

Overcoming Latency in PCIe Systems Using PLX
by Jack Regula, Chief Technology Officer, PLX Technology (www.plxtech.com)

Overcoming PCI Express (PCIe) latency isn’t simply a matter of choosing the lowest-
latency components from among those suitable for an embedded-system design, but it’s a
good place to start. It’s also a matter of architecting operations to reduce or eliminate the
sensitivity of system performance to latency. It’s impossible to mask all the latency, so
the less there is to begin with, the better.

Defining Latency
Latency is the delay between starting and completing an action. For a switch, it’s the
time between the start-of-packet (SoP) symbol on an input pin and the SoP symbol on an
output pin for the same packet forwarded through the switch. From an endpoint’s
perspective, the latency includes the packet transmission time, since it can’t use the data
until it has seen the cyclic redundancy check (CRC) at the end and checked for errors. At
the highest level, the overall task latency, which may include multiple switch latencies, is
what really matters. At issue is whether resources are idled during the waiting period
implied by a task or transfer latency, and whether the waiting time prevents a deadline
from being met.

A PCIe switch’s latency can be decomposed into the time required to receive the header,
a pipeline delay and a queuing delay. The pipeline delay is the length of time for a
packet to traverse an otherwise empty switch and is solely a function of the switch’s
design. The queuing delay depends to a large extent upon the traffic pattern but can also
be dependent on flow control credits, as well as the switch’s arbitration and scheduling
policies. Deficiencies in a switch’s implementation or architecture most often show up
when dealing with flows consisting primarily of short packets. Therefore, a switch’s
performance should be evaluated with short packets, long packets, and, of course, with a
packet mix and flow pattern representative of the application.

Latency and Throughput
Engineers often try to extract full-wire-speed performance from the system interconnect
but that can be a mistake if low latency is also required. The closer the egress link of a
switch port is to being saturated, the deeper the queue in the buffers behind it. With large
buffers, it’s seldom necessary to throttle back an input, so maximum throughput is
obtained. The price is the latency of the queues that develop.

Overcoming Latency in PCIe Systems 2

.

With traffic patterns that lend themselves to mathematical analysis, (e.g. uniform
distribution and Poisson arrival times), the average queue depth can be estimated from
queuing theory. Without getting into the mathematical details, Figure1 provides a rough
guide as to the queue depth that will develop behind a switch egress port, based on the
number of ports feeding an output and the degree of utilization of its output link. For
simplicity, equal-sized packets were assumed. Keep in mind that on the order of five
percent of the link is consumed in DLL overhead.

Average Queue Depth vs Egress Link Utilization
and Number of Source Nodes

0.00

5.00

10.00

15.00

20.00

25.00

0.25 0.5 0.6 0.7 0.8 0.85 0.9 0.95 0.97 0.99

PCI Express Link Utilization

Q
ue

ue
 D

ep
th

 (P
ac

ke
ts

)

2
4
8
16
32

Src Nodes

Figure 1: Average Queue Depth Behind PCIe Switch Egress Port

Link Width and Latency
There is another, less-esoteric relationship between bandwidth and latency. A switch
cannot forward a packet until it has seen enough of the packet’s header to determine its
egress port. The wider the input link, the less time required to see the complete header.
On an x16 link, the entire header may be visible in a single clock, depending upon how
the SoP symbol aligns on the link. On a x8 link, it takes as few as two clock cycles to see
the entire header. Each halving of the link width doubles this component of the switch
latency.

The situation is more complicated when the egress link is wider than the ingress link. A
switch can’t initiate cut-through on a packet until it has received enough of it so that the
faster egress link won’t run dry of packet to send before the rest of the packet comes in.
Roughly speaking, if the egress is twice the width of the ingress, then half the packet
must be received before forwarding starts. Ironically, using an egress link that is wider
than the ingress link will increase the latency measured to the SoP symbol, but decrease it
when measuring to the end-of-packet (EoP) symbol. An endpoint can’t make use of the
packet until it checks the CRC at the end of the packet.

Overcoming Latency in PCIe Systems 3

.

Thus, using wider links can have three beneficial effects – reducing the cut-through
latency, the queuing delay, and the packet transmission time. As can be seen in Figure 1,
doubling the output link width can shrink the queue depth from near-maximum to nearly
empty.

Latency Sensitivity of Reads
A read is generally considered to be a blocking operation in that once a read request is
initiated no additional instructions in its thread of processing can be undertaken until it is
completed. Simple applications have the following work flow:

1. Make a read request
2. Wait for data
3. Process the data
4. Loop back to 1

In this simple example, the latency of the read directly affects the throughput. If the read
latency is much smaller than the processing time, then latency isn’t a problem. When it’s
not small, users look for ways to mask the latency by doing useful work during it. A
multithreaded processor could switch threads, for example, doing some other work
during the latency. Optimizing compilers issue the read early to minimize the wait.

Bus interface units often have an ability to issue multiple read requests before being
forced to wait for a completion. If, for example, N outstanding read requests are
supported, and the completion to the first read request arrives before the Nth read request
is sent, then latency is said to have been masked and full throughput can be achieved after
that initial waiting period. In practice, devices have varying degrees of ability to mask
latency so in a system, such as a PC or server where there is no control as to what is
plugged into an open slot, latency is always an issue.

Bridging Legacy PCI Devices to PCIe
When bridging PCI to PCIe, the bridge must make a guess as to how much data the
device will consume on a read. If the bridge guesses wrong, performance suffers. An
advanced bridge will use the version of the PCI read command as a hint. In response to a
simple MemRd, it will fetch only a single bus width of data. In response to a RdLin
command, it will typically prefetch a cache line of data. Use of the RdMult command on
PCI should result in the prefetch of multiple cache lines. After prefetching the data, the
bridge should retain it in a cache after an initial disconnection by the PCI device in case
the device returns for more data. When the PCIe-to-PCI bridge’s prefetch policy isn’t
adequate, it can help to insert a PCI-to-PCI bridge in the path to the device. The bridge
can be configured, for example, to translate a MemRd or RdLin command into a Read
Multiple command, and to keep the data longer in its internal prefetch cache. For both
PCI-to-PCI and PCIe-to-PCI bridges, it’s necessary to do device-specific configuration to
enable advanced prefetch features.

DMA I/O and Read Latency
The DMA I/O subsystem at the heart of PCs and servers is inherently latency-sensitive.
I/O is accomplished using a DMA controller in each I/O device to move data between it

Overcoming Latency in PCIe Systems 4

.

and main memory located next to the CPU. The DMA controller follows a chain of
descriptors located in memory. Each descriptor describes a unit of work assigned to the
DMAC, requiring the DMAC to move a block of data from the device to memory or from
memory to the device. The DMAC reads a descriptor, then assigns a DMA engine to do
the data movement dictated by the descriptor. While the data is being moved, it reads the
next descriptor. If the DMA engine completes its assignment before the next descriptor
read completes, it is forced to idle for lack of work. Typically, a workload for tasks such
as networking consists of a mix of short and long data blocks (packets) to be moved to
and from memory. When the data block is relatively long, latency is masked. For short
blocks, such as those used for Ethernet control packets, descriptor read latency can lead
to a loss of throughput. To avoid this, a sophisticated DMAC may read several
descriptors ahead and maintain a cache of prefetched descriptors. However, there is
always a limit to the size of the cache and to the number of descriptors available to be
prefetched. A particular device may be capable of masking descriptor read latency when
directly attached to a Northbridge (NB) but its throughput may suffer when it is
connected to the NB through a switch. System designers are best advised to use the
lowest-latency switches available to maximize the performance of their I/O subsystems.

Accelerators and Switch Latency
An increasingly common usage model is the attachment of multiple accelerators to a
processor complex to increase performance for certain applications. Examples are the
use of graphics processors for floating point acceleration. In the accelerator model, the
host processor offloads a computation to the accelerators, then waits for the result. It
may or may not have useful work to perform while waiting. Only if the waiting time is
less the time required to complete the operation without an accelerator is there a gain in
throughput.

The amount of time the host waits is the sum of:

1. Synchronization time at start of computation
2. Time for accelerator to read data from memory
3. Time for accelerator to produce the result
4. Time for accelerator to write the result back to memory
5. Synchronization time at end of computation

Each of these operations, except for the computation time itself (#3) includes the
interconnect latency. All the usual games of masking latency with concurrency apply.
Nevertheless, when you consider that typical accelerators operate in the GHz range while
interconnect latency is generally greater than 150 nanoseconds, you can see it is
necessary to offload a relatively long computation in order to gain throughput by
offloading work to the accelerator. Every step decrease in switch or interconnect latency
widens the range of problems to which accelerators may be profitably applied.

Summary
Given enough time and resources, engineers can usually figure out how to mask any
fixed amount of latency. Often this effort consumes most of their development time and
contributes significantly to the end cost of their product. No more dramatic example of

Overcoming Latency in PCIe Systems 5

.

this exists than the die area consumed by cache, cache controllers, and support for
multiple threads on high-end microprocessor chips.

Efforts to mask latency achieve varying degrees of success. System interconnects have
varying degrees of latency. In practice, we see some devices showing latency sensitivity
in some slots of some systems. These disturbing observations lead to additional effort to
root cause and find ways to reduce the latency sensitivity, thus extending the time to
market.

The availability of low-latency switches from PLX Technology makes the job of
everyone producing a PCIe-based infrastructure easier. These industry-leading switches
drop latency to as low as 110ns, or 87 percent lower than competing devices on the
market. Low-latency switches such as these should be the first choice of system
engineers interested in producing high-performance systems.

