failover. These features
are becoming increasingly important, especially in next generation storage and
communications devices.

The PCI Express specification has been silent with regards to implementing multi
processor systems. Because of this, many have assumed that distributed processing
cannot be implemented using PCI Express. This, of course, is incorrect; given that PCI
Express is software compatible with PCI, and PCI systems have long implemented
distributed processing.

PCI was originally designed as an interconnect for personal computers; because of the
nature of PCs at that time, the protocol architects did not anticipate the need for
multiprocessors. Therefore, they designed the system assuming that the host processor
would enumerate the entire memory space. Obviously, if another processor is added, the
system operation would fail as both processors would attempt to service the system
requests.

This paper outlines how to implement multiprocessor systems using industry standard
practices established in the PCI paradigm..

Introduction to Non-transparent Bridging
The use of non-transparent bridges in PCI systems to support intelligent adapters in
enterprise systems and multiple processors in embedded systems is well established. The
Intel (ne’ DEC) DrawBridge established the paradigm of the embedded bridge and
became a defacto standard in such environs as Compact PCI and intelligent adapters for
enterprise systems. In these systems, the non-transparent bridge functions as a gateway
between the local subsystem and the backplane.

Such applications can be ported to PCI Express by the use of non-transparent bridges,
either between a local PCI or PCI-X bus and the PCI Express interconnect or with the
non-transparent bridge integrated into a PCI Express switch in place of one of the
transparent bridges that are part of a PCI Express switch’s software model. As discussed
herein, a PCI Express Switch with a single port configurable to operate in either
transparent or non-transparent bridge mode supports both intelligent adapter, dual-host,
and dual-star fabric usage models.

Non-transparent bridges isolate intelligent subsystems from each other by masquerading
as endpoints to discovery software and translating the addresses of transactions that cross
the bridge. A non-transparent PCI – PCI Bridge, or PCI Express to PCI Express Bridge,
exposes a Type 0 CSR header on both sides to terminate discovery and forwards

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 5

transactions from one side to the other with address translation, using the BARs of those
CSR headers.

A non-transparent bridge is functionally similar to a transparent bridge in that both
provide a path between two independent PCI buses (or PCI or PCI Express busses). The
key difference is that when a non-transparent bridge is used, devices on the downstream
side (relative to the system host) of the bridge are not visible from the upstream side.
This allows an intelligent controller on the downstream side to manage devices there,
making them appear as a single controller to the system host. The path between the two
buses allows the devices on the downstream side to transfer data directly to the upstream
side of the bus without directly involving the intelligent controller in the data move.
Thus transactions are forwarded across the bus unfettered just as in a P2P Bridge, but the
resources responsible are hidden from the host, which sees a single device.

A non-transparent bridge can also be used to link a secondary host with the hierarchy of a
primary host. It provides isolation while allowing communications between the two
systems. A non-transparent bridge typically includes doorbell registers to send interrupts
from each side of the bridge to the other and scratchpad registers accessible from both
sides for inter-processor communications. Upon failure of the primary host, the non-
transparent bridge resources allow access by the secondary host to reconfigure the system
so that it can take over as host.

The following subsections contrast the two types of bridges with the point of view
suggested by the subsection headings.

Device Identification and Transparent/Non-transparent Mode Control

Devices identify themselves via the Class Code register of the standard CSR header. A
transparent PCI-PCI bridge uses a Class Code 060400h. A non-transparent bridge
identifies itself as a RAM controller via a Class Code of 050000h. This identification
reflects the fact that its typical use is to map memory space, containing memory rather
than memory mapped I/O, from one address domain into another.

PCI Express Capabilities registers include a Device Port Type field. In these registers, a
transparent bridge/switch port would identify itself as either an upstream or a downstream
port while a non-transparent bridge/switch port would identify itself as an endpoint. The
transparent/non-transparent mode of a switch as well as its upstream/downstream
property is controlled via writes to this register via the memory-mapped view of the
switch CSRs (see CSR BAR). This writes are sticky so that any configuration thus
established survives reset. In standard CSR space, this register field behaves as RO per
the PCI Express Base specification.

CSR Header

The transparent bridge uses a Type 1 CSR header. The non-transparent bridge uses a
Type 0 CSR header and exposes a separate such header on each side of the bridge.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 6

Discovery software running on each side of the bridge sees an endpoint with BARs
defining tunnels into the other’s memory space.

Reset Propagation

The Secondary Bus Reset bit in the Bridge Control register of the transparent bridge
provides a mechanism for propagating reset in the downstream direction to devices on the
other side of the bridge.

In a non-transparent bridge, such a reset would not be propagated across the bridge.
A sideband signal mechanism can be provided to allow propagation of a hot reset from
the system host to the entire local subsystem for the intelligent adapter usage model.
When a hot reset is received at a non-transparent bridge, an external pin can be asserted.
This can be connected to the local root complex and used there to drive reset down into
the entire local hierarchy.

The detailed effects of a local host reset on the non-transparent bridge/switch port are
discussed in subsequent sections.

Scratchpad Registers

Scratchpad registers are both readable and writeable from both sides of the non-
transparent bridge, providing a generic means for interprocessor communications. A
block of such registers, typically eight, is provided. They can be accessed in either
memory or I/O space from both the primary and secondary interfaces of the bridge. They
can pass control and status information between primary and secondary bus devices or
they can be generic R/W registers. Writing or reading a scratchpad register does not
cause an interrupt to be asserted. Doorbell interrupts can be used for this purpose.

Doorbell Registers

Doorbell registers are used to send interrupts from one side of the non-transparent bridge
to the other. The following text describes a typical set of doorbell control registers.

A 16-bit software controlled interrupt request register and an associated 16-bit mask
register is implemented for each interface (primary and secondary). These registers can
be accessed from the primary or the secondary interface of the Bridge in either memory
or IO space. The doorbell mechanisms consist of the following register set:

• Primary IRQ Status Register
• Primary IRQ Request Register
• Primary IRQ Set Mask Register
• Primary IRQ Clear Mask Register
• Secondary IRQ Status Register
• Secondary IRQ Request Register
• Secondary IRQ Set Mask Register
• Secondary IRQ Clear Mask Register

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 7

An Interrupt is asserted on the Primary interface whenever one or more of the bits in the
IRQ Request Register are set and their corresponding mask bits are zero. The interrupt is
asserted as long as this condition exists. The secondary works identically. The interrupt
is deasserted when each the asserted bit is either masked or cleared. In a PCI Express
switch, the interrupt state transitions from asserting to de-asserting or vice-versa result in
packets being sent upstream on the appropriate side of the bridge. Standard PCI Express
capability structures allow these interrupts to be configured as INTx or MSI.

The Status/Request registers are internally the same register, they just have two
interfaces, one location is used to set bits and the other location is used to clear bits. The
status can be read from either register. The Set/Clear Mask registers are also internally
the same register. One interface is used to set a mask bit, the other is used to clear a mask
bit.

Transaction Forwarding with Address Translation
The transparent bridge uses base and limit registers in each of I/O space, non-
prefetchable memory space, and prefetchable memory space to map transactions in the
downstream direction across the bridge. All downstream devices are required to be
mapped in contiguous address regions such that a single aperture in each space is
sufficient. Upstream mapping is done via inverse decode relative to the same registers.
A transparent bridge does not translate the addresses of forwarded transactions/packets.

The non-transparent bridge uses the standard set of BARs in its Type 0 CSR header to
define resource apertures that allow the forwarding of transactions to the opposite (other
side) interface. There are two sets of BARs, one on the Primary side, one on the
Secondary. For each BAR on each side of the bridge there exists a set of associated
control and setup registers writable usually from the other side of the bridge. Each BAR
has a “setup” register, which defines the size and type of its aperture, and an address
translation register. Some bars also have a limit register that can be used to restrict its
aperture’s size to less than a power of two. These registers need to be programmed prior
to allowing access from outside the local subsystem. This is typically done by software
running on a local processor.

In PCI Express, the Device ID fields of packets passing through these apertures are also
translated to support Device ID routing.

The transparent bridge forwards CSR transactions in the downstream direction according
to the secondary and subordinate bus number registers, converting Type 1 CSRs to Type
0 CSRs as required. The non-transparent bridge accepts only those CSR transactions
addressed to it.

BAR Setup Registers

All upstream and downstream BARS have programmable window sizes, with the
exception of BAR0 & BAR1 (on both interfaces), which provide memory and/or IO
mapped access to the CSRs. The BAR Setup registers are used to program the window

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 8

size of each BAR (Note BAR2/3 (primary only) and BAR4/5 can be programmed to be
64bit BARs).

Direct Address Translation

The addresses of all upstream and downstream transactions are translated (except BARs
accessing CSRs). With the exception of the cases in the following two sections,
addresses that are forwarded from one interface to the other are translated by adding a
Base Address to their offset within the BAR that they landed in. The BAR Base
Translation Registers are used to setup these base translations for the individual BARs.

Primary Address Map Secondary Address Map

Base + Offset

Translated
Base + Offset

Base

Contents of
Base Translation
Register

Figure 1 Direct Address Translation

Lookup Table Based Address Translation

On the secondary side, BAR3 uses a special lookup table based address translation for
transactions that fall inside its window. The lookup table provides more flexibility in
secondary bus local addresses to primary bus addresses. The location of the index field
with the address bus is programmable to adjust aperture size.

Translated Base Lookup Table
Translated base addr 3F
Translated base addr 3E
Translated base addr 3D
Translated base addr 3C

.

.

.
Translated base addr [index]

Translated base addr 04
Translated base addr 03
Translated base addr 02
Translated base addr 01
Translated base addr 00

.

.

00
01

3F

Translated Base Offset

Base OffsetIndex

31

31

0

0

14 13

14 132019

Figure 2 Lookup Table Based Translation

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 9

Downstream BAR limit registers

The two downstream BARs on primary side (BAR2/3 and BAR4/5) also have Limit
registers, programmable from the local side, to further restrict the size of the window they
expose. BARs can only be assigned Memory resources in “power of two” granularity.
The limit registers provide a means to obtain better granularity by “capping” the size of
the BAR within the “power of two” granularity. Only transactions below the Limit
registers are forwarded to the secondary bus. Transactions above the limit are discarded
or return 0xFFFFFFFF, or a master abort equivalent packet, on reads.

Secondary Address MapPrimary Address Map

Decode
Window

Translated
Base

Accesses
within the
window but
above the limit
are discarded
or return
0xFFFFFFFF

Base

Limit

Figure 3 Use of Limit Register

Forwarding 64bit Address Memory Transactions

Certain BARs can be configured to work in pairs to provide the base address and
translation for transactions containing 64-bit addresses. Transactions that hit within these
64-bit BARs are forwarded using direct address translation. The Base Register and Base
Register Upper pair determine the lower limit or base address of the window into system
space. The Setup and Setup Upper register pair determine its size. The contents of the
Base Translation and Base Translation Upper Registers replace bits of like weight in the
address being translated under the mask provided by the setup register pair.

Replacement under mask address translation constrains the base address to an integer
multiple of its size. Suppose the system’s physical memory space extends from 0 to 512
GBytes. A 512 GByte window is created in local space and translated to zero and up in
system space. Translating the base address down to zero in the target address space
allows the window, if appropriately sized, to span the entire target physical memory
space. Clearly, a 64-bit address space is large enough to cover any even remotely
practical size of physical memory in this way. The address translation process is shown
in Figure 4.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 10

A 64-bit BAR pair on the system side of the bridge is used to translate a window of 64-bit
addresses in packets originated on the system side of the bridge down below 232 in local
space.

Translated Window

Window into 64-bit
System Address

Space

Source Memory Space

Base Address

Address in Packet

Translated Address

Contents of Base Translation and
Base Translation Upper Registers

Target Memory Space

determ
ined by range m

ask contained
in Setup and Setup U

pper R
egisters

 4 GB limit of 32-
bit processor

Nearest power of 2 >= Upper
Limit of Physical Memory

Figure 4 Translation of 64-bit Addresses

CSR Access Enable Control

A transparent bridge is configurable only from its upstream side. Its CSRs are always
accessible, except during EEPROM load, if any, when they receive a configuration retry
response.

The non-transparent bridge has CSRs accessible from both sides with special control
register bits used to determine which sides are permitted to access the CSRs. Like the
transparent bridge, CSR accesses from either side received configuration retry response
during EEPROM load. The control bits are:

• Secondary Bus Access Enable
• Primary Bus Access Enable

In Intelligent Adapter applications, Secondary Bus Access Enable is asserted after
EEPROM load to allow the local processor to complete its configuration of the local
subsystem before the system host is permitted to complete discovery and configuration.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 11

In dual-host applications, both Secondary Bus Access Enable and Primary Bus Access
Enable are asserted after EEPROM load, or by default, if no EEPROM. This is necessary
to avoid a vulnerability to a dead or missing primary host at power-up. The dual-host
software typically implements a handshake protocol in software to ensure that
configuration from each side occurs in the proper order.

One of the BARs on each side can be used to access the CSRs via memory mapped I/O
transactions. Certain registers in the bridge used for failover are writable only via the
memory mapped view. Protection can be implemented via the BAR’s enable bits.

Requester ID Translation
The non-transparent bridge port must either take ownership of non-posted requests
passing through it or translate their Requester IDs in such a way as to ensure that their
completions can be routed back to their requesters.

The Transaction ID consists of the Requester ID plus a tag, which is similar to a sequence
number. The Requester ID consists of the device’s bus number, device number, and
function number. Were the non-transparent bridge port to take ownership of a transaction
it would substitute the bus number and device number associated with the Type 0 CSR
header on the PCI Express side of the bridge for those in the bridged packet and replace
the tag with one assigned by itself. It would then store the original Requester ID and tag
in an array indexed by the assigned tag, or associated with it. When the completion
returned, the non-transparent port would retrieve the original transaction ID from the
array and use it to restore the Requester ID field in the completion to that in the original
request.

The operation described above is moderately complex and requires use of a finite
resource, which might become a performance limitation. We have found that it is
sufficient to translate only the Requester ID, avoiding the complexity and potential
performance constraint associated with taking ownership. When translating just the
Requester ID, it is not required to save state for each outstanding request.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 12

Figure 5 System Model for ID Translation

Figure 5 shows the system model from which the Requester ID translation algorithm
requirements have been derived – that devices or software agents on any module in the
figure must be able to communicate with their counterparts on any other module. Up to
four translation steps occur in the routing of a request from a device behind a non-
transparent switch port, across a PCI Express fabric, and to a completer (e.g. memory)
behind a second non-transparent switch port and the subsequent routing of a completion
in the reverse direction. If the requester or the completer is not behind a non-transparent
switch port, as would be the case for a device in the Root Complex, two of those steps are
avoided. Each of the following cases is described and illustrated in the following
subsections. The first two cases are a subset of the third case.

• Requester only behind non-transparent port
• Completer only behind non-transparent port
• Requester and completer each behind different non-transparent ports

Requester Only Behind Non-transparent Port
Figure 6 shows the Requester ID translation that occurs when a non-posted request is sent
from a device behind a non-transparent switch port to a location in what might be called
system or host space. An example is the reading of host memory by a device on an
intelligent adapter.

Translation of an Outgoing Request
The translation of outgoing requests uses an 8-entry CAM. Each CAM entry supports all
the outgoing requests and any number of outstanding requests made by a single {Device,
Function}. If a device uses phantom function numbers to increase the maximum number
of outstanding transactions, then each phantom function consumes a CAM entry. The
CAM must be configured, either by EEPROM or local firmware, before it is possible to
send requests to the system domain. This provides a measure of security/protection.
CAM entries are never retired but may be changed by software, although it is unlikely
that software would need to make a change, except during the development process.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 13

When an outgoing request arrives at a non-transparent port from the switch’s virtual bus
side, the packet’s Requester ID is associated into this CAM. If it hits, the corresponding
TxIndex is inserted into the Function Number field of the packet’s Requester ID. If it
misses, an Unsupported Request completion is returned. At the same time, the contents
of the non-transparent port’s link side Bus Number and Device Number Capture
Registers, the values last used during the last CSR write to the port, are copied into the
bus number and device number fields of the packet’s Requester ID.

The Requester ID of the packet as emitted onto the link into the system backplane is
shown in the middle row of the figure.

Translated Requester ID in system
domain

Requester ID in Outgoing Request

ReqBusNo [7:0] ReqDev
No [4:0]

Fun
[2:0]

Bus Number
Capture Register

Restored Requester ID in Completion in
Requester’s Local Domain

Translation of an Outgoing Request at
originating NT switch port

Device Number
Capture Register

TxIndex

ReqBusNo [7:0] ReqDev
No [4:0]

Fun
[2:0]

TxIndex

Translation of an Incoming Completion
back at originating NT switch port

CAM
If {BusNo, DevNo,FunNo} hit in
CAM, use TxIndex; else return

UR

Source
CapBus No

Source
CapDev

Tx
Index

BusNo
BusNo

BusNo

DevNo
DevNo

DevNo

Fun
Fun

Fun

8 entries

LUT
Look up Requester ID based on

TxIndex in packet
BusNo
BusNo

BusNo

DevNo
DevNo

DevNo

Fun
Fun

Fun

8 entries

Figure 6 Requester ID Translation During Read of Host Memory

Translation of an Incoming Completion
When a completion returned in response to previous non-poster request enters the non-
transparent port from the link/system side, the TxIndex is retrieved from the function
number field of the completion’s Requester ID and used to look up the original Requester
ID. This is inserted into the packet and packet is forwarded to the original requester in
the local domain. The Requester ID of the completion as forwarded into the local domain
of the requester is shown on the bottom row of Figure 6.

Note that the LUT and the CAM can be a shared use of the same data structure. At 8
entries times 16-bits, only 128 bits of register and equality comparator are required.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 14

Completer Only Behind Non-transparent Port
Figure 7 illustrates the Requester ID translation steps when only the completer is behind a
non-transparent switch port, as would be the case when the host reads memory on an
intelligent adapter.

This translation uses a second CAM, in this case with 32-entries. This data structure
supports 32 devices elsewhere in the system sending requests through the associated non-
transparent switch port. Because the function number is not used in the CAM
association, a separate CAM entry is not required for each requesting or phantom
function of a device. The requirement again exists to configure the CAM before sending
requests through the non-transparent switch port. This requester registration process,
which can’t be done by a peer, is an effective security and protection mechanism.

Requester ID in Outgoing Completion in
System Domain

ReqBusNo [7:0]
ReqDev
No [4:0]

Fun
[2:0]

Requester ID in Incoming Request from
Host or Device in System Domain

ReqBusNo [7:0] ReqDev
No [4:0]

Fun
[2:0]

Translated Requester ID in Target’s
Local Domain

Target VirtBusNo
[7:0]

Translation of an Incoming Request at target NT
switch port

Translation of an Outgoing Completion at target
NT switch port

Fun
[2:0]

{BusNo, DevNo}Local Upstream
Port Sec Bus

Number register

RxIndex

RxIndex

{BusNo, DevNo}

RxIndex

LUT
Use RxIndex to look up

ReqBusNo and ReqDevNo

CAM
If {BusNo, DevNo} hit in CAM,
use RxIndex; else return UR

BusNo DevNo
BusNo DevNo

BusNo DevNo

BusNo DevNo
BusNo DevNo

BusNo DevNo

32 entries
32 entries

Figure 7 Requester ID Translation During Read of Intelligent Adapter Memory

Translation of an Incoming Request
When a request is received from its PCI Express link at a non-transparent switch port, a
second translation of the request’s ID occurs. The bus number and the device number,
but not the function number, from the request’s Requester ID is associated into the CAM
and the RxIndex corresponding to the matching entry is substituted into the device
number field of the packet’s Requester ID. At the same time, the target switch’s internal
virtual PCI bus number is copied from its upstream port’s Secondary Bus Number
Register into the bus number field of the packet’s Requester ID. The packet is then
forwarded into the completer’s local domain with its Requester ID as shown in the
middle row of Figure 7.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 15

The switch’s internal virtual PCI bus number suffices to route the completion from the
completer back to the non-transparent switch port in the completer’s domain because,
based on the limitation of a single non-transparent switch port per switch, the non-
transparent switch port is the only possible requester on the switch’s internal virtual bus.
Anywhere else in the local hierarchy, the bus number suffices to route the completion
back into the switch containing the non-transparent port.

Translation of an Outgoing Completion
The inverse translation occurs when a completion passes through the non-transparent
switch port on its way into the system domain. The RxIndex is retrieved from the
Requester ID field and used to look up the bus number and device number of the
Requester ID as received in the request from the system domain. Note that if the request
originated in the system/host domain, these would be from the ID of the original
requester whereas if the request originated behind another non-transparent switch port,
these would be the bus and device number of the virtual endpoint associated with the
requester’s non-transparent switch port. The restored Requester ID in the completion as
sent into the system domain is shown on the bottom row of Figure 7.

Both Requester and Completer Behind Non-transparent Switch
Ports
Figure 8 illustrates the Requester ID translation process when both requester and
completer are behind non-transparent switch ports. It first shows the translation of an
outgoing request at a non-transparent switch port, as originally illustrated in Figure 6,
followed by the translation of an incoming request at a non-transparent switch port, as
originally illustrated in Figure 7. These are then followed by the inverse translations of
the completions, again as originally illustrated in the same two figures. Showing all of
this on a single drawing manifests the non-interference of the two translations and that
neither is dependent upon the other having been done.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 16

Restored Requester ID in System
Domain

Translated Requester ID in System
Domain

Source
CapBusNo [7:0]

Src
CapDev

Index
FUN

Translated Requester ID in Local
Domain

Target VirtBusNo
[7:0]

Translation of an Incoming
Request at target NT switch port

Translation of an Outgoing
Completion at target NT port

Index
FUNRxIndex

RxIndex

RxIndex

Requester ID in Outgoing Request

ReqBusNo [7:0] ReqDev
No [4:0]

Fun
[2:0]

Bus Number
Capture Register

Restored Requester ID in Completion in
Local Domain

Translation of an Outgoing Request
at originating NT switch port

Device Number
Capture Register

ReqBusNo
[7:0]

ReqDev
No [4:0]

Fun
[2:0]

Translation of an Incoming
Completion at originating NT port

Upstream Port Sec
Bus Number register

Source
CapBusNo [7:0]

Src
CapDev

Index
FUN

TxIndex

Register Stack
Look up Requester ID based on

TxIndex in packet

BusNo
BusNo

BusNo

DevNo
DevNo

DevNo

Fun
Fun

Fun

8 entries

LUT
Use RxIndex to look up ReqBusNo

and ReqDevNo
BusNo DevNo
BusNo DevNo

BusNo DevNo

32 entries
CAM

If {BusNo, DevNo} hit in CAM, use
RxIndex; else return UR

BusNo DevNo
BusNo DevNo

BusNo DevNo

32 entries

CAM
If {BusNo, DevNo,FunNo} hit in

CAM, use TxIndex; else return UR
BusNo
BusNo

BusNo

DevNo
DevNo

DevNo

Fun
Fun

Fun

8 entries

TxIndex

Figure 8 Requester ID Translation When Both Requester and Completer are Behind Non-
transparent Switch Ports

Completer ID Translation
The Completer ID is part of a completion and requires translation when a completion
passes through a non-transparent switch port. Figure 8 shows the translation of the
Completer IDs in both outgoing and incoming completions.

This translation of the Completer ID in an outgoing completion identifies the virtual
endpoint associated with the non-transparent switch port as the source of the completion.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 17

This would only be important to software processing a packet error logged using
advanced error reporting capability.

The translation of the Completer ID of an incoming completion identifies the virtual
endpoint associated with the virtual side of the non-transparent switch port as the source
of the completion. Again, this is of potential importance only to error processing
software examining an advanced error reporting header log. Bus number and device
number capture registers are not needed on the virtual PCI bus inside the switch and so
their use is not shown in the right half of Figure 8.

Without Completer ID translation, bus and device numbers aliasing between local and
system domains or between requester and completer local domains may occur.

Upstream Port Sec
Bus Number register

Translated Completer ID in System
Domain

Completer ID in Outgoing Completion

Completer
LocBusNo [7:0]

Compltr
LocDev

Fun
[2:0]

Bus Number
Capture Register Translation of an Outgoing

Completion at target NT switch port

Device Number
Capture Register

Completer
CapBusNo [7:0]

Compl
CapDev

Fun
[2:0]

Translated Completer ID in Local
Domain

Completer ID in Incoming Completion

Completer
LocBusNo [7:0]

Compltr
LocDev

Fun
[2:0]

Translation of an Outgoing
Completion at target NT switch port

Device Number
of NT port in local

domain

Requester Virtual
Bus Number

NT port
Dev No

Fun
[2:0]

Figure 9 Completer ID Translation

Specification Compliance

Switch port or endpoint?
The non-transparent bridge/switch port has two personalities because of the virtual PCI
Express endpoint associated with each side of the switch port. It behaves as an endpoint
to configuration transactions and as a switch port to other kinds of transactions. In the
PCI Express specification, different, sometimes conflicting, requirements are placed upon
endpoints and switch ports. In specifying the behavior of the non-transparent switch port,
one must choose which rule to apply in those cases.

For example, the PCI Express specification contains a rule that endpoints may not be
located on the virtual PCI bus of a switch. We judge that this does not apply to the non-
transparent switch port because it is not an endpoint; it merely uses the same CSR header
format as an endpoint.

An endpoint is required to advertise infinite completion credits. A switch port is allowed
to flow control completions. The non-transparent switch port flows completions again
because it is not an endpoint; it merely uses the same CSR header format as an endpoint.

An endpoint is by default allowed only 32 outstanding transactions. A switch port is not
required to limit the number of outstanding transactions it forwards. The non-transparent

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 18

switch port does not take ownership of non-posted requests in order to limit the number
of outstanding transactions because it is not an endpoint; it merely uses the same CSR
header format as an endpoint.

The Device Status Register of PCI Express devices includes a Transactions Pending bit.
For an endpoint, this bit when set indicates that the device has issued Non-Posted
Requests which have not been completed. The non-transparent switch port does not issue
non-posted requests on its own behalf and so hardwires this bit to zero, as permitted by
the PCI Express specification. The TP bit therefore does not indicate that all non-posted
requests forwarded through the non-transparent port have been complete.

Use of captured device number
The PCI Express specification requires all devices to capture both the bus number and the
device number on every configuration write request and use the captured values in the
Requester and Completer IDs of initiated transactions containing a Requester ID.
However, there is some ambiguity if one differentiates between initiated and forwarded
transactions. Interpretation in the event of ambiguity should be guided, as we have been,
by the requirement for correct functionality.

The non-transparent switch port as described herein makes a single exception to the
above rule. For both requests and completions forwarded onto the link/system side of the
non-transparent port, and for completions forwarded into the local domain, it is in
complete conformance. However, the Requester ID of requests forwarded into the local
domain contains the mandated bus number but a CAM index instead of the mandated
device number. Earlier we described how the architecture is limited to a single non-
transparent port in a switch and therefore on a virtual PCI bus segment. Consequently,
the non-transparent port is the only possible requester on such a bus segment. Therefore,
only the bus number is required for routing the completion back to the non-transparent
port. Thus correct functionality is assured.

Intelligent Adapter Usage Model
When an intelligent adapter is implemented with PCI Express native devices, a switch
with a non-transparent port for connection to the system host is required. Such a switch
may be a separate component, as shown in Figure 10, or may be integrated into the local
root complex.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 19

fabric

PCI Express Intelligent Adapter

I/O DevicesI/O DevicesExB Native IOP
e.g.

XSCALE

MEMORY

Local Switch I/O Devices
ExB

ExB

ExB

ExB

I/O Device

E
xB

E
xB

E
xB

E
xB

non-transparent port

hot reset
PRI

Figure 10 Intelligent Adapter with PCI Express Native Devices

The software model for the intelligent adapter usage model is shown in Figure 11 and the
associated address translation model in Figure 12. The system host is connected
ostensibly via a fabric to the PRI side of the non-transparent bridge port. There it sees a
CSR BAR for memory-mapped access to the port’s registers and a number of
downstream ports for creating address translated apertures into the IOP’s memory space.
The local host and local devices see a number of upstream BARs on the SEC side of the
non-transparent bridge port that creates address-translated apertures into the host’s
memory space. The local host and any of the local I/O devices may exchange data with
the host via these apertures. Even if the local processor supports only 32 bits of address,
local devices may employ 64-bit addressing in communications with the system host.

In this model, all configuration of the BAR setup, translation, and limit registers is done
by the local processor. The system host, connected to the Primary side of the non-
transparent bridge is responsible only for establishing the base addresses of its windows
into the local processor’s space. The CSRs of the non-transparent bridge port include a
Primary Bus Access enable bit and a Secondary Bus Access enable bit which prevent
access by either processor before appropriate configuration of the local subsystem has
been accomplished. These are under control of the local processor. Software
initialization is discussed in a later section.

A hot reset coming from the system host via the PLL of the PCI Express Link is coupled
to the local root complex as a sideband signal. There, it can be used to cause a reset that
is driven down into the entire local hierarchy or can be used simply as an interrupt.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 20

Switch

Local Host
/ IOP

Fabric/
System

Host

P2P

SEC

P2P

SEC

P2P

SEC

PRI

nonT Bridge

SEC

PRI

P2P

SEC

DEV DEV DEV

BAR

A-Xlate BAR

A-XlateCSR
BAR

CSR
BAR

Figure 11 Software Model for the Intelligent Adapter Usage Model

IOP Memory Space

Local mapping of host memory
into N equal sized segments

dividing a single BAR

Host Memory Space

IOP Local Memory Limit

Window for Host Rd/write Access

Host's Local Memory Limit

Window for Comms with IOP

di
re

ct
 a

dd
re

ss
 tr

an
sla

tio
n

Translation Segment 1
Translation Segment 2

Translation Segment 0

Translation Segment N
Arrows point to target

 of transaction

Base

Window for IOP Access

Window for IOP Access

Window for IOP Access

Window for IOP Access

Base
Limit

BAR seen
by host;

translation
and size

configured
by IOP

BAR seen
by IOP;

translation
& size

configured
by system

host

Base x2

Translation Segment L

Figure 12 Address Translations for the Intelligent Adapter Usage Model

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 21

Dual-host/Fail Usage Model
In a dual-host application, provision is made for both a primary or active host and a
secondary or backup host. During normal operation, heartbeat messages are sent from
primary to secondary to indicate that it is still alive. Checkpoint or journal message
containing the current state and transaction history are also sent periodically from
primary to secondary. The job of the secondary host is to monitor the state of the primary
and, upon detection of its failure, to take over as primary host continuing system
operation from the last valid checkpoint.

 In our usage model, the secondary or backup host is connected into the system via a non-
transparent bridge while the primary or active host is connected via a transparent bridge.
This is shown in Figure 13 below. The secondary host connection could be directly to its
Root Complex or through a fabric connection. In the latter case, both hosts may be active
simultaneously. In this case, heartbeat and checkpoint messages would flow in both
directions.

The BARs on both sides of the non-transparent bridge are used to create tunnels through
which each host may send messages to the other host. The doorbell registers available in
the non-transparent bridge may be used for heartbeat messages. The memory access
tunnels are used for checkpoint and other data transfer.

Failure of the primary host is declared when the secondary host fails to receive a certain
number of the regularly scheduled heartbeat messages. As part of the fail over process,
the secondary hosts’ port is reconfigured to be transparent as shown in Figure 14 and as
the upstream port of the PCI hierarchy. Failure of the primary host likely leaves switch
buffers backlogged and device endpoints with incomplete transactions. During the fail
over process, detailed later, the secondary host causes the buffers to be flushed and
terminates incomplete transactions at endpoints. It then reconfigures the system with
itself as host and restarts the devices and applications in some application specific way,
using checkpoint or journal data.

Figure 15 shows a system with two active hosts, in which each host serves as the
secondary host to the other.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 22

Switch

PRIMARY
HOST

SECONDARY
HOST

P2P

SEC

P2P

SEC

P2P

SEC

PRI

nonT Bridge

SEC

PRI

P2P

SEC

DEV DEV DEV

BAR

A-Xlate BAR

A-XlateCSR
BAR

CSR
BAR

Figure 13 Dual-host System Pre Fail Over

Switch

Failed
PRIMARY

HOST

self promoted
SECONDARY

HOST

P2P

SEC

P2P

SEC

P2P

SEC

DEV DEV DEV

PRI

nonT Bridge

SEC

BAR

A-Xlate BAR

A-XlateCSR
BAR

PRI

P2P

SEC

CSR
BAR

Figure 14 Dual-host System Post Fail Over

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 23

HOST A Host B

P
rim

ary

P
rim

ary

Switch Switch

DEV of A DEV of A DEV of B DEV of B

B
A

R
X

late

B
A

R
X

la
te

Figure 15 Dual-host System With Both Hosts Active

Dual-star Topology Usage Model Extension
The dual-host system model may be extended to a fully redundant dual star system by
using additional switches to dual-port the hosts and line cards into a redundant fabric as
shown in Figure 16. Two host cards are shown. The Host A is the primary host of Fabric
A and the secondary host of Fabric B. Similarly, Host B is the primary host of Fabric B
and the secondary host of Fabric A.

Each host is connected to the fabric it serves via a transparent bridge/switch port and to
the fabric for which it provides only backup via a non-transparent bridge/switch port.
These non-transparent ports are used for host-to-host communications. They also support
cross-domain peer-to-peer transfers where address maps do not allow a more direct
connection.

Line cards are shown on the left of the system. Each includes a switch for providing
connections into both fabrics. One of the fabric links is configured to be the upstream
port of this local switch, thus defining its affinity to one of the hosts. If the local
subsystem is intelligent, then the local switch port closest to it is configured to be non-
transparent per the intelligent adapter usage model.

Peer-to-peer transfers within a host domain are switched directly between endpoints by
the fabric associated with the domain. Cross-domain peer-to-peer transfers may be
routed first to the domain’s host, through its non-transparent switch port, then back down
the other hierarchy to the endpoint. This has the advantage of better supporting the PCI
ordering model by pushing more writes ahead of any such reads but the disadvantage of
potentially creating a bottleneck at the host. If the host links are fat compared to the line
card links this may not be problematic. In many cases, system memory maps can be

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 24

created that allow direct cross domain transfer through the alternate fabric connection at
the source line card, avoiding this potential bottleneck.

Line Card
Switch

D
um

b
S

ubsystem

P2P
B

ridge

PR
I

P
2P

B
ridge
S

E
C

P
2P

B
ridge

Line Card
Switch

Intelligent
S

ubsystem

P
2P

B
ridge

P
R

I

P
2P

B
ridge(s)

S
E

C

N
onTransp
B

ridge

P
R

I

FABRIC B

FABRIC A

HOST A
Switch

In
te

lli
ge

nt
S

ub
sy

st
em

P
2P

B
rid

ge
PR

I

P2
P

B
rid

ge
(s

)
S

E
C

N
on

Tr
an

sp
B

rid
ge

PR
I

X

HOST B

In
te

lli
ge

nt
S

ub
sy

st
em

Switch

P
2P

B
ridge

P
R

I

P2P
B

ridge(s)
S

E
C

N
onTransp

Bridge

PR
IX

P
R

I

Figure 16 Dual-star Topology

Fail Over

Issues associated with Hot Reset Caused by Failure of the
Primary Host
The implementation of the switch must be such that failure of the primary host can’t
prevent accesses by the secondary host necessary for fail over. One potential failure
mode is with the PCI Express link to the primary host in the DL_DOWN state. A literal
interpretation of the PCI Express specification would then reset the entire hierarchy and
hold it in reset until the link comes back up. To allow fail over, we instead give a
transient reset upon entry of DL_DOWN , allowing the secondary host to take over after
this reset de-asserts. Since a reset of the entire hierarchy may be unnecessarily disruptive
to systems that are capable of surviving host failure, we also provide a device dependent
means of blocking the propagation of even a transient reset from the switch’s upstream
port to the rest of the hierarchy due to DL_DOWN .

The secondary host port is identified by device dependent means, typically hardware
straps with a provision for over-ride via EEPROM. This causes the port to be configured
as a non-transparent bridge and ensures that this configuration survives any level of reset,
other than power off. The link partner of the secondary host port always has access to the
port’s Primary side Type0 CSR header because hot reset isn’t propagated across the non-
transparent bridge. It uses this access to configure the CSR BAR of the header it sees,

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 25

giving it access to all necessary switch CSRs through the CSR BAR, independent of the
state of the primary host, so long as it the entire hierarchy is not held in reset.

After any reset in dual-host mode, the Primary BusAccess Enable bit is set, allowing
access by the Secondary Host.

Secondary Host Requires Non-blocking Access to CSRs
The non-transparent bridge/switch port appears to its link partner as a PCI Express
endpoint in CSR space. This model requires that it have guaranteed access to its CSRs.
The reason for this requirement becomes clear when we consider the implications of
failure of a primary host. Unless its access to the switch CSRs are assured, we can’t
guarantee successful fail over to the secondary host. This requirement is imposed at the
architectural level; provisions for satisfying it are implementation dependent.

Providing non-blocking access to CSRs is not difficult, since CSRs by nature simply
consume packets without being subject to external flow control. Some CSR request
packets require completions and inability to send the completion could cause head of line
blocking of additional requests. However, the PCI Express specification does not allow
endpoints to flow control completions, guaranteeing forward progress for them. In cases
where upstream completions (or other packets) stall due to link retry protocol, either
forward progress occurs or the link is brought down, causing backlogged CSR
completions to be discarded.

The Fail Over Process
When a host fails any number of things may go wrong. However, the symptoms
observable in the fabric are limited to the following set. The host might:

• Stop sinking its packets
• Stop completing sunk requests
• Stop servicing interrupts
• Stop sending heartbeats to the secondary host
• Start sending rogue packets1

When a host fails, its link to the switch may go down. As discussed earlier, the entire
local hierarchy, except for the secondary host, may receive a reset. The implementation
ensures that this reset does not endure forever and prevents the de-configuration of the
secondary host because of the reset. The implementation also allows configuration that
blocks the propagation of such a reset. If the reset is allowed to occur then bring up of
the system by the secondary host is simplified because the entire hierarchy has been reset
and needs no further discussion. The rest of this section deals with the case where the
link to the host stays up or the reset is not propagated.

The secondary host initiates fail over when it stops receiving heartbeat messages.

1 The only rogue packets which create a vulnerability are those which change the non-transparent attribute
of the secondary host’s port (strap-selected).

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 26

Without a DL_DOWN reset, the consequences of the failure are that buffers pointing
towards the failed host may be backlogged and incomplete requests may exist at
endpoints. There should be no backlogged queues pointing towards the secondary host
because, in the usage model, the secondary host receives only limited traffic and only
from the primary host, and a premise of failure is the cessation of that traffic.

Some of the backlogged buffers may contain packets that are implicitly routed upstream -
to the host port of the moment. Packets of this type include interrupts, error message and
power management messages. Thus, when the secondary host promotes itself to primary,
it may begin receiving these packets. This is can be handled by the fail over software. It
implements “dummy” interrupt service routines to sink the backlog of interrupts and
messages at fail over. After the backlog is exhausted and the host has restarted the
applications it may then vector the interrupts and messages to “real” handlers.

Masking errors and interrupts at the port about to be promoted to upstream prevents new
interrupts and messages from being generated but doesn’t cause backlogged interrupts or
message to be discarded. The “dummy” ISRs mentioned above can simply discard the
interrupts and messages because either the information they contain is stale due to host
failure or remains accessible to the new host in status bits downstream in the hierarchy.

PM_PME messages are also routed implicitly to the upstream port and are not maskable
in the switch. The secondary host therefore must be prepared to handle latent PM_PME
messages before promoting itself to primary host. These messages may be discarded
safely by the secondary host during the fail over process because the PCI Power
Management process ensures that they will be resent if not acknowledged in a timely
fashion.

 The secondary host undertakes the following sequence of operations before restarting the
system to ensure that these backlogged buffers and pending transactions are flushed:

• Demotes the former host to downstream via its PCI Express Capabilities register
• Brings down the former host's link via the Link Disable bit of its Link Control

register
• Masks interrupts to what will be the new upstream port
• Masks error messages to what will be the new upstream port
• Promotes itself to upstream port operating in transparent mode via its PCI

Express Capabilities register
• Clears its own Bus Master Enable bit so that transactions may not be forwarded

upstream to it
• Waits for the buffers to clear and incomplete transactions to time out.
• Reconfigures the system and restarts the application(s) using checkpoint/journal

data

Packets that reach an egress port whose PCI Express link is down are discarded. The
former upstream link is brought down to cause latent packets address routed to the failed
host’s port to be discarded.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 27

Upstream packets that reach a port whose Bus Master enable bit is cleared are also
discarded. (In some cases, an Unsupported Request packet may be returned for a
discarded request.) Therefore, clearing the Bus Master Enable bit of the new upstream
port is an additional protection against the new host receiving ghost packets, one latent in
the switch at the onset of fail over, from reaching the new host. This provision is
probably unnecessary because of the fact that all the bridges forwarding apertures are
closed. Thus, the fact that the Bus Master Enable bit can’t be cleared until after the
secondary host is promoted, technically a potential race condition, is of no concern.

Thus, it can be seen that the preparatory steps of the fail over process cause the switch’s
buffers to be flushed towards either the new or old host, or perhaps some packets to each
and to be discarded as they reach it. With the exception of errors, PME messages, and
interrupts, packets latent in the switch at the onset of fail over are prevented from
reaching the newly promoted host and are instead discarded. Once a quiescent state is
reached, the new host can bring the system back up. A hot reset of the hierarchy, or
portions of it, is not necessary but potentially can be used to accelerate the fail over
process. If an inadvertent reset occurs because of the transitioning of the upstream link to
the DL_DOWN state because of the failure of the host, fail over is again only
accelerated, not inhibited.

Software Initialization and Configuration
The configuration of a non-transparent bridge involves a few more steps than a
transparent bridge configuration. Configuration registers can be programmed from
EEPROM alone, or through a combination of EEPROM and software running on the
local (secondary side) of the Bridge. The following discusses the initialization sequence
of a Non-Transparent bridge or switch port. It applies to the intelligent adapter usage
model, in which the system host is connected to the outward facing Primary side of the
bridge.2

The Non-transparent bridge has two separate configuration register sets, one accessible
from the primary side and one accessible from the secondary side. Note that the contents
of some registers are common. Some registers are RW from one side but RO from the
other side. A Primary Bus Access Bit must be set from the local side or EEPROM to
allow access from the primary side. Similarly, a Secondary Bus Access Bit must be set
by default in the absence of EEPROM or from EEPROM to allow access from the
secondary side.

There are four groups of registers that require programming in Non-Transparent mode.

• The Primary Interface’s Standard CSRs (first 64 bytes of the configuration
header) – excluding the address BARs

• PCI Express Interface configuration (this is mostly done from EEPROM)
• Address BAR configuration (BAR setup/translations registers)

2 In dual-host mode, the hardware allows accesses from both sides of the bridge after EEPROM load;
relying on software cooperation/communication to co-ordinate configuration activities.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 28

• Communication CSR Configuration (Doorbells, scratchpad)

The standard CSRs of the primary interface are usually assigned values from EEPROM.
These registers give the device its “personality” (Vendor/DeviceID and Device Class).

The PCI Express Interface Registers are also usually assigned values from EEPROM.
These registers describe PCI Express attributes like max payload size and link width.

The communications CSRs are used to setup/define the behavior of the signaling &
messaging interfaces used by the host & local processors to communicate with each
other. These can be read or written at any time without side effects.

In any case, prior to primary side access, e.g. by the system host, a number of
configuration registers need to be initialized. The forwarding BAR types and sizes must
be programmed, the vendor/device/class all must be set, and any communications
mechanisms used must be configured. Once the Primary Bus Access Bit is set, none of
the registers that affect the primary side interface should be changed.

Serial EEPROM Load
At power on reset, all internal registers except sticky bits are set to their power on reset
value. This includes setting the Primary Bus Access and Secondary Bus Access bits to 0,
which will disallow PCI configuration access from both sides of the non-transparent
switch port or bridge. During the time that the Primary and secondary Bus Access bit are
set to 0, all accesses will be retried.

The CSR contents are then loaded from EEPROM at which point the secondary Bus
Access bit is set, allowing access to the CSRs from the local side.

In Non-Transparent mode, the EEPROM load configures base aspects of the bridge along
with the majority of the standard CSR space of its Primary Interface, which contains the
VendorID, DeviceID, and Class of the device. The attributes of the BARs and the setting
of the Primary Bus Access bit are generally left for software on the local side to
configure, but it is possible to load all these values from EEPROM so that primary bus
access can be enabled without intervention from software on the local side.

Initialization by the Local Processor
At completion of the Serial EEPROM load, the Secondary Bus Access bit is set, allowing
CSR access from the Local Processor. While the Primary Bus Access bit is clear, the
bridge continues to return target retry for any configuration accesses from the Primary
interface.

At this point, the local processor can configure resources needed by the Primary interface
like the attributes of the primary side BARs (size, type, forwarding translation). When the
local processor initialization is complete, it sets the Primary Bus Access bit, which allows
host access to the primary side registers.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 29

The Primary Bus Access bit can also be set during the Serial EEPROM load. Using this
method requires that EEPROM contain all the BAR type, size and forwarding
information. It is important to note that once the Primary Bus Access bit is set, the local
processor should not change any primary interface registers that can affect host
configuration (BAR sizes for example).

Initialization by the Host Processor
Once the EEPROM and the local side have both completed their configuration(s), the
Primary Bus Access bit must be set to a 1. This will allow the PCI Express host to
commence with standard PCI discovery and configuration.

To the host side, the Non-transparent Forward Bridge appears to be a PCI Device with a
type 0 header. It is configured normally by writing all ones to the address BARs, reading
back the aperture sizes/types and finally assigning base addresses to each valid BAR.

The local host is responsible for creating and setting up the resource sizes for the Primary
side BARs along with their forwarding translations. If all the resources on the local side
are static, it is possible that the values could be loaded from EEPROM, but the values are
typically programmed by the local side processor which also goes through its own
initialization and self-test sequence.

Detailed initialization Sequences
Here are three variations on the initialization sequence for the intelligent adapter usage
model of the non-transparent bridge/switch port.

Initialization Sequence 1 – Configuration duties shared between
EEPROM and local side software

1. Standard CSRs for the primary interface along with PCI Express Interface CSRs are loaded from
EEPROM. At the completion of EEPROM load, the local access bit is set.

2. On the secondary side, the local processor programs the BAR setup registers, completes internal
initialization and sets the primary Bus Access bit.

3. The host can now configure the BARs of the bridge and assign it resources during PCI
enumeration.

4. The host loads the driver for Bridge, which goes through an initialization dialog with the local
processor that sits on the Bridge’s secondary bus at which point they configure the communication
resources.

Initialization Sequence 2 – Configuration by local side software (no
EEPROM)

1. The local access bit is set after no EEPROM is detected.
2. On the secondary side, the local processor programs the standard CSRs for the primary interface

along with PCI Express Interface CSRs and BAR setup registers, completes internal initialization
and sets the primary Bus Access bit.

3. The host can now configure the BARs of the Bridge and assign it resources during PCI
enumeration.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 30

4. The host loads the driver for Bridge which goes through an initialization dialog with the local
processor that sits on the Bridge’s secondary bus at which point they configure the communication
resources.

Initialization Sequence 3 – EEPROM Only configuration
1. Standard CSRs for the primary interface along with PCI Express Interface CSRs and BAR setup

registers are loaded from EEPROM. The Primary Bus Access bit is also loaded from EEPROM.
At the completion of EEPROM load, the local access bit is set.

2. The host can now configure the BARs of the Bridge and assign it resources during PCI
enumeration. The local side can also complete its initialization at this time.

3. The host loads the driver for Bridge, which goes through an initialization dialog with the local
processor that sits on the Bridge’s secondary bus at which point they configure the communication
resources.

Using Non-transparent Bridging in PCI Express Systems 6/1/2004

Jack Regula PLX Technology, Inc. 31

Appendix B: Mode Configuration Straps

• Host/upstream identified by straps or EEPROM at reset
o Any port can be identified as upstream
o Reflected in that port’s PCI Express Capabilities Register
o In dual-star, the line cards are upstream strapped to either primary

or secondary fabric on their local switch

• Straps to configure any port as non-transparent
o Reflected in that port’s PCI Express Capabilities Register

• Strap to indicate dual-host vs intelligent adapter

o Changes default/post EEPROM load state of Primary and
Secondary Bus Access Enables

