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Overcoming PCI Express (PCIe) latency isn’t simply a matter of choosing the lowest-
latency components from among those suitable for an embedded-system design, but it’s a 
good place to start.  It’s also a matter of architecting operations to reduce or eliminate the 
sensitivity of system performance to latency.  It’s impossible to mask all the latency, so 
the less there is to begin with, the better. 

Defining Latency 
Latency is the delay between starting and completing an action.  For a switch, it’s the 
time between the start-of-packet (SoP) symbol on an input pin and the SoP symbol on an 
output pin for the same packet forwarded through the switch.  From an endpoint’s 
perspective, the latency includes the packet transmission time, since it can’t use the data 
until it has seen the cyclic redundancy check (CRC) at the end and checked for errors.  At 
the highest level, the overall task latency, which may include multiple switch latencies, is 
what really matters.  At issue is whether resources are idled during the waiting period 
implied by a task or transfer latency, and whether the waiting time prevents a deadline 
from being met. 
 
A PCIe switch’s latency can be decomposed into the time required to receive the header, 
a pipeline delay and a queuing delay.  The pipeline delay is the length of time for a 
packet to traverse an otherwise empty switch and is solely a function of the switch’s 
design.  The queuing delay depends to a large extent upon the traffic pattern but can also 
be dependent on flow control credits, as well as the switch’s arbitration and scheduling 
policies.  Deficiencies in a switch’s implementation or architecture most often show up 
when dealing with flows consisting primarily of short packets.  Therefore, a switch’s 
performance should be evaluated with short packets, long packets, and, of course, with a 
packet mix and flow pattern representative of the application. 

Latency and Throughput 
Engineers often try to extract full-wire-speed performance from the system interconnect 
but that can be a mistake if low latency is also required.  The closer the egress link of a 
switch port is to being saturated, the deeper the queue in the buffers behind it.  With large 
buffers, it’s seldom necessary to throttle back an input, so maximum throughput is 
obtained.  The price is the latency of the queues that develop.  



Overcoming Latency in PCIe Systems  2 

.   

 
With traffic patterns that lend themselves to mathematical analysis, (e.g. uniform 
distribution and Poisson arrival times), the average queue depth can be estimated from 
queuing theory.  Without getting into the mathematical details, Figure1 provides a rough 
guide as to the queue depth that will develop behind a switch egress port, based on the 
number of ports feeding an output and the degree of utilization of its output link.  For 
simplicity, equal-sized packets were assumed.  Keep in mind that on the order of five 
percent of the link is consumed in DLL overhead.  
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Figure 1: Average Queue Depth Behind PCIe Switch Egress Port 

Link Width and Latency 
There is another, less-esoteric relationship between bandwidth and latency.  A switch 
cannot forward a packet until it has seen enough of the packet’s header to determine its 
egress port.  The wider the input link, the less time required to see the complete header.  
On an x16 link, the entire header may be visible in a single clock, depending upon how 
the SoP symbol aligns on the link.  On a x8 link, it takes as few as two clock cycles to see 
the entire header.  Each halving of the link width doubles this component of the switch 
latency. 
 
The situation is more complicated when the egress link is wider than the ingress link.  A 
switch can’t initiate cut-through on a packet until it has received enough of it so that the 
faster egress link won’t run dry of packet to send before the rest of the packet comes in.  
Roughly speaking, if the egress is twice the width of the ingress, then half the packet 
must be received before forwarding starts.  Ironically, using an egress link that is wider 
than the ingress link will increase the latency measured to the SoP symbol, but decrease it 
when measuring to the end-of-packet (EoP) symbol.  An endpoint can’t make use of the 
packet until it checks the CRC at the end of the packet. 
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Thus, using wider links can have three beneficial effects – reducing the cut-through 
latency, the queuing delay, and the packet transmission time.  As can be seen in Figure 1, 
doubling the output link width can shrink the queue depth from near-maximum to nearly 
empty. 

Latency Sensitivity of Reads 
A read is generally considered to be a blocking operation in that once a read request is 
initiated no additional instructions in its thread of processing can be undertaken until it is 
completed.  Simple applications have the following work flow: 

1. Make a read request 
2. Wait for data 
3. Process the data  
4. Loop back to 1 

 
In this simple example, the latency of the read directly affects the throughput.  If the read 
latency is much smaller than the processing time, then latency isn’t a problem.  When it’s 
not small, users look for ways to mask the latency by doing useful work during it.  A 
multithreaded processor could switch threads, for example, doing some other work 
during the latency.  Optimizing compilers issue the read early to minimize the wait. 
 
Bus interface units often have an ability to issue multiple read requests before being 
forced to wait for a completion.  If, for example, N outstanding read requests are 
supported, and the completion to the first read request arrives before the Nth read request 
is sent, then latency is said to have been masked and full throughput can be achieved after 
that initial waiting period.  In practice, devices have varying degrees of ability to mask 
latency so in a system, such as a PC or server where there is no control as to what is 
plugged into an open slot, latency is always an issue. 

Bridging Legacy PCI Devices to PCIe 
When bridging PCI to PCIe, the bridge must make a guess as to how much data the 
device will consume on a read.  If the bridge guesses wrong, performance suffers.    An 
advanced bridge will use the version of the PCI read command as a hint.  In response to a 
simple MemRd, it will fetch only a single bus width of data.  In response to a RdLin 
command, it will typically prefetch a cache line of data.  Use of the RdMult command on 
PCI should result in the prefetch of multiple cache lines.  After prefetching the data, the 
bridge should retain it in a cache after an initial disconnection by the PCI device in case 
the device returns for more data.  When the PCIe-to-PCI bridge’s prefetch policy isn’t 
adequate, it can help to insert a PCI-to-PCI bridge in the path to the device.  The bridge 
can be configured, for example, to translate a MemRd or RdLin command into a Read 
Multiple command, and to keep the data longer in its internal prefetch cache.  For both 
PCI-to-PCI and PCIe-to-PCI bridges, it’s necessary to do device-specific configuration to 
enable advanced prefetch features. 

DMA I/O and Read Latency 
The DMA I/O subsystem at the heart of PCs and servers is inherently latency-sensitive.  
I/O is accomplished using a DMA controller in each I/O device to move data between it 



Overcoming Latency in PCIe Systems  4 

.   

and main memory located next to the CPU.  The DMA controller follows a chain of 
descriptors located in memory.  Each descriptor describes a unit of work assigned to the 
DMAC, requiring the DMAC to move a block of data from the device to memory or from 
memory to the device.  The DMAC reads a descriptor, then assigns a DMA engine to do 
the data movement dictated by the descriptor.  While the data is being moved, it reads the 
next descriptor.  If the DMA engine completes its assignment before the next descriptor 
read completes, it is forced to idle for lack of work.  Typically, a workload for tasks such 
as networking consists of a mix of short and long data blocks (packets) to be moved to 
and from memory.  When the data block is relatively long, latency is masked.  For short 
blocks, such as those used for Ethernet control packets, descriptor read latency can lead 
to a loss of throughput.  To avoid this, a sophisticated DMAC may read several 
descriptors ahead and maintain a cache of prefetched descriptors.  However, there is 
always a limit to the size of the cache and to the number of descriptors available to be 
prefetched.  A particular device may be capable of masking descriptor read latency when 
directly attached to a Northbridge (NB) but its throughput may suffer when it is 
connected to the NB through a switch.  System designers are best advised to use the 
lowest-latency switches available to maximize the performance of their I/O subsystems. 

Accelerators and Switch Latency 
An increasingly common usage model is the attachment of multiple accelerators to a 
processor complex to increase performance for certain applications.  Examples are the 
use of graphics processors for floating point acceleration.  In the accelerator model, the 
host processor offloads a computation to the accelerators, then waits for the result.  It 
may or may not have useful work to perform while waiting.  Only if the waiting time is 
less the time required to complete the operation without an accelerator is there a gain in 
throughput.   
 
The amount of time the host waits is the sum of: 

1. Synchronization time at start of computation 
2. Time for accelerator to read data from memory 
3. Time for accelerator to produce the result 
4. Time for accelerator to write the result back to memory 
5. Synchronization time at end of computation 

 
Each of these operations, except for the computation time itself (#3) includes the 
interconnect latency.  All the usual games of masking latency with concurrency apply.  
Nevertheless, when you consider that typical accelerators operate in the GHz range while 
interconnect latency is generally greater than 150 nanoseconds, you can see it is 
necessary to offload a relatively long computation in order to gain throughput by 
offloading work to the accelerator.  Every step decrease in switch or interconnect latency 
widens the range of problems to which accelerators may be profitably applied. 

Summary 
Given enough time and resources, engineers can usually figure out how to mask any 
fixed amount of latency.  Often this effort consumes most of their development time and 
contributes significantly to the end cost of their product.  No more dramatic example of 
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this exists than the die area consumed by cache, cache controllers, and support for 
multiple threads on high-end microprocessor chips.   
 
Efforts to mask latency achieve varying degrees of success.  System interconnects have 
varying degrees of latency.  In practice, we see some devices showing latency sensitivity 
in some slots of some systems.  These disturbing observations lead to additional effort to 
root cause and find ways to reduce the latency sensitivity, thus extending the time to 
market.   
 
The availability of low-latency switches from PLX Technology makes the job of 
everyone producing a PCIe-based infrastructure easier.  These industry-leading switches 
drop latency to as low as 110ns, or 87 percent lower than competing devices on the 
market.  Low-latency switches such as these should be the first choice of system 
engineers interested in producing high-performance systems.  


