
®

S14021.A

LSI53C040
Enclosure Services
Processor

PROGRAMMING
GUIDE

D e c e m b e r 2 0 0 0

Version 1.1

ii

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices,
or systems. Use of any LSI Logic product in such applications without written
consent of the appropriate LSI Logic officer is prohibited.

Document DB15-000100-01, Second Edition (December 2000)
This document describes the LSI Logic LSI53C040 Enclosure Services
Processor and will remain the official reference source for this product. This guide
is intended for use with the SAF-TE Firmware C1 source code release and meets
the criteria set within the LSI Logic Software Release Procedure.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1999–2000 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design is a registered trademark of LSI Logic Corporation. All
other brand and product names may be trademarks of their respective
companies.

Preface iii

Preface

This programming guide assists experienced firmware developers who
wish to customize the LSI53C040 SAF-TE Firmware for specialized
enclosure management applications, or to develop firmware using the
LSI53C040 firmware architecture as a basis. It assumes a thorough
knowledge of the “C” programming language and the SAF-TE
specification, and understanding of the components and services that will
be provided in the enclosure design. For more background material that
may provide information on these subjects, refer to the Section
“References,” and Section “Related Publications,” in this document.

This guide contains general considerations for developers who are
designing or customizing firmware and includes:

• describing the SCSI portion of the LSI53C040 firmware, including the
SCSI commands supported,

• describing the two-wire serial portion of the LSI53C040 firmware,

• describing the LSI53C040 implementation of the firmware for the
binary inputs/outputs, and of the LED outputs that provide enclosure
monitoring and notification services to the host,

• giving information on the LSI Logic implementation of the SAF-TE
command set, and

• describing the firmware configuration utility and the data structures
that hold the specific information on the components and services in
the enclosure.

Audience

This document was prepared for firmware developers who plan on
customizing the SAF-TE firmware for enclosure management
applications.

iv Preface

Organization

This document has the following chapters and appendix:

• Chapter 1, Using the Programming Guide, provides details about
the conventions used in this guide, describes the SAF-TE firmware,
and lists the features.

• Chapter 2, General Design Considerations, provides design
information for firmware developers.

• Chapter 3, SAF-TE Source Code, discusses the Boot Module,
Configuration Module, and SAF-TE Module that contains the safte.c
source code.

• Chapter 4, SAF-TE Command Implementation, lists the SAF-TE
commands supported by the LSI53C040 chip.

• Chapter 5, Configuration Data and the Configuration Utility,
provides the potential questions that may be asked while running the
configuration utility.

• Appendix A, LSI53C040 Board Utilities, discusses the data transfer
types.

Related Publications

LSI53C040 Enclosure Services Processor Technical Manual,
Order Number S14042.A

LSI53C040 Enclosure Services Processor SAF-TE Firmware User’s
Guide, Order Number S14004.A

References

Yeralan, Sencer and Ashutosh Ahluwalia. 1997. Programming and
Interfacing the 8051 Microcontroller.

Ayala, Kenneth J. 1997. The 8051 Microcontroller: Architecture,
Programming, & Applications. Second Edition.

Preface v

Scope of this Programming Guide

This programming guide only discusses the firmware implementation of
the SAF-TE protocol, even though the LSI53C040 device could support
the SES protocol. LSI Logic will not be pursuing a SES firmware
implementation.

Conventions Used in This Manual

Hexadecimal numbers are indicated by the prefix “0x” —for example,
0x32CF. Binary numbers are indicated by the prefix “0b” —for example,
0b0011.0010.1100.1111.

This manual makes frequent references to the source code of the
LSI53C040 SAF-TE firmware. We use routine names, typed in bold,
italics, and regular text, to indicate the specific section of code being
referenced.

Revision Record

Revision Date Remarks

1.0 5/99 First Edition.

1.1 12/00 Product names changed from SYM to LSI.

vi Preface

Contents vii

Contents

Chapter 1 Using the Programming Guide
1.1 Introduction 1-1
1.2 General Description 1-2
1.3 Features 1-2

1.3.1 MPIO/MPLED Mapping 1-2
1.3.2 TWS Interface Peripheral Support 1-2
1.3.3 SAF-TE Interface 1-3
1.3.4 Programmable Enclosure Configuration Monitoring 1-4

Chapter 2 General Design Considerations
2.1 8051/8032 Background 2-1

2.1.1 8032 Architecture Features 2-2
2.1.2 Archimedes Compiler Features 2-4

2.2 The LSI53C040 Firmware 2-7
2.3 SCSI and DMA 2-8
2.4 8032-Based Timer 2-9
2.5 TWS Bus 2-9
2.6 Power-On/Start-up 2-10
2.7 Normal Processing 2-10
2.8 Interrupts 2-11

2.8.1 8032 Processor Interrupts 2-11
2.8.2 LSI53C040 Interrupts 2-12

2.9 Debugging 2-12
2.10 Setting Up A Development Environment 2-12

2.10.1 Development Tools 2-13
2.10.2 Source Code Composition 2-14
2.10.3 Register Naming Translations 2-14
2.10.4 Calling Trees 2-20

2.11 Configuration Examples 2-25

viii Contents

2.11.1 Example 1 2-25
2.11.2 Example 2 2-28
2.11.3 Example 3 2-29

Chapter 3 SAF-TE Source Code
3.1 SAF-TE Source Code Overview 3-1
3.2 Boot Module 3-2
3.3 Configuration Module 3-3

3.3.1 Loader_Options Data Structure 3-4
3.3.2 Config Data Structure 3-5

3.4 SAF-TE Module 3-19
3.4.1 Compilation Instructions for safte.c 3-19
3.4.2 Main Program 3-22
3.4.3 Interrupts 3-39
3.4.4 Error Reporting 3-49

3.5 Frequently Asked Questions (FAQ) 3-49

Chapter 4 SAF-TE Command Implementation
4.1 SCSI Commands 4-1

4.1.1 Inquiry 4-1
4.1.2 Read Buffer 4-3
4.1.3 Request Sense 4-4
4.1.4 Send Diagnostic 4-4
4.1.5 Test Unit Ready 4-5
4.1.6 Write Buffer 4-5

4.2 SAF-TE Read Buffer Commands 4-7
4.2.1 Read Enclosure Configuration (0x00) 4-7
4.2.2 Read Enclosure Status (0x01) 4-9
4.2.3 Read Device Slot Status (0x04) 4-14
4.2.4 Read Global Flags (0x05) 4-16

4.3 SAF-TE Write Buffer Commands 4-18
4.3.1 Write Device Slot Status (0x10) 4-18
4.3.2 Perform Slot Operation (0x12) 4-20
4.3.3 Send Global Flags Command (0x15) 4-22

4.4 Unsupported SAF-TE Commands 4-25

Contents ix

Chapter 5 Configuration Data and the Configuration Utility
5.1 Using the Configuration Utility 5-1

5.1.1 Myinput.txt File 5-4
5.2 Questions in the Configuration Utility 5-5
5.3 After Running the Configuration Utility 5-21

Appendix A LSI53C040 Board Utilities
A.1 Data Transfers A-1

A.1.1 Serial Port A-1
A.1.2 ISA A-2
A.1.3 SCSI A-3
A.1.4 8067 Utilities A-6
A.1.5 LSI53C040 Board Layout/Jumper Settings A-6

Index

Customer Feedback

Figures
2.1 Internal RAM 2-3
2.2 LSI53C040 Memory Map 2-4
2.3 System Configuration 2-26
2.4 Optional Drive Slot Power Configuration 2-28
2.5 Dual Fans and Power Supplies Configuration 2-30
3.1 Main Program 3-23
3.2 Flow Diagram of ir_external1() 3-43
3.3 Flow Diagram of Command_and_Data_Phases() 3-44

Tables
2.1 Source Code Files 2-14
2.2 Special Function Register Names 2-15
2.3 SCSI Core/SFF-8067 Registers 2-16
2.4 TWS Registers 2-17
2.5 Miscellaneous Registers 2-17
2.6 System Registers 2-18

x Contents

2.7 MPLED/MPIO Pin Usage for Example 1 2-26
2.8 MPLED/MPIO Pin Usage for Example 2 2-29
2.9 MPLED/MPIO Pin Usage for Example 3 2-30
3.1 Source file - bootload.c - Switches 3-3
3.2 Instructions Per Device 3-13
3.3 Mapping of devices to MPIO and MPLED Banks 3-14
3.4 Switch Name and Action 3-20
3.5 Accumulator Settings 3-29
3.6 TWS High-Level Subroutines 3-30
3.7 SAF-TE Mappings 3-31
3.8 TWS Low-level Subroutines 3-32
3.9 Subroutine background_code_lode 3-34
3.10 Subroutine do_code_load 3-34
3.11 background_code_load operation 3-35
3.12 Upper Byte Choices 3-36
3.13 Interrupts Processed by 80C32 Microcontroller 3-39
3.14 Interrupt Service Routines - General 3-46
3.15 Interrupt Service Routines - SCSI Commands 3-47
3.16 Interrupt Service Routines - SCSI Read 3-48
3.17 Interrupt Service Routines - SCSI Write 3-48
3.18 Source Code Issues 3-49
4.1 Inquiry Command Response Data 4-2
4.2 Read Buffer Data Format 4-3
4.3 Sense Key Information 4-4
4.4 Write Buffer Data Format 4-5
4.5 Write Buffer Data Format (Updating SAF-TE Firmware) 4-6
4.6 Read Enclosure Configuration Return Values 4-7
4.7 Read Enclosure Status Return Values 4-10
4.8 Fan Status Return Values 4-11
4.9 Power Supply Status Return Values 4-12
4.10 Door Lock Status Return Values 4-13
4.11 Speaker Status Return Values 4-13
4.12 Read Device Slot Status Command Return Values 4-15
4.13 Power-On/Reset Default Slot Status 4-16
4.14 Read Global Flag Bytes 4-17
4.15 Write Device Slot Status Flag Bytes 4-18
4.16 Default LED Settings for Write Device Slot Status Flags 4-19
4.17 Perform Slot Operation Flags 4-20

Contents xi

4.18 Send Global Flag Bytes 4-22
4.19 Global Failure/Global Warning LED Options 4-23
4.20 Drive Failure/Drive Warning LED Options 4-24
4.21 Array Failure/Array Warning LED Options 4-24
5.1 Configuration Utility Files 5-2
5.2 General Questions 5-5
5.3 Enclosure Components Questions 5-7
5.4 Pin Assignment Questions 5-9
5.5 Default LED Settings for Write Device Slot Status Flags 5-12
5.6 Selections for Custom LED Settings for Write Device Slot

Status Flags 5-13
5.7 Device Slot Operation Questions 5-14
5.8 Status Signal Questions 5-15
5.9 TWS Bus Operation Questions 5-17
5.10 Questions for Firmware Bootloader 5-19
A.1 Capture Register Settings A-1
A.2 Command Line Inputs A-2
A.3 Configuration Using Three Serial EEPROMS A-4
A.4 Configuration Using Two Serial EEPROMS A-5
A.5 Switch Controls and Address A-7
A.6 Jumpers and Chip Address A-7
A.7 Jumper and Bus A-8
A.8 Jumpers and Branch Address A-8
A.9 Jumper and Code Load A-8

xii Contents

LSI53C040 Enclosure Services Processor Programming Guide 1-1

Chapter 1
Using the Programming
Guide

This chapter provides a general overview of the LSI53C040 Enclosure
Services Processor Firmware and includes these topics:

• Section 1.1, “Introduction,” page 1-1

• Section 1.2, “General Description,” page 1-2

• Section 1.3, “Features,” page 1-2

1.1 Introduction

The LSI53C040 is an enclosure services processor with
28 programmable, multipurpose I/O (MPIO) pins for enclosure monitoring
and 24 programmable, multipurpose I/O pins for visual LED indicators.
The LSI53C040 firmware includes configuration data tables that allow the
user to map specific monitoring functions to each of these pins, so that
the firmware can be adapted to any enclosure environment.

The LSI53C040 uses the SAF-TE or SES protocol to detect drive
presence, condition a slot for drive insertion or removal, and monitor
enclosure services. The fan, power supply, door lock, alarm, and slot
drive power are examples of enclosure services.

1-2 Using the Programming Guide

1.2 General Description

The LSI53C040 SAF-TE firmware controls an 80C32 microcontroller core
in the LSI53C040 device. This microcontroller is compatible with the Intel
MCS51 family. It runs independently in interrupt mode.

The LSI53C040 SAF-TE firmware contains three major architectural
components, each implementing a separate I/O interface to the chip. The
SCSI block governs the SCSI interface and implementation of all the
SCSI commands used to send data packets to the host. The Two-Wire
Serial (TWS) interface bus is primarily used as an input bus. See
Section 2.5, “TWS Bus,” page 2-9 for more detailed information.

1.3 Features

This section describes the LSI53C040 SAF-TE firmware capabilities and
associated features, which include MPIO/MPLED Mapping, TWS
Interface Peripheral Support, the SAF-TE Interface, and Programmable
Enclosure Configuration monitoring.

1.3.1 MPIO/MPLED Mapping

• Ability to assign MPIO/MPLED pins to dedicated functions such as
drive, power supply, and fan status monitoring

• Automatically configures MPIO/MPLED pins

• Generates listing of assigned pins

• Ability to modify blink patterns for LEDs

1.3.2 TWS Interface Peripheral Support

• National Semiconductor LM75 2-Wire Serial Digital Temperature
Sensor and Thermal Watchdog

• Dallas Semiconductor DS1621 2-Wire Serial Digital Thermometer
and Thermostat

• National Semiconductor LM78 fan, power supply, and temperature
monitoring

Features 1-3

1.3.3 SAF-TE Interface

The SAF-TE interface complies with the SAF-TE Specification R041497
and provides these features:

• Supports Read Buffer Commands

– Read Enclosure Configuration

– Read Enclosure Status

– Read Device Slot Status

– Read Global Flags

• Supports Write Buffer Commands

– Write Device Slot Status

– Performs Slot Operation

– Send Global Commands

• Supports the Upload Firmware command

• Allows selection from one of 11 SCSI IDs (7–0, 15, 14, 13)

• Allows connection from any data line, bits 8 through 15, to any one
of the SHID[2:0] (SCSI High ID) pins on the LSI53C040

• Supports Slot Power Control Option

• Supports Over Temperature LED Option

1-4 Using the Programming Guide

1.3.4 Programmable Enclosure Configuration Monitoring

The enclosure configuration monitoring allows:

• Up to 14 device slots

• Up to 6 fans and power supplies (single or dual input status)

• Up to 15 binary temperature sensors (single input status)

• Up to 4 temperature sensors (TWS)

• Optional Ready device for use (slot power control) and Prepare
device for insertion/removal output signals

• Programmable Vendor, Product, and Enclosure ID

• Host Controllable Door Lock and Speaker Option

• Selection of one or two LED’s per device slot

• Global LED’s option for enclosure, drive, and array status

LSI53C040 Enclosure Services Processor Programming Guide 2-1

Chapter 2
General Design
Considerations

This chapter provides design information for firmware developers and
includes these topics:

• Section 2.1, “8051/8032 Background,” page 2-1

• Section 2.2, “The LSI53C040 Firmware,” page 2-7

• Section 2.3, “SCSI and DMA,” page 2-8

• Section 2.4, “8032-Based Timer,” page 2-9

• Section 2.5, “TWS Bus,” page 2-9

• Section 2.6, “Power-On/Start-up,” page 2-10

• Section 2.7, “Normal Processing,” page 2-10

• Section 2.8, “Interrupts,” page 2-11

• Section 2.9, “Debugging,” page 2-12

• Section 2.10, “Setting Up A Development Environment,” page 2-12

• Section 2.11, “Configuration Examples,” page 2-25

2.1 8051/8032 Background

The user is encouraged to become familiar with the 8032 8-bit
microcontroller prior to reading this guide. The primary differences
between the 8051 and the 8032 are the internal RAM (256 bytes vs.
128 bytes for the 8051), also the 8032 has one additional timer. Several
excellent resources are available to aid the user in becoming familiar with
the 8032, including those listed in the Preface of this guide.

2-2 General Design Considerations

This section covers some of the key highlights of the 8032 architecture
and some important Archimedes compiler features. The remainder of the
chapter provides an overview of the LSI53C040 firmware and general
design considerations necessary to use this firmware most effectively.

2.1.1 8032 Architecture Features

The architectural features of the 8032 microcontroller are key to the
understanding and use of the LSI53C040 firmware. These features
include: Section 2.1.1.1, “Register Banks,” page 2-2, Section 2.1.1.2,
“Memory Areas,” page 2-2, and Section 2.1.1.3, “Special Function
Registers,” page 2-4.

2.1.1.1 Register Banks

Four register banks that contain eight registers each in the 8032 reside
in the lower 128 bytes of the internal RAM. See Figure 2.1 for an
example of these register banks.

2.1.1.2 Memory Areas

The 8032 architecture supports a number of physically separate memory
areas for program and data. Each memory area offers certain
advantages and disadvantages. Refer to the Intel 8-bit Embedded
Controllers databook or other 8051 reference material for more
information about the 8032 memory architecture. The following sections
briefly discuss program memory, the internal data memory, and the
external data memory.

Program Memory – Since the 8032 is a ROMless variant of the 8051,
an external 16 Kbytes memory is required to hold the program code. The
LSI53C040 has the ability to automatically download this program code
from a serial EEPROM over the TWS bus into the external
16 Kbytes memory space.

Internal Data Memory – The 8032 contains 256 bytes of internal data
memory, which can be read and written. The first 128 bytes of internal
data memory are both directly addressable and indirectly addressable.
The upper 128 bytes of data memory (from 0x80 to 0xFF) can be
addressed only indirectly. With indirect addressing, the referenced
register contains the address of the register or cell that actually contains
the data to be used. There is also a 16-byte area starting at 0x20 that is
bit-addressable. See Figure 2.1 for more detailed information.

8051/8032 Background 2-3

Figure 2.1 Internal RAM

External Data Memory Map – The address decode block in the
LSI53C040 decodes addresses that are generated by the
microcontroller. Additionally, it multiplexes memory space accesses
between the different register and memory blocks according to the
memory map. See Figure 2.2 for an example of this memory map.

0x7F
Bit Addresses for This

RAM Area Only
0x00

Register

General
Purpose

Area

Bit
Address

Area

Register
Bank 3

Register
Bank 2

Register
Bank 1

R7

R6

R5

R4

R3

R2

R1

R0

0x7F

0x30

0x2F

0x20
0x1F

0x18
0x17

0x10

0x0F

0x08
0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Byte
Addresses

Bank 0

0x80

0xFF

Lower 128 Bytes Upper 128 Bytes

2-4 General Design Considerations

Figure 2.2 LSI53C040 Memory Map

2.1.1.3 Special Function Registers

The 8032 provides a distinct memory area for accessing Special
Function Registers (SFRs). SFRs are used in the program to control
timers, counters, serial I/Os, port I/Os, and peripherals. SFRs reside from
address 0x80 to 0xFF, and can be accessed by bits, bytes, and words.
The special function registers are listed in Table 2.2.

2.1.2 Archimedes Compiler Features

The user should be familiar with several Archimedes compiler features
that are related to the above 8032 features before reading the source
code.

2.1.2.1 Control Directives

The four control directives are: AREGS/NOAREGS, REGISTERBANK,
and SMALL.

Interrupt Vectors

16 Kbytes
Internal RAM

47 Kbytes External
Address Space

(Currently Not Used)

1 Kbyte Internal
Features Register

0x0000

0x0032
0x0033

0x3FFF

0x4000

0xFBFF

0xFC00

0xFFFF

8051/8032 Background 2-5

The AREGS control causes the compiler to use absolute addressing for
registers R0 through R7. Absolute addressing improves the efficiency of
the generated code. PUSH and POP instructions function only with direct
or absolute addresses. By using the AREGS directive, functions can
directly push and pop registers.

The NOAREGS control disables absolute addressing for registers R0
through R7. Functions that are compiled with NOAREGS are not
dependent on the register bank and may use all 8051 register banks.
This directive may be used for functions that are called from other
functions using different register banks.

The REGISTERBANK control selects the specific register bank to use
for subsequent functions declared in the source file. Resulting code may
use the absolute form of register access when the absolute register
number can be computed. The using function attribute supersedes the
effects of the REGISTERBANK directive.

The SMALL memory model is used to compile the firmware for
performance reasons. This results in all function variables and local data
segments being placed in the internal data memory of the 8032 by
default. This results in smaller code size and faster execution. Since the
internal memory size is very limited (256 bytes), larger or infrequently
used variables may be declared to be in any of the 8032 memory ranges.
Since this is the compiler’s default memory model, a #pragma small is
not needed in the source file, and SMALL does not have to be on the
C51 command line.

2.1.2.2 Compiler Keywords

A list of compiler keywords are:

at variables may be located at absolute memory locations in the C
program source modules using the _at_ keyword.

sbit the sbit data type allows the user to access bit-addressable SFRs.

data directly accessible internal data memory; fastest access to variables
(128 bytes).

bdata bit-addressable internal data memory; allows mixed bit and byte
access (16 bytes).

2-6 General Design Considerations

2.1.2.3 Generic Pointers vs. Memory-Specific Pointers

Due to the unique architecture of the 8051 and its derivatives, the
compiler provides two different types of pointers: generic pointers and
memory-specific pointers.

Generic pointers are always stored using three bytes. The first byte is for
the memory type, the second is for the high-order byte of the offset, and
the third is for the low-order byte of the offset. Generic pointers may be
used to access any variable regardless of its location in 8051 memory
space.

Memory-specific pointers always include a memory type specification in
the pointer declaration and always refer to a specific memory area.
Because the memory type is specified at compile-time, the memory type
byte required by generic pointers is not needed by memory-specific
pointers. Like generic pointers, the user may specify the memory area in
which a memory-specific pointer is stored. Memory-specific pointers may
be used to access variables in the declared 8051 memory area only.
Memory-specific pointers provide the most efficient method of accessing
data objects, but at the cost of reduced flexibility.

For more information, refer to your C compiler documentation,
specifically the sections covering directives and language extensions.

idata indirectly addressable internal data memory; accessed across the full
internal address space (256 bytes).

pdata paged (256 bytes) external data memory (16 Kbytes).

xdata external data memory (refers to any location in the full 64 Kbytes of
external data memory).

code program memory (16 Kbytes).

sfr SFRs are declared in the same fashion as other variables. The only
difference is that the data type specified is sfr rather than char or int.

interrupt an extension for standard C function declarations that indicates that
the function is an interrupt function.

using specifies which register bank the function uses.

The LSI53C040 Firmware 2-7

Note: The user must be aware that this compiler does not
generate re-entrant code, that function parameters are not
passed on the stack, and that interrupt level routines and
background routines cannot share subroutines. Virtually all
of the source code is written in C. Assembly language is
only needed for stack initialization before control is passed
to the C code.

2.2 The LSI53C040 Firmware

The heart of the LSI53C040 architecture is its 52 input and output pins
(28 MPIO pins and 24 MPLED pins). The user may specify (by using the
configuration utility) an almost unlimited number of configurations. The
SAF-TE firmware was designed to make these configurations simple to
implement by using this utility. Additionally, the SAF-TE firmware is
coupled with a software state machine that polls all of the binary inputs
and drives all of the binary outputs. Simultaneously, the firmware
maintains copies of all the necessary SAF-TE/SCSI command responses
so that the SCSI interrupt software can return these responses to a
host/initiator at any time.

This state machine design allows the user to specify all of the inputs and
outputs without having to change the 8032 firmware. In addition, this
design actually simplifies and shortens the size of the 8032 firmware, by
moving much of the decision making process to the configuration utility.
Consequently, more memory is available in the 8032 for user
enhancements. Refer to Chapter 5 for more detailed information about
configuration data and the configuration utility.

The program and data for this state machine design is passed from the
configuration utility to the firmware by using a data structure called
config. In addition, the config data structure also contains all the
information gathered by the configuration utility, such as the SCSI ID,
TWS devices to be supported, scanning intervals, etc.

The 8032 microcontroller is at the core of the LSI53C040 device and
runs at 40 MHz. This microcontroller provides more than sufficient
processing power to complete the work to be done by the LSI53C040.
The environmental monitoring protocols, such as SAF-TE and SES, do

2-8 General Design Considerations

not require much SCSI traffic. Therefore, the LSI53C040 is an excellent
choice for enclosure monitoring functions, although attention to certain
software details is necessary to make effective use of its features.

2.3 SCSI and DMA

The most important of those details is the SCSI interface. The DMA
engine in the LSI53C040 helps improve the overall speed of the SCSI
interface, but that alone is not enough. Because this core is relatively
slow, the software is designed to complete the SCSI work as quickly as
possible.

The SCSI interface is done at interrupt level. The 8032 has 6 interrupt
sources, but only two interrupt levels. SCSI is done at the lower interrupt
level, while DMA is done at the higher interrupt level. This is necessary
because the 8032 is placed in a low power mode during DMA, and the
DMA interrupt is used to “wake up” the 8032 when DMA is completed.

Note: The 8032 must be placed in low power mode so that it is
not executing instructions; that is, the 8032 cannot run
while the DMA machine is running.

DMA must be done to complete the SCSI work. Since the SCSI code is
running at interrupt level and since there are only two interrupt levels, the
SCSI interrupt must be a low level interrupt, and the DMA must be a high
level interrupt.

The SCSI code is designed to be able to supply command responses
immediately after commands are received, so there is no delay between
the time a command is received and the time the response is sent. This
feature makes efficient use of the SCSI bus and of the slower LSI53C040
core. It also means that the SCSI code does not need to disconnect from
the initiator/host after the command is received, and then reconnect after
the data is ready to send, minimizing the overall time spent on the SCSI
bus. This is necessary because the LSI53C040 sees only 3 bits of the
high SCSI bus (not all 8 bits), so the LSI53C040 cannot arbitrate for the
bus to perform the reconnection/reselection whenever the LSI53C040 is
placed at a high SCSI ID [15:8]. The LSI53C040 could disconnect and
reconnect if it were placed at a low ID [7:0], but that would place
unwanted restrictions on the general use of this code.

8032-Based Timer 2-9

2.4 8032-Based Timer

An 8032-based timer is also operated at interrupt level. This makes the
time keeping more accurate than polling, and since the routine is of
minimal size it does not seriously affect performance. Currently this time
keeping is only used to control the periodic scanning of the TWS input
devices, so timing accuracy is not important. However, the time keeping
feature may be used in the future for more time-critical functions.

2.5 TWS Bus

During normal operation, the TWS bus is only used as an input bus. The
TWS bus is also used for booting (or autodownload from flash), and to
update the contents of the flash by using the SCSI bus, but these are not
part of normal operation. The devices currently supported on the TWS
bus are the Dallas 1621 and the National LM75 and LM78. These
devices do not need to be monitored constantly, and some of them (most
notably the LM78) need to be “left alone” for a sufficient period of time
so that they can update all of their collected data. This means that these
parts should be polled periodically. The host/initiator will
probably/realistically poll the SAF-TE software every few minutes, so the
SAF-TE software need only poll the TWS parts every few seconds. The
software can poll the TWS parts continuously or as infrequently as every
8.5 minutes. Typically, the software will be configured to poll every
2 seconds. This interval is specified by the user with the configuration
utility. The user can request that the software poll continuously (that is,
every 0 seconds), but LSI Logic does not recommend this.

The TWS polling routines (mentioned above) collect their data and place
that data in the SCSI/SAF-TE command response packets (just as the
state machine does) so that these packets always contain up-to-date
information for immediate transmission to the host/initiator when it is
requested.

2-10 General Design Considerations

2.6 Power-On/Start-up

The first job during power-on/start-up is to test the reliability of the config
data structure. The structure is checked for correct length and checksum.
If either of these is wrong, the SAF-TE software will not run. Nearly all
of the information in the config data structure is user-specific, and
virtually all of the firmware is not specific to any user, so the software
cannot signal that the config structure is corrupt. It is expected that the
users customizing this software will make changes to light a failure LED
or otherwise signal the general failure of the SAF-TE system for this
condition, as well as for other similar errors.

Once validated, the information in the config data structure can be used
to initialize the SCSI hardware, the TWS hardware, and the 52 I/O lines.
When initialization is completed, interrupts are enabled and normal
(background) processing begins.

2.7 Normal Processing

The background process first checks the health of the SCSI interrupt
level software. If unhealthy, the hardware is reinitialized and the SCSI
interrupt is enabled.

The background process handles the TWS polling if it is time. The
background process also makes one pass through the state machine
program to update the status of all the I/O pins. This process is repeated
indefinitely.

The SCSI interrupt level code attempts to handle all normal SCSI errors
in a straight-forward manner. If any abnormal errors occur, the interrupt
software takes the simplest approach - it goes bus free. This is always a
valid approach to errors by a SCSI target, plus it gets the LSI53C040
core off the bus as quickly as possible. Since there are few commands
and no variants, the SAF-TE protocol works well in a production
environment (the assumption is that issues relating to the host and target
software have been resolved). When the SCSI interrupt software goes
bus free, it signals the background process that it has done so by
disabling the SCSI interrupt.

Interrupts 2-11

When the background process starts the next pass of its infinite loop
(above), it detects the unhealthy state (as mentioned above), reinitializes
the hardware, and re-enables the interrupt.

2.8 Interrupts

This section provides information on the 8032 processor and LSI53C040
interrupts.

2.8.1 8032 Processor Interrupts

The 8032 processor has two external interrupts (INT0 and INT1), which
may be set to be level or edge triggered depending upon the setting of
the control bits in the TCON register.

IT0 = H -> interrupt on falling edge of INT0 (edge triggered)

IT0 = L -> interrupt if INT0 = LOW (level triggered)

IT1 = H -> interrupt on falling edge of INT1 (edge triggered)

IT1 = L -> interrupt if INT1 = LOW (level triggered)

Both of these external interrupts may be configured as inputs from any
of the LSI53C040 core interrupts.

Other interrupt sources from the 8032:

SERIAL
RX
TX

TIMER0

TIMER1

TIMER2

2-12 General Design Considerations

2.8.2 LSI53C040 Interrupts

The LSI53C040 interrupts may be input on either INT0 or INT1 of the
8032 core external interrupts. Refer to Section 3.4.3, “Interrupts,”
page 3-39 for interrupt details about the SCSI Core, DMA Core, TWS (2),
Timers, and SFF-8067. The interrupt registers are:

• Interrupt Status Register (0xFE04): Find source of interrupt.

• Interrupt Mask Register (0xFE0D): H = enable L = disable

• Interrupt Destination Register (0xFE0E): routing to INT0 and INT1

2.9 Debugging

Debugging may be done using printf() calls with the output going to the
serial port of the 8032. You may then use any terminal emulator to
capture the output from the serial port. The serial port uses software flow
control using XON/XOFF. The configuration for the serial port is:

• 19200 baud, N-8-1 with XON/XOFF flow control (19200 bits per
second, no parity, 8 data bits, 1 stop bit)

2.10 Setting Up A Development Environment

Development may be done using a DOS shell under Windows NT 4.0
and running batch files to run the make process.

Before you start, verify that the Archimedes tools have been installed into
the C:\C251 directory, the Borland C++ Version 4.5 has been installed
into the C:\BC45 directory, and the SAF-TE source code has been
placed in the C:\SAFTE directory.

To set up a development environment, follow these steps:

Step 1. Install Archimedes C-51

Step 2. Install Borland C++ Version 4.5

Step 3. Change the path statement in MAKEBOOT.BAT to include:

C:\BC45\BIN;C:\C251\BIN

Setting Up A Development Environment 2-13

Step 4. Set the following environment variables in MAKEBOOT.BAT:

C51INC = C:\C251\INC
C51LIB = C:\C251\LIB
C251INC= C:\C251\INC
C251LIB= C:\C251\LIB

Step 5. Your development environment should now be setup and you
are ready to run MAKEALL.BAT at the command prompt from
the C:\SAFTE directory to create the .HEX files to download into
the EEPROM on your SAFTE board.

2.10.1 Development Tools

Company: Borland

Product: Borland C++

Version: 4.5

Note: Use this product to compile the configuration program that
allows the user to assign a specific configuration for the
LSI53C040 board.

Company: Archimedes Software

Product: 8051/251 Development Suite

Version: 5.50bA

Includes: Compiler, Assembler, SimCASE for Windows

WEB URL: http://www.archimedesinc.com

Phone: (425) 822-6300

Note: The 8051 tools are the only tools currently needed, and
purchasing the 251 tools is not required. Future releases of
the firmware may use updated versions of the
8051 compiler, (such as 8051-IDE-V6NT).

This information was available from Archimedes Software as of
October 13, 1998:

2-14 General Design Considerations

2.10.2 Source Code Composition

Table 2.1 shows the lines of code associated with each of the files that
comprise the source code:

As shown above, the majority of the code is written in “C” and very little
is actually written in assembler.

2.10.3 Register Naming Translations

This section provides detailed information about the 8032 Registers,
LSI53C040 Registers, TWS Registers, and miscellaneous registers.

Part Number Price

8051-IDE-V6NT $1995

8051-CASM-V6NT $1495

Table 2.1 Source Code Files

Filename Lines of Code
Blanks +

Comments
Code + Blanks +

Comments

bootinit.asm 56 79 135

bootload.c 370 160 530

config.c 1931 421 2352

config.h 145 49 194

loader.h 28 17 45

reg040.h 107 108 215

reg51.h 63 18 81

safeinit.asm 13 15 28

safte.c 2371 1508 3879

Total 5084 2375 7459

Setting Up A Development Environment 2-15

2.10.3.1 8032 Registers

Standard 8051 register names are currently used for the 8032 core.
Table 2.2 shows the register name, address, and description.

Table 2.2 Special Function Register Names

Special Function
Register (SFR) Name Address Description

P0 0x80 Port 0

P1 0x90 Port 1

P2 0xA0 Port 2

P3 0xB0 Port 3

PSW 0xD0 Program Status Word

ACC 0xE0 Accumulator

B 0xF0 B Register

SP 0x81 Stack Pointer

DPL 0x82 Data Pointer High

DPH 0x83 Data Pointer Low

PCON 0x87 Power Control

TCON 0x88 Timer/Counter Control

TMOD 0x89 Timer/Counter Mode

TL0 0x8A Timer/Counter 0 Low Byte

TL1 0x8B Timer/Counter 1 Low Byte

TH0 0x8C Timer/Counter 0 High Byte

TH1 0x8D Timer/Counter 1 High Byte

IE 0xA8 Interrupt Enable

IP 0xB8 Interrupt Priority

SCON 0x98 Serial Control

SBUF 0x99 Serial Data Buffer

2-16 General Design Considerations

2.10.3.2 LSI53C040 Registers

The following registers have been named differently than in the
LSI53C040 Technical Manual. These are memory mapped into external
data space of the 8032 at the addresses shown, and are all 8-bit
registers.

Table 2.3 SCSI Core/SFF-8067 Registers

Firmware Register Name Address
LSI53C040
Register Name

SCSI_DATA_REG 0xFC00 CSD or ODR

INITIATOR_COMMAND_REG 0xFC01 ICR

MODE_REG 0xFC02 MR

TARGET_COMMAND_REG 0xFC03 TC

SCSI_BUS_STATUS_REG 0xFC04 CSB or SER

BUS_STATUS_REG 0xFC05 BSR or SDR

DMA_START_TARGET_RECEIVE_REG 0xFC06 SDTR

RESET_PARITY_INTERRUPT_REG 0xFC07 RPI or SDIR

SCSI_HIGH_DATA_REG 0xFC08 CSDHI

HIGH_SELECT_ENABLE_REG 0xFC0C SENHI

DMA_STATUS_REG 0xFC10 DS

DMA_TRANSFER_LENGTH_REG 0xFC11 DTL

DMA_ADDR_LOW_REG 0xFC12 DSDL

DMA_ADDR_HIGH_REG 0xFC13 DSDH

DMA_INTERRUPT_REG 0xFC14 DMAI

Setting Up A Development Environment 2-17

Table 2.4 TWS Registers

Firmware Register Name Address
LSI53C040
Register Name

TWS_0_DATA 0xFD00 none

TWS_0_CSR 0xFD01 none

TWS_1_DATA 0xFD02 none

TWS_1_CSR 0xFD03 none

LOAD_CHECKSUM 0xFD04 none

LOAD_ADDR_H 0xFD05 reserved

LOAD_ADDR_L 0xFD06 reserved

Table 2.5 Miscellaneous Registers

Firmware Register Name Address
LSI53C040
Register Name

WDT_CON 0xFE00 WDTC

WDT_SECOND 0xFE01 WDSC

WDT_FINAL 0xFE02 WDFC

MISC_CON 0xFE03 MCR

INT_STATUS 0xFE04 ISR

TIM_1_CON 0xFE05 T1C

TIM_1_THRESHOLD 0xFE06 T1TH

TIM_1_SECOND 0xFE07 T1SC

TIM_1_FINAL 0xFE08 T1FC

TIM_2_CON 0xFE09 T2C

TIM_2_THRESHOLD 0xFE0A T2T

TIM_2_SECOND 0xFE0B T2SC

2-18 General Design Considerations

TIM_2_FINAL 0xFE0C T2FC

INT_MASK 0xFE0D IMR

INT_DESTINATION 0xFE0E IDR

Table 2.6 System Registers

Firmware Register Name Address
LSI53C040
Register Name

POW_CON_0_MASK 0xFF00 RES

POW_CON_0 0xFF01 POCO

POW_CON_1_MASK 0xFF02 RES

POW_CON_1 0xFF03 POCI

LED_BLINK 0xFF04 LBR

SYS_CON 0xFF05 SYSCTRL

IO_0_OUT 0xFF08 MPO0

IO_0_ENABLE 0xFF09 MPE0

IO_0_IN 0xFF0A MPI0

IO_0_MASK 0xFF0B MPLM0

IO_0_LATCH 0xFF0C MPL0

IO_0_PULLDOWN 0xFF0D MPPE0

IO_1_OUT 0xFF10 MPO1

IO_1_ENABLE 0xFF11 MPE1

IO_1_IN 0xFF12 MPI1

Table 2.5 Miscellaneous Registers (Cont.)

Firmware Register Name Address
LSI53C040
Register Name

Setting Up A Development Environment 2-19

IO_1_MASK 0xFF13 MPLM1

IO_1_LATCH 0xFF14 MPL1

IO_1_PULLDOWN 0xFF15 MPPE1

IO_2_OUT 0xFF18 MPO2

IO_2_ENABLE 0xFF19 MPE2

IO_2_IN 0xFF1A MPI2

IO_2_MASK 0xFF1B MPLM2

IO_2_LATCH 0xFF1C MPL2

IO_2_PULLDOWN 0xFF1D MPPE2

IO_3_OUT 0xFF20 MPO3

IO_3_ENABLE 0xFF21 MPE3

IO_3_IN 0xFF22 MPI3

IO_3_MASK 0xFF23 MPLM3

IO_3_LATCH 0xFF24 MPL3

IO_3_PULLDOWN 0xFF25 MPPE3

LED_00_OUT 0xFF30 MLO0L

LED_01_OUT 0xFF31 MLO

LED_00_IN 0xFF32 MLI0L

LED_01_IN 0xFF33 MLI0H

LED_00_MASK 0xFF34 MLLM0L

LED_01_MASK 0xFF35 MLLM0H

LED_00_LATCH 0xFF36 MLL0L

Table 2.6 System Registers (Cont.)

Firmware Register Name Address
LSI53C040
Register Name

2-20 General Design Considerations

2.10.4 Calling Trees

The three source files that have calling trees are:

• Config.C

• Bootload.C

• Safte.C

LED_01_LATCH 0xFF37 MLL0H

LED_10_OUT 0xFF38 MLO1L

LED_11_OUT 0xFF39 MLO1H

LED_10_IN 0xFF3A MLI1L

LED_11_IN 0xFF3B MLI1H

LED_10_MASK 0xFF3C MLLM1L

LED_11_MASK 0xFF3D MLLM1H

LED_10_LATCH 0xFF3E MLL1L

LED_11_LATCH 0xFF3F MLL1H

LED_20_OUT 0xFF40 MLO2L

LED_21_OUT 0xFF41 MLO2H

LED_20_IN 0xFF42 MLI2L

LED_21_IN 0xFF43 MLI2H

LED_20_MASK 0xFF44 MLLM2L

LED_21_MASK 0xFF45 MLLM2H

LED_20_LATCH 0xFF46 MLL2L

LED_21_LATCH 0xFF47 MLL2H

Table 2.6 System Registers (Cont.)

Firmware Register Name Address
LSI53C040
Register Name

Setting Up A Development Environment 2-21

All names are function names with the names in all caps being macros.

Example:

a
b

c
d

the function 'a' has one subfunction 'b'
'b' has two subfunctions 'c' and 'd'

'c' and 'd' have no subfunctions in this example.

2.10.4.1 Summary Calling Tree of Config.C

main
abort

..printf

..fprintf

..exit
init_pin_data
ask_questions

YorN
abort
..fprintf
..fgets
..sscanf
..toupper

ask_text
abort
..fprintf
..fgets
..strlen

ask_scsi_id
ask_MtoN

abort
..fprintf
..fgets
..sscanf

abort
zerotoN

ask_MtoN
..fprintf

zerotoN
ask_MtoN
ask_pins

abort

2-22 General Design Considerations

..fprintf

..fgets

..sscanf

..strcmp
abort
ask_map

abort
..fprintf
..fgets
..sscanf

ask_LM78
ask_MtoN
YorN
..printf
..sprintf

..fprintf

..sprintf

..printf
..fgets

..sscanf
assign_DM_addrs

abort
..memset
..printf
..fprintf

fill_config_structure
swap_2_bytes
fill_program

fill_instruction
swap_2_bytes
..fprintf

fill_output_pin_instruction
abort
fill_instruction
..printf

..min

..printf
checksum
..memset
..fprintf

create_hex_file
abort
..fopen
..printf
..fprintf
..fclose

fill_loader_structure
swap_2_bytes

..printf

Setting Up A Development Environment 2-23

2.10.4.2 Summary Calling Tree of Bootload.C

main
tws_setup
tws_init
tws_read

tws_poll_bb
tws_poll_lrb
tws_poll_pin

delay
..moveit

moveit2

2-24 General Design Considerations

2.10.4.3 Summary Calling Tree of Safte.C

main
validate_config

checksum
init_stuff

tws_setup
tws_init

background_process
init_time_keeping
reset_scsi_hw
execute_program_once
background_code_load

tws_setup
tws_memory_write

tws_write
tws_poll_bb
tws_poll_lrb

gather_TWS_input
gather_LM78_input

tws_setup
tws_write
tws_read

tws_poll_bb
tws_poll_lrb
tws_poll_pin

tws_setup
tws_write
tws_read

..memset
check_condition

ir_external0
ir_external1

req_ack
command_and_data_phases

check_condition
do_inquiry

invalid_LUN_test
min
send_data_bytes

req_ack
do_request_sense

min
send_data_bytes

invalid_LUN_test
do_read_buffer

check_condition
do_read_enclosure_configuration

Configuration Examples 2-25

min
send_data_bytes

do_read_enclosure_status
min
send_data_bytes

do_read_device_slot_status
min
send_data_bytes

do_read_global_flags
min
send_data_bytes

do_send_diagnostic
do_test_unit_ready
do_write_buffer

check_condition
get_data_bytes

req_ack
do_write_device_slot_status
do_perform_slot_operation

check_condition
do_send_global_flags
do_code_load

check_condition
get_data_bytes

ir_serial
ir_timer0
ir_timer1
ir_timer2
max

2.11 Configuration Examples

The following examples show specific monitoring capabilities of the
LSI53C040. Numerous configurations are possible subject to the
28 MPIO and 24 MPLED I/O pins.

2.11.1 Example 1

This example (Figure 2.3) shows an implementation supporting the
maximum number of SCSI Devices (14) on an LVD bus, six power
supplies, and six fans without any external logic. Note that the devices
are on the LVD bus due to the initiator and the LSI53C040 each
consuming a SCSI ID.

2-26 General Design Considerations

Figure 2.3 System Configuration

Table 2.7 below summarizes the MPIO/MPLED pin count required for this
implementation. There are seven other available MPLEDs for LED
functions.

Table 2.7 MPLED/MPIO Pin Usage for Example 1

SAF-TE Feature MPIO Pins MPLED Pins

Device Present signal 14

Device Slot LEDS 14

Drive Ready for Use signal

Drive Ready for
Insertion/Removal signal

Fan Monitoring (single input) 6

Power Supply (single input) 6

Fan Monitoring (dual input)

LSI53C040
160 QFP

14 LED (1 per slot)
Speaker
Binary Temperature Sensor

Single-Ended

or LVD Bus

Global LEDs

Two-Wire Serial Bus

24LC128

DS1621

Drive 1

Drive 2

Drive 3

Drive 4

Drive 5

Drive 6

Drive 7

Drive 8

Drive 9

Drive 10

Drive 11

Drive 12

Drive 13

Drive 14

Fan 1

Fan 2

Fan 3

Fan 4

Fan 5

Fan 6

Power Supply 1

Power Supply 2

Power Supply 3

Power Supply 4

Power Supply 5

Power Supply 6

Configuration Examples 2-27

Power Supply (dual input)

Binary Temperature Sensor 1

Speaker 1

Door Lock

Global Enclosure LED 1

Global Array LED 1

Global Drive LED 1

TOTAL 28 17

Table 2.7 MPLED/MPIO Pin Usage for Example 1 (Cont.)

SAF-TE Feature MPIO Pins MPLED Pins

2-28 General Design Considerations

2.11.2 Example 2

This example (Figure 2.4) shows a configuration using the optional drive
slot power feature. Up to 10 drives with two LEDs per drive slot, 3 single
input fans, three single input power supplies, one speaker, and one door
lock are supported.

Figure 2.4 Optional Drive Slot Power Configuration

LSI53C040
160 QFP

20 LED (2 per slot)
Speaker
Door Lock

Single-Ended

or LVD Bus

Global LEDs

Two-Wire Serial Bus

24LC128

DS1621

Drive 1

Drive 2

Drive 3

Drive 4

Drive 5

Drive 6

Drive 7

Drive 8

Drive 9

Drive 10

Fan 1

Fan 2

Fan 3

Power Supply 1

Power Supply 2

Power Supply 3

Slot Power Control

Configuration Examples 2-29

Table 2.8 below summarizes the MPIO/MPLED pin count required for this
implementation. There is one additional available MPLED for other LED
functions.

2.11.3 Example 3

This example (Figure 2.5) shows a configuration with dual input fans and
power supplies. Up to 14 drives with one LED per drive slot, three dual
input fans, three dual input power supplies, one speaker, and one door
lock are supported.

Table 2.8 MPLED/MPIO Pin Usage for Example 2

SAF-TE Feature MPIO Pins MPLED Pins

Device Present signal 10

Device Slot LEDS 20

Drive Ready for Use signal 10

Drive Ready for
Insertion/Removal signal

Fan Monitoring (single input) 3

Power Supply (single input) 3

Fan Monitoring (dual input)

Power Supply (dual input)

Binary Temperature Sensor

Speaker 1

Door Lock 1

Global Enclosure LED 1

Global Array LED 1

Global Drive LED 1

TOTAL 28 23

2-30 General Design Considerations

Figure 2.5 Dual Fans and Power Supplies Configuration

Table 2.9 below summarizes the MPIO/MPLED pin count required for this
implementation. One additional MPLED is available for other LED
functions.

Table 2.9 MPLED/MPIO Pin Usage for Example 3

SAF-TE Feature MPIO Pins MPLED Pins

Device Present signal 14

Device Slot LEDS 14

Drive Ready for Use signal 10

Drive Ready for
Insertion/Removal signal

Fan Monitoring (single input)

Power Supply (single input)

Fan Monitoring (dual input) 2 4 (Used as MPIOs)

LSI53C040
160 QFP

Door Lock
Speaker

Single-Ended

or LVD Bus

Global LEDs

Two-Wire Serial Bus

24LC128

DS1621

Drive 1

Drive 2

Drive 3

Drive 4

Drive 5

Drive 6

Drive 7

Drive 8

Drive 9

Drive 10

Drive 11

Drive 12

Drive 13

Drive 14

Fan 1

Fan 2

Fan 3

Power Supply 1

Power Supply 2

Power Supply 3

Configuration Examples 2-31

Power Supply (dual input) 6 (Used as MPIOs)

Binary Temperature Sensor

Speaker 1

Door Lock 1

Global Enclosure LED 1

Global Array LED 1

Global Drive LED 1

TOTAL 28 23

Table 2.9 MPLED/MPIO Pin Usage for Example 3 (Cont.)

SAF-TE Feature MPIO Pins MPLED Pins

2-32 General Design Considerations

LSI53C040 Enclosure Services Processor Programming Guide 3-1

Chapter 3
SAF-TE Source Code

This chapter discusses the SAF-TE source code and includes these
topics:

• Section 3.1, “SAF-TE Source Code Overview,” page 3-1

• Section 3.2, “Boot Module,” page 3-2

• Section 3.3, “Configuration Module,” page 3-3

• Section 3.4, “SAF-TE Module,” page 3-19

• Section 3.5, “Frequently Asked Questions (FAQ),” page 3-49

For additional information about supporting serial, ISA, SCSI, and 8067
data transfers, refer to Appendix A, “LSI53C040 Board Utilities.”

3.1 SAF-TE Source Code Overview

The SAF-TE source code is comprised of the executable config.exe,
a partial boot file, and the C-source file safte.c. The boot and
configuration module sections provide a brief overview regarding their
structures. The SAF-TE Module section includes compilation instructions,
and description of the safte.c source code main program. The
safte.c program is designed to run as firmware on the LSI53C040
chip. Additionally, this module discusses Interrupt Service Routines and
Error Reporting. The FAQ section provides the firmware developer with
answers to potential questions that may arise from using the safte.c
source code.

3-2 SAF-TE Source Code

3.2 Boot Module

The boot module consists of the concatenation of the user configurable
component, loader.hex, and the generic boot component,
bootload.hex. In Chapter 5, “Configuration Data and the
Configuration Utility,” the combined file that is referenced below

boot.hex = loader.hex + bootload.hex

is downloaded to the boot EEPROM on new boards either by placing the
chip in a TWS programmer or the code can be downloaded over the ISA
bus to the serial EEPROM (demonstration boards only). Once firmware
is present on the LSI53C040 board, the boot code can be updated in
exactly the same manner as the firmware. See Section 3.4.2.3,
“Firmware Update,” page 3-33 for more information.

On a power up, the values of the pull-up resistors A8–A11 determine the
TWS bus and the chip address on that bus from which the boot code is
automatically downloaded. Execution of the boot code results in the
contents of the file loader.hex being saved into address
HMA_LOADER_OPTIONS (3FE0h) of external data memory. In addition,
the SAF-TE firmware is being downloaded from the serial EEPROM into
external data memory. The serial EEPROM that contains the SAF-TE
firmware is specified by the contents of loader.hex.

Note: The automatic firmware downloads can be disabled by
modifying the jumper settings on the LSI53C040 board.
See the section entitled “Power On Configuration Options,”
in the LSI53C040 Enclosure Services Processor Technical
Manual for specific information. The maximum size of the
firmware is limited to 12912 or 0x2FA0 bytes.

The generic boot component, bootload.hex, is created by compiling the
C-source file bootload.c, the assembly source code bootload.asm,
linking the results, and creating the hex output file. The directory 8051
contains a makefile that will execute using the Borland 4.5 make function
or the Watcom 11.0 Microsoft make clone, nmake. To recompile the
bootload.hex component, type on the command line:

c:\8051> nmake clean
c:\8051> nmake all

Configuration Module 3-3

The first component will delete the object, hex, and other intermediate
files, while the second option will generate new files. Note that individual
targets may be recompiled or linked by following the make command with
the target specification.

Finally, the bootload.c source file contains four switches that can be
set to change the characteristics of the resulting boot code. Each of the
switches is defined in Table 3.1.

Currently, these switches cannot be altered through compile time options.
The source code #Define statements must be modified. Default settings
have all switches set to FALSE.

3.3 Configuration Module

The utility config.exe is designed to allow users to configure the
SAF-TE software to meet their unique requirements. Upon execution, this
utility populates the loader_options and config data structures, then
saves these structures in the Intel formatted files loader.hex and
config.hex. The data format for these files is:

:numbytes address fill data sum

Table 3.1 Source file - bootload.c - Switches

Define Action when TRUE

LOADER_DEBUG Enables Timer 2 to be the clock on the
serial output line. Enables error and
status messages and display of external
memory values during boot.

LOADER_DELAY_LEDS Turns on then off each LED in sequence
during boot.

LOADER_MEMORY_TEST Enables the test byte 0x55 to be written
to external memory for test purposes.
(When FALSE, the memory test does
nothing.)

HALF_SPEED Sets the overflow rate for Timer 2.
Requires LOADER_DEBUG to be TRUE.

3-4 SAF-TE Source Code

where:

Generation of the executable file config.exe can be accomplished by
executing one of the two makefiles in the config directory. If a
Watcom 11.0 compiler is resident, use the makefile entitled
makefile.watcom and run with the command nmake. If a Borland 4.5
compiler is resident, use the makefile entitled makefile.bc45 and run with
the command make. The result of the execution of config.exe is
independent of which compiler is used. To recompile the config.exe file,
type on the command line:

c:\config> nmake clean
c:\config> nmake config.exe (or just nmake)

The first component will delete the object and executable files, while the
second will generate new files.

Note: See makefile.txt for more information. However, to use
the makefile.watcom, type on the command line:

c:\config>nmake\Fmakefile.watcom clean
name\Fmakefile.watcom config.exe

3.3.1 Loader_Options Data Structure

The loader_options data structure, defined in loader.h, stores the bus
number, bus speed, chip identification, beginning address, and the
maximum image length for the “first” and “second” images. Additionally,
this data structure stores the bus and address of the EEPROM that
contains the boot code. By default, upon power up, the “first” image is
defined as active and the “second” image is defined as inactive. The file
loader.hex is only 68 bytes, with writes beginning at address 0x0006
in external data memory (Program Tag LMA_LOADER_OPTIONS).

numbytes is the number of bytes of data (stored as 1 byte)

address is a 2 byte address where data is to be written

fill has the value 00

data is the data to be written (a maximum of 16 bytes)

sum is a 1 byte checksum over address and data in that line

Configuration Module 3-5

Note: Of the 68 bytes contained in the loader.hex file, only
21 bytes are data. The remaining 47 bytes consist of the
Intel format and checksum bytes.

3.3.2 Config Data Structure

The config data structure, defined in config.h, stores the enclosure
configuration and data to be returned in response to any of the SAF-TE
read commands. Additionally, this data structure polls intervals for
refreshing enclosure status information, register storage, data memory,
and program memory. The program memory stores the state machine
that is generated by user responses to mappings of the MPLED and
MPIO pins. To emphasize, config.hex was created for a specific
system. Changes to that system will require change to this configuration
file and the firmware. The initial write address for config.hex is
address 0x0040 in external data memory (Program Tag
CONFIG_BASE_ADDRESS). Execution of the utility is described in
Chapter 5, “Configuration Data and the Configuration Utility.”

The config data structure can be thought of as having ten different
elements or sections. The developer must understand how these
elements are populated and their function is essential if the safte.c
source code is modified. The main elements of the config data structure
are:

1. General information - Contains miscellaneous configuration
information.

2. Enclosure configuration - Lists the total number of fans, power
supplies, etc.

3. Inquiry Response Information - Contains the data to be returned in
response to an inquiry command.

4. Timer Setup Information - Specifies the polling interval and the
80C32 Timer 1 and Timer 2 initialization values.

5. TWS Temperature Sensor Information (on TWS bus) - Contains user
specified sensor type and ID value.

6. LM78 Configuration - Contains the user specified configuration for
each LM78 (a maximum of one per bus).

7. TWS Bus Configuration - Contains the user specified bus speed and
ID information.

3-6 SAF-TE Source Code

8. Register and Device State Maps - Not configurable regions. The
register maps save the LSI53C040 system registers and the device
state map is used to decode the Device-To-State member of the
state machine.

9. Data memory - Contains the LED responses to different states, SCSI
ID values, and initialization values. Data memory is modified during
firmware execution.

10. Program memory - Contains the state machine instructions. Program
memory is not modified during firmware execution.

For illustration purposes, a simple config.hex file was dissected and
its contents are listed below. In the listing, bold indicates a user input,
italics indicate a computed value based on user inputs, and regular text
indicates values that cannot be altered by the user.

1. General Information:

config structure length = 0xB105
Scsi ID (in bit form) = 0x80

Note: IDs between (0–7) represented as (1<<ID) << 8 while the
three highest IDs are 0x0080, 0x0040 and 0x0020
respectively.

Scsi lun = 0x00
Parity (1 = enabled/0 = disabled) = 0
Code load (1 = enabled/ 0 = disabled) = 0
Temperature Units (1 = Celsius/0 = Fahrenheit) = 1
Read Enclosure Status command length = 0x0F
Read device slot status command length = 0x08
Write device slot status command length = 0x06
Data Memory Index: Read Enclosure Status = 0x42
Data Memory Index: Temperature = 0x4C
Data Memory Index: Temperature Bits = 0x4E
Data Memory Index: SCSI ID Data = 0x48
Data Memory Index: Device Slot Status = 0x51
Data Memory Index: Slot Operation = 0x59
Data Memory Index: Global Flags = 0x5F

Configuration Module 3-7

2. Enclosure Configuration:

Number of Fans (1-single, 1-dual, 1-TWS) = 3
Number of Power Supplies (1-single, 1-dual, 1-TWS) = 3
Number of Device Slots = 2
Number of Door Locks = 1
Number of Temperature Values (TWS sensors) = 2
Number of Speakers = 1
Number of Temperature Bits (single wire sensors) = 82

Note: If Celsius, bit #7 is 1; else bit #7 is 0.

3. Inquiry Response Information:

Peripheral Qualifier = 0x00
ANSI Version = 0x02
Response Format = 0x02
Additional Length = 0x31
Vendor ID = tester#1
Product ID = this_is_product!
Firmware Revision Level = B004
Enclosure ID = enclos1
Channel ID = 0
Interface ID = SAF-TE
Specification Level = 1.00

4. Timer Setup Information:

Timer High = 0x0E
Timer Low = 0xE0
Timer 1 Rollover = 0x12
Timer 2 Rollover = 0x06
TWS Poll Interval = 20 (sec)

3-8 SAF-TE Source Code

5. TWS Temperature Sensor Information:

Chip ID = 0x90 | (address << 1) | bus # (for LM75 and DS1621)

Chip ID = 0x50 | (address << 1) | bus # (for LM78)

6. LM78 Configuration:

LM78 on Bus # 0 (User specified NO LM78 on Bus 0)
State (0=uninitialized/1=initialized/0xFF=nonexistent) = 0xFF
No. of Errors during initialization = 0x00
Fan Divisor = 0x00(Fan Divisor = (first*64 + second*16))

Sensor
Number

Chip
ID

Chip
Type

Chip
Label

State
0 = unitialized
1 = initialized

0 0x9A 0x01 LM75 0

1 0x97 0x02 DS1621 0

2 0x42 0x00 Unknown 0

3 0x42 0x00 Unknown 0

Power
Supply

Minimum
Voltage

Maximum
Voltage

Data Memory
Index

0 0x00 0x00 0x00

1 0x00 0x00 0x00

2 0x00 0x00 0x00

3 0x00 0x00 0x00

4 0x00 0x00 0x00

5 0x00 0x00 0x00

6 0x00 0x00 0x00

Configuration Module 3-9

LM78 on Bus # 1
State (0 = uninitialized/1 = initialized/0xFF = nonexistent) = 0x00
No. of Errors during initialization = 0x00
Fan Divisor = 0xF0 Fan Divisor = (first*64 + second*16))

Fan
Number

Maximum
Speed

Data Memory
Index

0 0x00 0x00

1 0x00 0x00

2 0x00 0x00

Power
Supply

Minimum
Voltage

Maximum
Voltage

Data Memory
Index

0 0x00 0x00 0x00

1 0x01 0xFE 0x47

2 0x00 0x00 0x00

3 0x00 0x00 0x00

4 0x00 0x00 0x00

5 0x00 0x00 0x00

6 0x00 0x00 0x00

Fan
Number

Maximum
Speed

Data Memory
Index

0 0xFE 0x44

1 0x00 0x00

2 0x00 0x00

3-10 SAF-TE Source Code

7. TWS Bus Configuration:

Bus Speed: Answer 0 -> 0x02; 1 -> 0x01; 2 -> 0x16; 3 -> 0x1C

8. Register and Device State Maps: The config data structure has one
member, device_state, which is of type _dtl and is populated
automatically during the execution of the config.exe program. This
member defines a series of masks that are used to determine the
status of a particular device slot. The values in the structure specify
particular pins. Each time the state machine executes, for each slot,
the state OPC_DEVICE_TO_STATE is executed. This state results in
successive application of the masks defined in the device_state
member. The matched mask that has the highest priority is the value
reported on a Read Slot Status command. Hence, the configuration
program automatically prioritizes the possible reports.

9. Data Memory: This element is initialized with all zeros, and then
elements at different data memory indices are modified to reflect the
user selections. Since the SCSI Data memory index is 0x48 and
there are 2 device slots, the first device slot is assigned SCSI ID 7
and the second is assigned ID 6. Likewise, at offset 0x04, the
meaning assigned to each of the four light patterns is established.
For example purposes only, some of the offsets are:

Bus
Number Speed

Our
ID

0 0x16 0x2A

1 0x1C 0x2A

Offset Description

0x02 fan (single)

0x04 fan (dual)

0x08 power supply (single)

0X0A power supply (dual)

0x0E door lock

0x10 speaker

Configuration Module 3-11

0x0000: 00 00 00 01 00 01 02 80 | 00 01 00 01 10 11 00 01
0x0010: 00 01 00 00 03 01 01 01 | 01 01 01 00 00 01 02 00
0x0020: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x0030: 00 00 02 02 02 02 03 05 | 03 03 02 02 02 02 05 05
0x0040: 03 05 80 80 00 80 80 00 | 07 06 80 00 00 00 00 00
0x0050: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x0060: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x0070: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x0080: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x0090: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00A0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00B0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00C0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00D0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00E0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00
0x00F0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00

10. Program Memory: The program memory is populated using
instructions for an 11-state state machine. The states that access
MPIO or MPLED memory mapped registers are:

Read Register Bit (OpCode 0x00)
Write Register Bit (OpCode 0x01)
Write LED Register Bit (OpCode 0x07)
Device to State (OpCode 0x09)
Write LED Bits (OpCode 0x0A).

0x12 LED 0

0x22 LED 1

0x32 slot status

Offset Description

3-12 SAF-TE Source Code

The states that access the data memory are:

Read Memory Bit (OpCode 0x02)
Write Memory Bit (OpCode 0x03)
Read Memory Byte (OpCode 0x04)
Write Memory Byte (OpCode 0x05)
Read Memory Indexed (Opcode 0x06).

Termination of the state machine is accomplished with the last state:

Done (OpCode 0x08).

Using the answers to the questions posed by config.exe, the function
fill_program clears and repopulates the data memory (256 bytes)
and program memory (a maximum of 400 integers) members of the
config data structure. It will, for each fan, power supply, door lock, etc.,
call the subroutine fill_instruction at least once.

Note: In those cases where the MPIO register is to be modified,
fill_program will call the function
fill_output_pin_instruction that in turn calls
fill_instruction.

The function fill_instruction takes its arguments, program
memory counter (beginning from 0), operation code (specifies the next
state), Shift (bit shift, 0–3) and Address, and creates a 16-bit
“instruction”. The instruction

(operation code<< 12)|(Shift << 8)|(Address)

is then written to program memory at the offset specified by the counter.
The SAF-TE source code restricts the maximum number of instructions
to 400 (Program Tag PROGRAM_MEMORY_SIZE).

Configuration Module 3-13

As shown in Table 3.2 below, the number of instructions written per
device, is device specific.

Remark: The actual bit sequence written to program memory will be
unique to the configuration specified during the execution of
config.exe because only those devices selected as
being present are incorporated into the instruction set in
program memory. Therefore, it is not possible to go to
offset, for example: 0xA0, in program memory and say with
certainty that is an instruction for a power supply.

Table 3.2 Instructions Per Device

Description
Number of
Instructions

for each single state fan 3

for each dual state fan 9

for each single power supplie 3

for each dual power supplie 9

use of controlled door lock 4

use of monitored door lock 3

use of controlled speaker 4

use of monitored speaker 3

use of global ID LED 6

use global enclosure LED 8

use global drive LED 8

use global array LED 8

for each temperature sensor 2

for each device slot

general 12

if at least 1 LED + 7

if no LED + 3

if use device present + 2

if use ready device + 2

if use remove device + 2

Termination 1

3-14 SAF-TE Source Code

For the example, the mapping of devices to MPIO and MPLED banks, is
accomplished with the sequence of OpCodes as shown in Table 3.3.

Table 3.3 Mapping of devices to MPIO and MPLED Banks

Program
Counter OpCode Description

0x0000: 0x00 Single Wire Fan # 1 MPIO Bank 2 Position 0

0x0001: 0x06

0x0002: 0x05

0x0003: 0x04

0x0004: 0x05

0x0005: 0x00 Dual Wire Fan # 1 MSB MPIO Bank 2 Position 2

0x0006: 0x03

0x0007: 0x00 Dual Wire Fan # 1 LSB MPIO Bank 2 Position 1

0x0008: 0x03

0x0009: 0x04

0x000A: 0x06

0x000B: 0x05

0x000C: 0x00 Single Wire Power Supply # 1 MPIO Bank
Position 0

0x000D: 0x06

0x000E: 0x05

0x000F: 0x04

0x0010: 0x05

0x0011: 0x00 Dual Power Supply # 1 MSB MPIO Bank 3
Position 2

0x0012: 0x03

0x0013: 0x00 Dual Power Supply # 1 LSB MPIO Bank 3
Position 1

0x0014: 0x03

Configuration Module 3-15

0x0015: 0x04

0x0016: 0x06

0x0017: 0x05

0x0018: 0x00 Monitored Door Locks MPIO Bank 0 Position 0

0x0019: 0x06

0x001A: 0x05

0x001B: 0x02

0x001C: 0x01 Controlled Speakers MPIO Bank 0 Pos 1

0x001D: 0x06

0x001E: 0x05

0x001F: 0x04

0x0020: 0x05 Global LED No. 0 ID

0x0021: 0x02

0x0022: 0x03

0x0023: 0x04

0x0024: 0x0A MPIO Bank 1 Position 0

0x0025: 0x04

0x0026: 0x05 Global LED No. 1 Drive

0x0027: 0x02

0x0028: 0x03

0x0029: 0x02

0x002A: 0x03

0x002B: 0x04

0x002C: 0x0A MPIO Bank 1 Position 1

0x002D: 0x04

Table 3.3 Mapping of devices to MPIO and MPLED Banks (Cont.)

Program
Counter OpCode Description

3-16 SAF-TE Source Code

0x002E: 0x05 Global LED No. 2 Array

0x002F: 0x02

0x0030: 0x03

0x0031: 0x02

0x0032: 0x03

0x0033: 0x04

0x0034: 0x0A MPIO Bank 1 Position 2

0x0035: 0x00 Single Wire Temp Sensor #0 MPIO Bank 0
Position 2

0x0036: 0x03

0x0037: 0x00 Single Wire Temp Sensor #1 MPIO Bank 0
Position 3

0x0038: 0x03

0x0039: 0x09 Configure Device Slot 0 (>0 LED) SCSI ID = 7

0x003A: 0x06

0x003B: 0x0A MPLED Bank 0 Position 0

0x003C: 0x09 Configure Device Slot 1 (>0 LED) SCSI ID = 6

0x003D: 0x06

0x003E: 0x0A MPLED Bank 0 Position 1

0x003F: 0x04 Initialize Device Slot 0 (>0 LED) SCSI ID = 7

0x0040: 0x05

0x0041: 0x02

0x0042: 0x03

0x0043: 0x02

0x0044: 0x03

0x0045: 0x00 Using Device Present. MPLED Bank 1 Position 0

Table 3.3 Mapping of devices to MPIO and MPLED Banks (Cont.)

Program
Counter OpCode Description

Configuration Module 3-17

0x0046: 0x03

0x0047: 0x02

0x0048: 0x03

0x0049: 0x04

0x004A: 0x06

0x004B: 0x05

0x004C: 0x02 Using Ready Device

0x004D: 0x0A MPLED Bank 1 Position 1

0x004E: 0x02 Using Remove Device

0x004F: 0x0A MPLED Bank 1 Position 2

0x0050: 0x04 Initialize Device Slot 1 (>0 LED) SCSI ID = 6

0x0051: 0x05

0x0052: 0x02

0x0053: 0x03

0x0054: 0x02

0x0055: 0x03

0x0056: 0x00 Using Device Present. MPLED Bank 2 Position 0

0x0057: 0x03

0x0058: 0x02

0x0059: 0x03

0x005A: 0x04

0x005B: 0x06

Table 3.3 Mapping of devices to MPIO and MPLED Banks (Cont.)

Program
Counter OpCode Description

3-18 SAF-TE Source Code

0x005C: 0x05

0x005D: 0x02 Using Ready Device

0x005E: 0x0A MPLED Bank 2 Position 1

0x005F: 0x02 Using Remove Device

0x0060: 0x0A MPLED Bank 2 Position 2

0x0061: 0x08 Done

Table 3.3 Mapping of devices to MPIO and MPLED Banks (Cont.)

Program
Counter OpCode Description

SAF-TE Module 3-19

3.4 SAF-TE Module

This section provides compilation instructions for the safte.c program
and provides an high-level overview of the SAF-TE module, which
contains the main program.

3.4.1 Compilation Instructions for safte.c

The component safte.hex is created by compiling the C-source file
safte.c, linking the results, and creating the hex output file. As with the
boot code, generation of the safte.hex involves multiple steps. The
directory 8051 contains a makefile that will execute using the Borland 4.5
make function or the Watcom 11.0 Microsoft make clone, nmake. To
recompile the safte.hex file, type on the command line:

c:\8051> nmake clean
c:\8051> nmake all

The first component will delete the object, hex, and other intermediate
files while the second will generate new files. Note that individual targets
may be recompiled or linked by following the make command with the
target specification.

Like the boot code, the SAF-TE source code contains built-in switches to
enable and disable different code features. Currently, these switches are
set to TRUE or FALSE within the source code using #Define statements
and cannot be set by the compiler. The default settings for all switches
is FALSE. Table 3.4 lists the switch name and the action if the switch is
TRUE.

3-20 SAF-TE Source Code

Table 3.4 Switch Name and Action

Options Action if TRUE

CODE_LOAD_ENABLED Enable support for microcode downloads over
the SCSI bus.

DMA_DATA_IN_ENABLED Define the method of sending data over the
SCSI bus (choices are using software or using
DMA).

DMA_COMMAND_ENABLED Defines the method of receiving CDB data over
the SCSI bus (choices are using software or
using DMA).

STATS_ENABLED Controls the inclusion of statistics gathering
and reporting by this code.

DEBUG_ENABLED Controls the inclusion of debugging code that is
used to print information for developers looking
for problems in this code. This conditional
should only be used in code that does not run
at interrupt level.

DEBUG_SCSI_ENABLED Controls the inclusion of debugging code that is
used to print information for developers looking
for problems in the SCSI code. This conditional
should only be used in code that is part of the
SCSI interrupt service routine.

Note: DEBUG_ENABLED and
DEBUG_SCSI_ENABLED cannot be used at
the same time, because this would cause the
printf library routine to be called from both
the background process and the SCSI interrupt
routine. This means that the printf routine is
not re-entrant.

ZERO_CHECK_ENABLED Controls the inclusion of code that checks
reserved (or must be zero) fields of the SCSI
and SEP commands. This code should be
included in the final code but could be removed
to save space and/or execution time. Thus, its
only real purpose is to reject otherwise valid
commands; removing this code would violate
the SCSI specification, but the code would still
“get the job done.”

PRINT_STATS_ENABLED Controls the printing of statistics collected when
the STATS_ENABLED option (above) is true.

SAF-TE Module 3-21

TRACER_ENABLED Causes the SCSI interrupt routine to leave a
record of its progress in a variable named
TRACKER that can be displayed by the
background process to help locate problems in
the SCSI code.

OPTIONAL_ENABLED Enables the handling of the optional SAF-TE
commands. The routines that handle these
commands are only placeholders and must be
supplied by the OEM developers that purchase
this code.

SET_SCSI_ID Enables the handling of the optional SAF-TE
command. The code that supports this
command is supplied, but not enabled (by this
conditional).

VERBOSE Enables printing of various data at system
start-up. This option is only useful to
developers, and only if a serial line is attached
to the LSI53C040.

MICRO_DEBUG Enables the printing of debugging messages
specific to the background process handling of
the state machine used to monitor inputs and
drive outputs (MPIO and MPLED pins).

TWS_DEBUG Enables the printing of debugging messages
specific to the TWS interface routines.

REV_A_CHIP Enables code that is only necessary in working
around DMA problems in the first (LSI Logic
internal) version of the LSI53C040 chip.

DBG_BLOCK_SCSI Set to block SCSI interrupt inside state
machine (execute_program_once). Use
this option only in debug versions.

SEP_CMD_DEBUG_CTRL Set to enable specific SCSI I/Os to control
output of printf's. VERBOSE and
MICRO_DEBUG must be enabled.

Table 3.4 Switch Name and Action (Cont.)

Options Action if TRUE

3-22 SAF-TE Source Code

3.4.2 Main Program

The main program consists of subroutines and functions pertaining to the
LSI53C040 Enclosure Services Processor.

3.4.2.1 Background Module Overview

The top-level function in the SAF-TE source code is the module main.
This function is responsible for:

• transferring all TWS data

• executing the contents of program memory

• gathering enclosure status information periodically

• updating data memory;

• processing reboot and firmware update commands

• uploading new firmware from external data memory into the serial
EEPROM attached to one of the TWS buses.

As stated earlier in this Programming Guide, upon power-up, the
contents of the serial EEPROM are automatically downloaded to the
external data memory (although this can be disabled by changing the
jumper settings on the LSI53C040 board). Once the firmware has been
loaded into external memory and a reset has occurred, the firmware
begins executing.

A high-level flow diagram of the main module is shown in Figure 3.1. For
convenience, a brief description of the subroutine actions is shown in
italics next to each function name. The flow diagram illustrates that the
function background_process can be viewed as having 4 functional
components:

• reset_scsi_hw

• execute_program_once

• background_code_load, and

• gather_TWS_input.

SAF-TE Module 3-23

Figure 3.1 Main Program

reset_scsi_hw()

If a reset is occurring, this routine delays until the reset is complete.
Subsequently, the hardware interrupts are reset, the hardware select
register is enabled and the sense keys are set for a Unit Attention.

background_code_load

The code load function loads new firmware, performs a soft reset, or
updates the active/inactive image information.

main()

validate_config()

init_stuff()

background_process()

reset_scsi_hw()

execute_program_once()

if TSW_timer>= poll interval

Disable watchdog timer
Enable serial port

Compute the checksum on the config data structure. Hang if Invalid.

Valid

Clear sense and host unit attention keys.
Copy config register values to the config register map.
Call tws_setup to initialize pointers to the TWS data and control registers.
Call tws_init to write chip ID, intermediate clock frequency, and enable
acknowledgement after receiving a data byte.

Map SCSI interrupts to External Interrupt 1.
Map DMA interrupts to External Interrupt 0.
Set interrupt priority levels.
Call init_time_keeping to initialize and start Timer 0

Wait for reset to clear.
Reset hardware interrupts.
Set unit attention for power on reset or microcode change.
Disable watchdog timer.

Sequentially execute instructions in config program memory.
These instructions are generated by executing config.exe.

background_code_load

CODE_LOAD_ENABLED

cl_status !=busy

cl_status == busy
Depending on the code load flags, this
function loads new firmware from external
data memory through the TWS bus to the
serial EEPROM, performs a soft reset, or
updates the active/inactive image
information.

Call gather_TWS_input to initialize, to read values of temperature
sensor, or to gather status information from the LM78

No SCSI Error

SCSI Error

3-24 SAF-TE Source Code

gather_TWS_input

This function gathers status information of TWS peripherals. The status
of each peripheral is read and the config data structure is updated when
the global variable TWS_timer exceeds the threshold poll interval. The
TWS_timer increments every two seconds and the poll interval specifies
the number of 2-second intervals between queries. The user-
configurable poll interval is set in response to the question “How many
2-second intervals would you like between 2-wire serial input passes?”
which appears during execution of the config.exe program.

Note: If a value of zero (0) is entered, the firmware will poll
continuously. The poll interval is the number of seconds
between device polling. However, a system contains many
devices, so the time (in seconds) between polls of Device
A = (poll interval) x (total number of devices).

execute_program_once()

This function is designed to read and execute the instructions stored in
the config.program_memory data structure member. These
instructions are user-configurable and are generated as a result of the
responses supplied to the config.exe program. Once a hardware reset
has occurred and been detected, the execute_program_once begins to
run. This function executes the set of instructions generated by the
config.exe program. A hardware reset results in resetting the
hardware to its state at power-up (the user specifies this state while the
config.exe program is running).

Note: The program memory will not change while the firmware is
running. However, the contents of the data memory will
change during execution.

Each state in the state machine performs one or more operations and
either assigns a value to the accumulator (as with reads) or uses the
value in the accumulator to modify the contents of the config data
structure. The first instruction in the program memory is always a read
function (necessary to initialize the accumulator).

SAF-TE Module 3-25

Function Description

Read Register Bit

Program Tag OPC_READ_REG_BIT

Shift Any value between 0 and 7 is legal.

Address Lower 8-bits Only (0–7 valid)

Accumulator Output

Action Set accumulator to 1 if the data memory at the
given address and shift is 1, otherwise 0.

Function Description

Read Memory Bit

Program Tag OPC_READ_MEM_BIT

Shift Any value between 0 and 7 is legal.

Address Lower 8-bits Only (0–255 valid)

Accumulator Output

Action Set accumulator to 1 if the data memory at the
given address and shift is 1, otherwise 0.

Function Description

Read Memory Byte

Program Tag OPC_READ_MEM_BYTE

Shift Not used.

Address Lower 8-bits Only (0–255 valid)

Accumulator Output

Action Set accumulator to the value in
config.data_memory[address].

3-26 SAF-TE Source Code

Function Description

Read Memory Indexed

Program Tag OPC_READ_MEM_INDEXED

Shift Not used.

Address Lower 8-bits Only (0–255 valid)

Accumulator Output

Action Set accumulator to the value in
config.data_memory[address + accumulator].

Function Description

Write Register Bit

Program Tag OPC_WRITE_REG_BIT

Shift Any value between 0 and 7 is legal.

Address Lower 8-bits Only (0–7 valid)

Accumulator Input

Action The register bit specified by the address and
shift is cleared. If the accumulator LSB is 1, the
bit is set to 1. If the accumulator LSB is 0, the
bit is set to 0.

Function Description

Write Memory Bit

Program Tag OPC_WRITE_MEM_BIT

Shift Any value between 0 and 7 is legal.

Address Lower 8-bits Only (0–255 valid)

Accumulator Input

Action The memory bit specified by the address and
shift is cleared. If the accumulator LSB is 1, the
bit is set to 1. If the accumulator LSB is 0, the
bit is set to 0.

SAF-TE Module 3-27

Function Description

Write Memory Byte

Program Tag OPC_WRITE_MEM_BYTE

Shift Not used.

Address Lower 8-bits Only (0–255 valid)

Accumulator Input

Action config.data_memory[address] is set to the
value in the accumulator.

Function Description

Write LED Register Bit

Program Tag OPC_WRITE_LED_REG_BIT

Shift Any value between 0 and 6 is legal.

Address Lower 8-bits Only (0–7 valid)

Accumulator Input

Action Update the register specified by address. Two
bits (based on the shift specified) are replaced
by three times the accumulator LSB. The bits
replaced are in the position specified by: 3 <<
shift. That is, if the shift is 0 bits, 0 and 1 are
replaced; if the shift is 3 bits, 3 and 4 are
replaced.
Note: The maximum shift value is 6 (replace
bits 6 and 7).

3-28 SAF-TE Source Code

Function Description

Write LED Bits

Program Tag OPC_WRITE_LED_BITS

Shift Any value between 0 and 6 is legal.

Address Lower 8-bits Only (0-7 valid)

Accumulator Input

Action Update the register specified by address. Two
bits (based on the shift specified) are replaced
by the two LSBs in the accumulator. The bits
replaced are in the position specified by: 3 <<
shift. That is, if the shift is 0 bits, 0 and 1 are
replaced; if the shift is 3 bits, 3 and 4 are
replaced.
Note: The maximum shift value is 6 (replace
bits 6 and 7).

Function Description

Device to State

Program Tag OPC_DEVICE_TO_STATE

Shift Not used.

Address Lower 8-bits Only (Maximum value is
configuration dependent, but it is always less
than 64)

Accumulator Output

Action The accumulator will return the status of the
slot. The command Read Device Slot Status
(0x04) requires a 4 Byte representation of the
slot status. Bytes 0,1 (bits 0 and 1) and 3
(bits 0–2) contain information on the slot status.
Beginning with byte 3, then 0 and finally byte 1,
the individual bits in the data memory for the
specified slot are checked. If a bit is set, then
the accumulator is set according to the
Table 3.5.

SAF-TE Module 3-29

Table 3.5 Accumulator Settings

Byte Bit Accumulator Comment

0 initialized or no matches

3 1 2 ready for insertion/removal

3 2 3 prepared for operation

0 1 4 device faulty

0 2 5 device rebuilding

0 3 6 failed array

0 4 7 critical array

0 5 8 parity check

0 6 9 predicted fault

0 7 10 not configured

1 0 11 hot spare

1 1 12 rebuild stop

Function Description

Done

Program Tag OPC_DONE

Shift Not used.

Address Not used.

Accumulator Not used.

Action Return to calling program.

3-30 SAF-TE Source Code

3.4.2.2 TWS Data Transfers

The three high-level subroutines that control all TWS data transfers are
described briefly in Table 3.6. These functions all provide control, as
opposed to the low-level functions that perform the actual data transfer.

Table 3.6 TWS High-Level Subroutines

Three High Level
Subroutines Functional Description

gather_TWS_input() Initialize (function calls to tws_write) peripheral
temperature sensors, power supplies, and fans
(this may take multiple passes to initialize all
devices). Once initialized, subsequent calls read
peripheral temperature sensors (function calls to
tws_read), convert to Fahrenheit (if required), and
update the config data structure. Any failure
results in the update value being set to 0xFF and
requires initialization of sensor on next pass.
Return: None.
Note: No error messages are propagated to the
calling process.

gather_LM78_input (LM78
index)

Invoked by gather_TWS_input to initialize the
LM78 fans and power supplies. Subsequent calls
read the status of the fans and power supplies
and update the config data structure. Errors
result in fan (power supply) status set to
UNKNOWN and an error counter incremented. If
too many errors occur, the device is initialized on
next pass through.

Return: None.

Note: No error messages are propagated to the
calling process.

background_code_load() This function will force a soft reset, update the
active/inactive image designation or update the
firmware from the serial EEPROM. The actions
are dependent on the settings of the code load
flags. A detailed discussion of these flags is
contained in Section 3.4.2.3, “Firmware Update.”

Return: None.

SAF-TE Module 3-31

Actual data transfers over the TWS bus are accomplished by
manipulating the TWS registers. Detailed information on these registers
is contained in the LSI53C040 Enclosure Services Processor Technical
Manual chapter entitled “TWS Registers.” Two TWS buses are available,
and the two separate sets of registers are located at addresses 0xFD00
through 0xFDFF in the external memory map. The SAF-TE source code
uses the mappings shown in Table 3.7:

On a write, the TWS bus transfers data from the external memory to a
peripheral. On a read, the TWS bus transfers the measurements or data
from the peripheral to external memory. These data are then used to
update the config data structure. The subroutines tws_read and
tws_write control all of the serial data transfers through the TWS bus and
use the algorithms in Figures 2.11 and 2.12 in the LSI53C040 Enclosure
Services Processor Technical Manual. All reads and writes enable the
acknowledgment (bit 0) and clear all interrupts (bit 7) prior to a data
transfer. The use of the ACK results in 9 bits being transferred for every
byte requested. The ninth bit received is checked to determine that it is
a logical 0 (ACK). If this bit is not a logical 0, the read/write subroutines
return FALSE (error) to the calling program. If the transfer completes
successfully, these subroutines return TRUE (no error).

In general, the low-level TWS data transfer subroutines return TRUE if
processing is successful (no error) and FALSE if the directive failed.
Exceptions are noted in Table 3.8.

Table 3.7 SAF-TE Mappings

Variable Name Descriptions

tws_data_ptr Pointer to the TWS Own/Clock/Data Register

tws_car_ptr Pointer to the TWS Control Register

3-32 SAF-TE Source Code

Table 3.8 TWS Low-level Subroutines

Low-Level Subroutines Functional Description

tws_setup(bus) Initialize pointers to TWS registers. Must be
called prior to any TWS data transfers.

If Bus 0:
tws_data_ptr = TWS_0_DATA (0xFD00)
tws_csr_ptr = TWS_0_CSR (0xFD01)

If Bus 1:
tws_data_ptr = TWS_1_DATA (0xFD02)
tws_csr_ptr = TWS_1_CSR (0xFD03)

Return None.

tws_init
(bus speed, ID on bus)

Initialize the clock speed for specified bus
and ID.
Return None.

tws_poll_pin() Return TRUE if Data Register completed
operation, FALSE if operation failed.

tws_poll_bb() Return TRUE if bus free, FALSE if bus busy.

tws_poll_lrb() Return TRUE if Last Received Bit (the ACK)
is logical 0 (successful) or FALSE otherwise
(failure).

tws_memory_write
(chip ID, address, number of
bytes to transfer, pointer to a
buffer)

Invoked only on a code load operation.
Parses the data to be written into small
groups (1–64 bytes) and repeatedly calls the
TWS write routine.

tws_write
(chip ID, address, number of
bytes to transfer, pointer to a
buffer)

With the pointers to the bus initialized, this
function writes the number of bytes from the
given buffer to the specified address and chip
ID.

tws_read
(chip ID, address, number of
bytes to transfer, pointer to a
buffer)

With the pointers to the bus initialized, this
function reads from the address and chip ID,
the specified number of bytes and stores the
data into the given buffer.

SAF-TE Module 3-33

3.4.2.3 Firmware Update

To upload new firmware to the serial EEPROM, which is attached to the
LSI53C040 chip by using a TWS bus, requires that the
CODE_LOAD_ENABLED option be set during compilation of the
SAF-TE source code. A successful upload of new firmware requires:

Step 1. Transfer of the new firmware using the SCSI bus to the external
data memory on the LSI53C040 board.

Step 2. Transfer of the firmware from the external data memory over
the TWS bus to the serial EEPROM.

Step 3. Error verification.

Step 4. Updating of the serial EEPROM tables.

Step 5. LSI53C040 chip reset.

Target Operations during a Code Load

Uploads of code to the serial EEPROM consist of a SCSI transfer
between the Host and the Target’s external memory followed by multiple
transfers from external memory through the TWS bus to the EEPROM.
The global variables are cl_status, cl_addr, and cl_byte_count. These
variables contain the control information used to pass data from the SCSI
code load subroutine (do_code_load) to the background process that
transfers data over the TWS bus (background_code_load). The
variables are described below:

• cl_status specifies the (current) status of the TWS bus. See
Table 3.9.

• cl_addr is the EEPROM address to write the data. Set to the
address in bytes 4 & 5 of a Mode 4 write buffer CDB
(do_code_load). See Table 3.10.

• cl_byte_count is the number of bytes to write to the EEPROM or
the action to implement. The values of this variable and the resulting
action are listed in Table 3.11.

3-34 SAF-TE Source Code

Table 3.9 Subroutine background_code_lode

cl_status is set: by subroutine background_code_load

CLS_SUCCESS if the memory write over the TWS bus was
successful.

CLS_FAILURE_NVM if the memory write over the TWS bus fails.

CLS_FAILURE_CHECKSUM if the checksum over the data in code_buffer
fails.

CLS_FAILURE_ADDRESS if the byte count plus the address exceed the
maximum image length (measured for the
inactive image).

Table 3.10 Subroutine do_code_load

cl_addr is set: by subroutine do_code_load

CLS_BUSY if a valid Mode 4 Write Buffer command with
CDB[3] = 0 (load new data into external
memory), 0xFD (set the flag to update the
EEPROM) or 0xFE (set the flag to force a soft
Reboot (See notes on Register 0xFE00).
Note: The function background_code_load
will disable interrupts and trip the watchdog
timer by using an infinite loop.

CLS_IDLE if a valid Mode 4 Write Buffer command with
CDB[3] = 0xFF.

1. Note: cl_status is initialized (by init_stuff) to the value CLS_IDLE
2. Note: Mode 4 Write Buffer SCSI transfers require the code load status

variable (cl_status) be in the idle state (CLS_IDLE). Attempts to perform
SCSI transfers when the system is not idle result in a check condition.

SAF-TE Module 3-35

Initiator Operations during a Code Load

Firmware uploads require that the Initiator issue a sequence of Mode 4
Write Buffer commands. As specified in the SAF-TE and SCSI-2
specifications, Write Buffer command CDBs use bytes 3–5 for the write
address and bytes 6–8 for the transfer length, where the Most Significant
Byte (MSB) is presented first.

The SAF-TE firmware requires that the MSB of the transfer length, that
is, Byte 6, will always be 0. If this byte is not zero, the CDB will result in
a check condition indicating an invalid field in the CDB.

Table 3.11 background_code_load operation

cl_byte_count value background_code_load operation

CLBC_UPDATE_STRUCTURE
(0)

Set up TWS bus, set bytes 0 and 1 of
code_buffer, call tws_memory_write to
update the EEPROM. If write is
successful, set cl_status to
CLS_SUCCESS; else set cl_status to
CLS_FAILURE_NVM.

CLBC_REBOOT (1) Turn off interrupts, set timer, and delay
until a soft reset occurs.

Any value > 1 Validate write address. If invalid, set
cl_status to CLS_FAILURE_ADDRESS.

Validate image checksum. If invalid, set
cl_status to CLS_FAILURE_CHECKSUM.

Decrement the byte count pointer
because any data transferred as part of a
firmware update must have a checksum
as the last byte. This byte is not part of
the firmware.

Update cl_addr with the starting address
of the inactive image number.

Set up TWS bus and call
tws_memory_write. If write is successful,
set cl_status to CLS_SUCCESS;
else set cl_status to CLS_FAILURE_NVM.

3-36 SAF-TE Source Code

The upper byte of the write address is utilized as a flag for the SAF-TE
firmware. The choices for the upper byte and the corresponding actions
are shown in Table 3.12.

To update the SAF-TE firmware, the Initiator is required to send the
following series of Mode 4 Write Buffer SCSI commands to the Target:

• CDB[3] = 0 to update the firmware

• CDB[3] = 0xFF to determine if an error has occurred

• CDB[3] = 0xFE to update the Flash ROM tables

• CDB[3] = 0xFD to reset the LSI53C040 chip.

Additionally, a Request Sense should be issued after the Write Buffer
with CDB[3] = 0xFF to verify that the upload was successful.

Remark: The SAF-TE firmware allows transfers of, at most, 1 Kbyte
(Tag CODE_BUFFER_SIZE) per SCSI call. However, the
firmware itself will always be between 1 Kbyte and
12 Kbytes in size. Therefore, the Initiator issues a
sequence of Mode 4 Write Buffer commands each time the
firmware is updated.

Pseudo-code for a firmware upload is shown below where
firmware_size is the size of the firmware to be loaded (in bytes) and

Table 3.12 Upper Byte Choices

CDB[3] Value Action

0x00 If cl_status not idle, set check condition for code load
busy. If CDB invalid, set check condition for invalid
CDB. Else, set cl_status to busy, set cl_byte_count,
and populate code_buffer with data transmitted from
Initiator.

0xFD If cl_status not idle, set check condition for code load
busy. Else, set cl_status to busy and set
cl_byte_count to CLBC_REBOOT.

0xFE If cl_status not idle, set check condition for code load
busy. Else, set cl_status to busy and set
cl_byte_count to CLBC_UPDATE_STRUCTURE.

0xFF Set check condition based on value of cl_status. If
cl_status other than in Idle or Busy states, reset to Idle
state.

SAF-TE Module 3-37

firmware_buffer is a large enough buffer to hold the entire firmware.
Once a SCSI transfer has begun, the next SCSI transfer must wait until
the firmware from the previous transfer is successfully moved to the
serial EEPROM by using the TWS bus. Actual code should check for the
BUSY or SUCCESS check conditions. If the status is BUSY, the code
should wait until a check condition of SUCCESS or FAILURE is returned
and the sense data should be read to verify that the command to update
the structure was successful. Finally, the command to issue a REBOOT
requires no additional validation, as it is purely a SCSI command.

The pseudo-code is presented below:

char send_buffer[1025]; //Generic buffer to hold data to
send.
dataptr = buffer;
status = GOOD;
bytes_left = firmware_size; //Initialize to size of firmware
image
while (firmware_size > 0)
{
//While there is data left and previous write succeeded,
// issue the next write buffer command.

bytesToSend = bytes_left;
if (bytesToSend > 1024)

bytesToSend = 1024; // Reset maximum transfer to 1KB

//Copy bytes from dataptr to send_buffer,
//compute checksum and append
Copy(bytesToSend, dataptr, send_buffer);
checksum_byte = Compute_Checksum(bytesToSend, dataptr);
send_buffer[bytesToSend +1] = checksum_byte;

if ((status = SCSI_Write_Buffer(4, bytesToSend+1,
send_pointer)) != GOOD)

{
Request_Sense(); //Error on the SCSI Transfer
return;

}

if ((status = SCSI_Write_Buffer(4, 0xFF0000, send_pointer)) != GOOD)
{
Request_Sense(); //Error on the SCSI Transfer
return;

}

Request_Sense(); //Issue a request sense -if not

3-38 SAF-TE Source Code

//SUCCESSFUL
//firmware upload failed.

if (SENSE != 0x09 || ASC != 0x80 || ASCQ != 0x02)
return; // TWS data transfer error

//Correct Sense Data - continue.
bytes_left -= bytes_to_send; //Number of bytes left to send.
dataptr += bytes_to_send; //Increment the pointer

}

//Firmware upload to serial EEPROM is successful.
//Set cl_byte_count to CLBC_UPDATE_STRUCTURE
if ((status=SCSI_Write_Buffer (Mode_4, 0xFE0000, buffer)) != GOOD)
{

Request_Sense(); //Error on the SCSI Transfer
return;

}
//Make sure TWS has completed data transfer - should be in
//SUCCESS state.

//Set cl_byte_count to CLBC_REBOOT - ready to download to
//program memory and begin execution.
if ((status=SCSI_Write_Buffer (Mode_4, 0xFD0000, buffer)) != GOOD)
{

Request_Sense(); //Error on the SCSI Transfer
return;

}

SAF-TE Module 3-39

3.4.3 Interrupts

The LSI53C040 block diagram, Figure 2.1 in the LSI53C040 Enclosure
Services Processor Technical Manual, illustrates the primary elements of
the chip: 80C32 microcontroller, DMA core, SCSI core, 8067 core,
SRAM, dual TWS interfaces. In addition to these components, the
LSI53C040 contains several timer registers and access to multipurpose
I/O (MPIO) lines. The 80C32 microcontroller core has six interrupt
sources: Timer 0, Timer 1, Timer 2, Serial Port, External 0, and
External 1. These interrupt sources are controlled by writes to the
Special Function Registers (SFR). The latter two interrupt sources,
External 0 and External 1, provide the means by which interrupts from
the other elements in the LSI53C040 chip can be processed.

The LSI53C040 provides three registers to route interrupts to one of the
two external interrupts. A bit in the Interrupt Status Register (Program
Tag INT_STATUS, 0xFE04) will go high when an interrupt of the
appropriate type is pending. The Interrupt Mask Register (Program Tag
INT_MASK, 0xFE0D) can be used to prevent an interrupt from being
seen (and therefore processed) by the microcontroller core. The Interrupt
Destination Register (Program Tag INT_DESTINATION, 0xFE0E) can be
used to route any of the interrupts to External Interrupt 0 or External
Interrupt 1. The SAF-TE source code disables all interrupts except SCSI
and DMA, and routes these to External Interrupt 1 and 0 respectively. As
implemented, the 80C32 microcontroller processes the following
interrupts as shown in Table 3.13.

Table 3.13 Interrupts Processed by 80C32 Microcontroller

Interrupt
Pin

Vector
Address safte.c

0 0x0003 External 0 (mapped to DMA Interrupts, if enabled)

1 0x000B Timer 0 (SFRs 0x88–0x8A and 0x8C)

2 0x0013 External 1 (mapped to SCSI Interrupts)

3 0x001B Timer 1 (SFR 0x88, 0x89, 0x8B, and 0x8D)

4 0x0023 Serial Port (SFR 0x98)

5 0x002B Timer 2 (SFRs 0xC8, 0xCA–0xCD)

3-40 SAF-TE Source Code

In addition to these interrupt sources, the SAF-TE firmware uses the
internal watchdog timer (Program Tag WDT_CON, Register 0xFE00) to
generate a soft reset (if the code load flag directs a reboot).

3.4.3.1 Interrupt Service Routines (ISR)

The interrupt service routines are executed when the timer 0 counter rolls
over from 0xFFFF to 0.

The user data stored in config.timer_init_hi and config.timer_init_low
initialize the 16-bit timer and the timer is started.

Timer 0 ISR – Used to implement a delay on an operation to load code
to the serial EEPROM through the TWS bus. The subroutine
tws_memory_write checks the value of the global variable tim0_cnt
after each burst of data is transferred through the bus to the EEPROM.
A delay routine requires three interrupts to Timer 0; that is, this timer
must roll over three times before the next burst of data is sent over the
TWS bus. For further information, see Section 3.4.2.2, “TWS Data
Transfers,” page 3-30.

Function Name: ir_timer0()
Return Value: None.

Timer 1 ISR – Void Function. Timer 1 is initialized to be a 16-bit timer
but is never utilized.

Function Name: ir_timer1()
Return Value: None.

Timer 2 ISR – Void Function. Timer 2 is initialized to be a 16-bit timer
and started at the beginning of the main program. Timer 2 is used to
clock (transmit and receive) the serial bus. It is initialized for a 40 MHz
clock rate with autoreload capability. The output of the serial bus is used
for debugging operations.

Function Name: ir_timer2()
Return Value: None.

Serial Port ISR – Void Function.

Function Name: ir_serial()
Return Value: None.

SAF-TE Module 3-41

External Interrupt 0 ISR – If compile time options enable DMA data or
commands, this ISR clears the DMA interrupt register, otherwise null
routine.

To enable DMA data (commands), the #Define parameter
DMA_DATA_IN_ENABLED must be set to TRUE prior to compilation.

Note: If DMA data or commands are enabled, DMA interrupts are
mapped to External Interrupt 0 and SCSI data transfers are
handled by the DMA processor instead of through direct
I/O. For more information, see the description of the
External Interrupt 1 ISR and SCSI data transfer sections.

Function Name: ir_external0()
Return Value: None.

External Interrupt 1 ISR – Initiation of SCSI data transfers between the
host and target result in the execution of this ISR. Depending on the
#define settings, the data transfers between the Initiator and the Target
(data memory) are performed by using DMA (see Figure 2.6 in the
LSI53C040 Enclosure Services Processor Technical Manual) or by
software using a Programmed I/O Method (see Figure 2.7 in the
LSI53C040 Enclosure Services Processor Technical Manual).

The ISR flow diagrams (see Figure 3.2 and Figure 3.3 below) validate
that the Target has been selected, the bus is not busy, and the ID bit has
been set. Failure of one or more of these conditions results in two
actions: an error message is sent to TRACER, and the ISR terminates.
Next the ISR determines the Initiator SCSI ID and checks the SCSI
control lines for a parity error. If any errors occur, the ISR sends an error
message to TRACER and terminates. The SCSI attention (ATN) control
line is then tested and these results are possible:

• If high, the target switches to message phase out and checks to see
if the received byte (rcv_byte) is an Identify (0x80).

• If rcv_byte is an Identify (0x80), the message is saved and the
code repeats until the ATN is low.

• If rcv_byte is not an Identify (0x80), the received byte is checked
for the following cases:

3-42 SAF-TE Source Code

No Operation (0x08), loop again until ATN is low; Abort (0x06) and
Reset (0x0C); send an error message and terminate ISR; Other,
send a reject message to the host.

Once the ATN line is low, the ISR switches to SCSI command phase and
signals the Initiator to send the CDB. The subroutine
command_and_data_phases is initiated. If this routine executes
successfully (returns FALSE), the SCSI status followed by a command
complete message is sent to the Initiator.

Function Name: ir_external1()
Return Value: None.

SAF-TE Module 3-43

Figure 3.2 Flow Diagram of ir_external1()

SCSI Interrupt (External Interrupt 1)

While Bus ATN Raised

command_and_data_phases()

Return

Capture SCSI hardware registers.

Else

If Selection, Bus not busy and ID bit set.

If Bus free or SCSI Bus Reset

Else

Raise Bus Busy Signal
Extract Initiator SCSI ID.

ElseIf Parity Error on Bus

Switch to Message Phase Out
Capture data byte:rev_byte
Read Bus Status Register

If IDENTIFY message save

Error on SCSI
Transfer

Else

If Reset OR Abort

Error on SCSI
Transfer

If No Operation

Switch to Message Phase In
Send Message REJECT

While loop executes
code in dotted box.

ATN deasserted
Switch to SCSI Command Phase

Stores and Processes the SCSI CDB sent from
the Initiator.

Error on SCSI
Transfer

Error on SCSI
Transfer

Error on SCSI
Transfer

Else

Switch to SCSI Message Phase In and send COMMAND
COMPLETE message.

Switch to SCSI Status Phase and send status byte.

Bus Free.
Reset Hardware Interrupts.

Error
Message
& Return

3-44 SAF-TE Source Code

Figure 3.3 Flow Diagram of Command_and_Data_Phases()

command_and_data_phases()

Check SCSI OpCode

Error on SCSI OpCode Set Check Condition

Transfer CDB to External Data Memory

Error on SCSI Transfer
Return TRUE

Read SCSI Status Register

Parity Error

Compute byte_count

If INQUIRY command

Call do_inquiry
Send INQUIRY data if valid CDB,
else set check condition.

Return FALSE

If REQUEST SENSE command

Call do_request_sense
Send (and then clear) Sense data if
valid CDB, else set check condition.

If host at UNIT ATTENTION
state

Set sense data and send check
condition.

Clear Sense Keys
Call invalid_LUN_test

Invalid LUN
Set Check Condition

If Illegal OpCode

Based on OpCode, call:
do_read_buffer
do_write_buffer
do_test_unit_ready
do_send_diagnostic

Return:
TRUE - SCSI transfer error.
FALSE and no check condition - Successful
FALSE and check condition - Command not processed due

to illegal command.

SAF-TE Module 3-45

Unlike the other ISRs, ir_external1 invokes a large number of
subroutines. In general, these subroutines return FALSE if the request
has been processed successfully and TRUE if the request has failed.
For SCSI transfer routines, the validity of the CDB is first verified. If the
CDB contains invalid entries, a check condition is generated and FALSE
is returned to the calling function.

A brief description of each function is given in the right hand column of
Table 3.14 through Table 3.17.

3-46 SAF-TE Source Code

Table 3.14 Interrupt Service Routines - General

General Functions Description

req_ack On data transfers, this routine grabs each
byte and stores the result in the global
variable rcv_byte. This variable contains
a copy of what was transferred over the
SCSI bus, whether the phase is data in or
data out.
Returns TRUE if a Reset or the SCSI bus
is not busy.

command_and_data_phases Retrieves the CDB contents and processes
the SCSI request. Based on the command
line compile options, the CDB is written by
the DMA engine or through direct I/O.
CDBs with invalid OpCodes result in a
check condition. Otherwise, processing is
continued and the appropriate SCSI
subroutines are invoked.
Returns TRUE if a transfer is incomplete or
if the data transfer of a byte of data failed.
Returns FALSE with or without a check
condition otherwise.

send_data_bytes Transmits data from the supplied buffer to
the Initiator. Data transfers occur through
DMA (if enabled) or through direct I/O.

get_data_bytes Receives data from the Initiator and stores
them in the buffer supplied on the function
call.

do_code_load Specialized function for processing the
Vendor Specific Mode 4 Write Buffer
commands to upload firmware to the serial
EEPROM. Based on the status of the TWS
global flag, cl_status, and CDB[3], this
function will populate the code_buffer or
generate a check condition. The condition
will occur if the TWS bus is busy of if there
was an error on a previous Mode 4 Write
Buffer command.

SAF-TE Module 3-47

Table 3.15 Interrupt Service Routines - SCSI Commands

SCSI Command Subroutines Functional Description

do_inquiry Determine if queried LUN is valid and send
the inquiry data to the Initiator.

do_request_sense Determine if in a unit attention state. Send
sense data to Initiator and then clear sense
data.

invalid_LUN_test If following an Identify message, returns
TRUE if the identify message is not for the
LUN specified in the config data structure.
If not following an Identify, returns TRUE
(error) if the queried LUN number is larger
than 7.

do_send_diagnostic Validates CDB. Null functionality.

do_test_unit_ready Validates CDB. Null functionality.

do_read_buffer Read data from the selected area of the
config data structure and return the data
to the host using the function
send_data_bytes. Invalid Buffer ID values
(CDB[2]) result in a check condition and an
error condition being passed to the
software.

do_write_buffer Transfers data from the Initiator to the
Target’s external data memory (accessed
through the config data structure at offset
0x3B80, variable code_buffer) or results
in a check condition. Data transfer is
accomplished using the get_data_bytes
function.
Mode 01 WRITE BUFFER commands
write at most 64 Bytes of data. Invalid
requests result in a check condition.

Mode 04 WRITE BUFFER commands
(update the SEP device) use the address
to control whether the command is to write
data, force a reboot, update the firmware
or query for error messages. The upper
address byte of the CDB, (that is, CDB[3]),
provides the switch. A maximum of
1024 bytes of data may be transferred to
the target from the host with one WRITE
BUFFER command. See Section 3.4.2.3,
“Firmware Update,” page 3-33 for more
detailed information.

3-48 SAF-TE Source Code

Table 3.16 Interrupt Service Routines - SCSI Read

SCSI Read Buffer Subroutines Functional Description

do_read_enclosure_configuration Sends to the Initiator the current enclosure
configuration (stored in
config.enclosure_config_data)

do_read_enclosure_status Updates temperature values and sends to
the Initiator the current enclosure status
(stored in config.data_memory)

do_read_global_flags Sends to the Initiator the current global flag
values (stored in config.data_memory)

do_read_usage_statistics Null function.

do_read_device_insertions Null function.

do_read_device_slot_status Sends to the Initiator the current device slot
status (stored in config.data_memory)

do_debug_r_mem For debugging only - sends a maximum of
64 bytes of data memory at the address
specified in the CDB to the Initiator.

Table 3.17 Interrupt Service Routines - SCSI Write

SCSI Write Buffer Subroutines Functional Description

do_send_global_flags Updates the contents of the global flag
values (stored in
config.data_memory).

do_write_device_status Updates the slot status for each device
(except for those devices whose status
bytes are all zero).

do_perform_slot_operation If valid command, update the data
memory (config.data_memory).
Otherwise generate a check condition.

do_set_scsi_id Updates the data memory
(config.data_memory) if slot number
is smaller than the total number of
device slots, otherwise generates a
check condition.

Frequently Asked Questions (FAQ) 3-49

3.4.4 Error Reporting

The SAF-TE source code’s individual functions about error reporting
mechanisms have been reviewed in earlier sections. Errors that occur
during a SCSI data transfer result in a check condition or, in some cases
a bus free. Errors that occur during a TWS data transfer manifest
themselves by invalidating the data to be updated in the config data
structure or through the code load status flag cl_status and a
corresponding check condition. No other error reporting is provided.

3.5 Frequently Asked Questions (FAQ)

Table 3.18 lists possible questions that might be raised when using this
source code along with appropriate answers.

do_set_fan_speed Null function.

do_activate_power_supply Null function.

do_debug_w_sbc For debugging only - allows control of
the subroutine execute_program_once.

Table 3.17 Interrupt Service Routines - SCSI Write (Cont.)

SCSI Write Buffer Subroutines Functional Description

Table 3.18 Source Code Issues

Question Comment

How is the file safte.hex generated? Use the makefile with the target specified as SAFTE. See
Section 3.4.1, “Compilation Instructions for safte.c,” and the
compiler documentation for details.

How is the boot code placed on the
TWS memory device?

For a new board, the chip can be placed in a TWS
programmer or (for some boards) downloaded over the
TWS bus. For boards with firmware in place, follow the
instructions in the Section 3.4.2.3, “Firmware Update,”
page 3-33.

Where is the boot code stored once it
is downloaded?

It is stored in a serial EEPROM.

What is the structure of the entire boot
image?

loader.hex + bootload.hex

3-50 SAF-TE Source Code

How do we change the flags used
during compilation?

Currently, the source code #Define statements must be
modified.

How are SCSI errors reported? Errors during a SCSI transfer or with a CDB are reported
by setting the appropriate check condition. Refer to Section
2.1.3 in the LSI53C040 Enclosure Services Processor
SAF-TE Firmware User's Guide for more information.

How are TWS errors reported? Invalid entries in config data structure, code load status
variable cl_status are set to CLS_FAILURE_XXX. The XXX
describes the failure and thus check conditions are set. The
initiator may retrieve information by issuing a Mode 4 Write
Buffer command with CDB[3] = 0xFF followed by a Request
Sense command.

Is Timer 2 utilized? Yes. Timer 2 is used to clock the transmission and
reception of data on the serial bus.

What is the difference between a soft
reset and a hard reset?

A hard reset is a power on reset. The chip, all registers,
and external data memory are initialized using the contents
of the serial EEPROM. A soft reset occurs when the
watchdog timer expires. This forces only a chip reset. Note
the code restarts but not all of the registers are initialized.
See Chapter 2 in the LSI53C040 Enclosure Services
Processor Technical Manual for more information.

What is a shadow register and how is
it used?

It holds a duplicate of a register value in xdata data
memory. Use of shadow registers allows for faster access
in some cases.

Prior to transferring the data sent by a
Mode 4 Write Buffer command over
the TWS bus, the byte count variable is
decremented by 1. Why?

All Mode 4 Write Buffer commands require that the last
data byte transferred be the checksum of all previous data
bytes. However, this checksum is not data to be saved in
the serial EEPROM.

If the firmware is, say 10 Kbytes, but
our SCSI data buffer is only 1025
Bytes, how is the firmware updated?

The Initiator, or an application program, must break the
firmware into segments and write one segment at a time.
See the discussion on Section 3.4.2.3, “Firmware Update,”
page 3-33 for more information.

Table 3.18 Source Code Issues (Cont.)

Question Comment

LSI53C040 Enclosure Services Processor Programming Guide 4-1

Chapter 4
SAF-TE Command
Implementation

This chapter documents the SAF-TE commands supported by the
LSI53C040, and the default firmware settings or user requirements for
each command. These topics are discussed:

• Section 4.1, “SCSI Commands,” page 4-1. The LSI53C040 SAF-TE
firmware supports these SCSI commands: Inquiry, Read Buffer,
Request Sense, Send Diagnostic, Test Unit Ready, and Write Buffer.

• Section 4.2, “SAF-TE Read Buffer Commands,” page 4-7

• Section 4.3, “SAF-TE Write Buffer Commands,” page 4-18

• Section 4.4, “Unsupported SAF-TE Commands,” page 4-25

Please note that the LSI53C040 only supports LUN 0 at this time.

4.1 SCSI Commands

This section provides more detailed information about all the SCSI
commands that are supported by the LSI53C040 enclosure services
processor.

4.1.1 Inquiry

The host uses the Inquiry command to request parameter information
from the enclosure. Table 4.1 shows the response data format from the
Inquiry command.

4-2 SAF-TE Command Implementation

Table 4.1 Inquiry Command Response Data

Byte Bit Description Returned Value/ Notes

Byte 0 [7:5] Peripheral Qualifier 0b000 if LUN 0 (the only valid LUN) is selected
0b011 if LUN 0 is not selected

[4:0] Peripheral Device Type 0x03 (SCSI Processor Device) if LUN 0 (the
only valid LUN) is selected
0x1F (No device type) if LUN 0 is not selected

Byte 1 [7:0] 00h Returns 0x00

Byte 2 [7:3] 0 0

[2:0] ANSI Approved Version 0x02 – Compliance with ANSI SCSI-2
specification

Byte 3 [7:4] 0 0

[3:0] Response Data Format 0x02 – Format defined in ANSI SCSI-2
specification

Byte 4 [7:0] Additional Length 0x36 = 54 bytes

Byte 5 [7:0] Reserved Returns 0x00

Byte 6 [7:0] Reserved Returns 0x00

Byte 7 [7:0] 00h Returns 0x00

Bytes 8–15 [7:0] Vendor Identification 8-byte ASCII string defined in the configuration
program

Bytes 16–31 [7:0] Product Identification 16-byte ASCII string defined in the configuration
program

Bytes 32–35 [7:0] Firmware Revision Level Returns a four-byte ASCII string representing
the current SAF-TE firmware revision level

Bytes 36–42 [7:0] Enclosure Unique Identifier Returns a seven-byte ASCII ID number as
defined in the configuration program

Byte 43 [7:0] Channel Identifier Returns a single ASCII character as defined in
the configuration program

Bytes 44–49 [7:0] SAF-TE Interface
Identification String

ASCII string of “SAF-TE”

Bytes 50–53 [7:0] SAF-TE Specification
Revision Level

ASCII string of “1.00”

SCSI Commands 4-3

4.1.2 Read Buffer

The Read Buffer command is used to receive data from the LSI53C040
SAF-TE Processor. The data returned is dependent upon the content of
the SAF-TE operation code field. These commands are included:

• Read Enclosure Configuration (SAF-TE operation code 0x00)

• Read Enclosure Status (0x01)

• Read Device Slot Status (0x04)

• Read Global Flags (0x05)

The format of these commands is described in Table 4.2 below. The
mode field is 0x01 to indicate that a SAF-TE command is being sent. The
transfer length is dependent upon which SAF-TE data is being returned.

Table 4.2 Read Buffer Data Format

Bit # => 7 6 5 4 3 2 1 0

Byte #

0 SCSI Operation Code (0x3C)

1 Logical Unit Number Reserved Mode (0x01)

2 SAF-TE Operation Code

3 0x00

4 0x00

5 0x00

6 0x00

7 Transfer Length MSB

8 Transfer Length LSB

9 0x00

4-4 SAF-TE Command Implementation

4.1.3 Request Sense

Table 4.3 provides the sense key information supported by the
LSI53C040 SAF-TE firmware.

4.1.4 Send Diagnostic

This command is treated as a no operation and returns the status of
GOOD.

Table 4.3 Sense Key Information

Sense Key ASC ASCQ Error Condition

0x00 No Sense, No Error Condition

0x05 Illegal Request

0x20 0x00 Invalid Command Operation Code

0x24 0x00 Invalid Field in CDB

0x25 0x00 Logical Unit not Supported

0x26 0x02 Invalid SEP Command in Write Buffer Data Packet

0x06 Unit Attention

0x29 0x00 Power-On, Reset, or Bus Device Reset Occurred

0x3F 0x01 Microcode Changed

0x09 Vendor-Specific

0x80 0xFF Code Load Busy

0x80 0x00 Code Load Idle

0x80 0x01 Code Load Busy Writing

0x80 0x02 Code Load Success

0x80 0x03 Code Load Failure Bad Address

0x80 0x04 Code Load Failure Bad Checksum

0x80 0x05 Code Load NVM Write Failure

SCSI Commands 4-5

4.1.5 Test Unit Ready

This command is implemented according to the SAF-TE specification.

4.1.6 Write Buffer

The Write Buffer command is used to send SAF-TE commands to the
LSI53C040 SAF-TE Processor. These commands are included:

• Write Device Slot Status (0x10)

• Perform Slot Operation (0x12)

• Send Global Flags (0x15)

The format of these commands is described in Table 4.4 below. The
mode field is 0x01 to indicate that a SAF-TE command is being sent. The
transfer length is dependent upon which SAF-TE command is being sent.

Table 4.4 Write Buffer Data Format

Bit # => 7 6 5 4 3 2 1 0

Byte #

0 SCSI Operation Code (0x3B)

1 Logical Unit Number Reserved Mode (0x01)

2 0x00

3 0x00

4 0x00

5 0x00

6 0x00

7 Transfer Length MSB

8 Transfer Length LSB

9 0x00

4-6 SAF-TE Command Implementation

The Write Buffer command is also used to update the SAF-TE firmware
(stored in TWS Flash ROM). When used to upload firmware, the Write
Buffer command format appears as follows:

The Mode field is 0x04 to indicate that SAF-TE firmware is being sent.

The Flag Byte can be one of the following values:

• 0x00 - upload firmware

• 0xFD - reset the LSI53C040 to run the new firmware

• 0xFE - upload firmware complete; update Flash ROM tables to use
the new firmware

• 0xFF - request status of firmware upload; returned using next SCSI
Request Sense command

Table 4.5 Write Buffer Data Format (Updating SAF-TE Firmware)

Bit # => 7 6 5 4 3 2 1 0

Byte #

0 Operation Code (0x3B)

1 Logical Unit Number Reserved Mode (0x04)

2 0x00

3 Flag Byte

4 Buffer Offset MSB

5 Buffer Offset LSB

6 0x00

7 Transfer Length MSB

8 Transfer Length LSB

9 0x00

SAF-TE Read Buffer Commands 4-7

The transfer length and buffer offset fields are used only when the Flag
Byte is zero. When the Flag Byte is nonzero, the transfer length and
buffer offset fields must contain zeros. The transfer length is a number
between 0x02 and 0x4001, indicating how much data (including a 1-byte
checksum) is being transferred. The buffer offset is a number between
0x00 and 0x3FFF, indicating which locations in the Flash ROM are to be
updated.

4.2 SAF-TE Read Buffer Commands

This section provides information about all the various read buffer
commands that can be sent to the LSI53C040 core.

4.2.1 Read Enclosure Configuration (0x00)

The application agent sends this command to the LSI53C040 to inquire
about the number and type of system components in the enclosure. The
LSI53C040 determines and returns this information based on the
enclosure settings the user defines in the configuration program. At
present, no vendor specific bytes are returned. Table 4.6 shows the
return values:

Table 4.6 Read Enclosure Configuration Return Values

Byte Bits Field Description Notes

0 [7:0] Number of Fans (f) Defined in Configuration Utility

1 [7:0] Number of Power Supplies (p) Defined in Configuration Utility

2 [7:0] Number of Device Slots (d) Defined in Configuration Utility

3 [7:0] Door Lock Installed Defined in Configuration Utility

4 [7:0] Number of Temperature Sensors (t) Defined in Configuration Utility

5 [7:0] Audible Alarm Defined in Configuration Utility

4-8 SAF-TE Command Implementation

4.2.1.1 Fans (f)

This field contains the binary representation of the number of fans in the
enclosure. This information reserves the appropriate number of bytes in
the Read Enclosure Status field. The user defines this number in the
configuration program.

4.2.1.2 Power Supplies (p)

This field contains the binary representation of the number of power
supplies in the enclosure. This information reserves the appropriate
number of bytes in the Read Enclosure Status field. The user defines this
number in the configuration program.

4.2.1.3 Device Slots (d)

This field contains the binary representation of the number of available
device slots in the enclosure. This information reserves the appropriate
number of bytes in the Read Enclosure Status field. The user defines this
number in the configuration program.

4.2.1.4 Door Lock

This field indicates whether the enclosure has a door lock. If there is no
door lock, this field is 0. If a door lock is present, this field is 1. The user
defines this field in the configuration program.

6 7 Celsius/Fahrenheit Defined in Configuration Utility

[6:4] Reserved

[3:0] Number of Thermostats Defined in Configuration Utility

7 through 62 [7:0] Reserved Returns 00h

63 [7:0] Number of Vendor Specific Bytes (v) Returns 00h

64 through xx [7:0] Vendor Specific Not supported

Table 4.6 Read Enclosure Configuration Return Values (Cont.)

Byte Bits Field Description Notes

SAF-TE Read Buffer Commands 4-9

4.2.1.5 Number of Temperature Sensors (t)

This field contains the binary representation of the number of integer
temperature sensors. This information reserves the appropriate number
of bytes in the Read Enclosure Status field. This type of sensor will be
connected to one of the TWS buses to transfer this integer value to the
LSI53C040. The DS1621 is one example. If the user does not select the
DS1621, the LM75, or the LM78 in the TWS device port mapping section
of the firmware configuration program, then it is assumed that no integer
temperature sensors are attached.

4.2.1.6 Audible Alarm

This field indicates whether the enclosure has a speaker. If there is no
speaker, this field is 0. If a speaker is present, this field is 1. The user
defines this field in the configuration program.

4.2.1.7 Celsius/Fahrenheit

This field indicates whether the integer temperatures (if there are any)
will be reported in degrees Fahrenheit or Celsius. It is selectable by the
user in the configuration program. A value of 1 indicates Celsius, and a
value of 0 indicates Fahrenheit.

4.2.1.8 Number of Thermostats

This field indicates the number of binary temperature monitors. The user
defines this field in the configuration program.

4.2.2 Read Enclosure Status (0x01)

The LSI53C040 processor returns the operational status of the these
components in the enclosure:

• Fans

• Power supplies

• Slot SCSI IDs

• Door locks

• Speakers

• Integer temperatures

• Binary temperatures

4-10 SAF-TE Command Implementation

Table 4.7 shows the Read Enclosure Status Return Values.

Table 4.7 Read Enclosure Status Return Values

Byte Field Description Notes

0 Fan 0 Status Returns either:
0x00 Fan is operational
0x01 Fan is malfunctioning
0x02 Fan is not installed
0x80 unknown status, or status not reportable

f − 1 Fan f − 1 Status Same as above

f Power Supply 0 Status Returns either:
0x00 Power Supply is operational and on
0x01 Power Supply is operational and off
0x10 Power Supply is malfunctioning and
commanded on
0x11 Power Supply is malfunctioning and
commanded off
0x20 Power Supply is not present
0x21 Power Supply is present
0x80 unknown status, or status not reportable

f + p − 1 Power Supply p − 1 Status Same as above

f + p Device Slot 0 SCSI ID Returns binary encoded value of the SCSI ID

f + p + d − 1 Device Slot d − 1 SCSI ID Same as above

f + p + d Door Lock Status Returns either:
0x00 Door is currently locked
0x01 Door is currently unlocked, or door lock not
installed
0x80 Unknown status, or status not reportable

f + p + d + 1 Speaker Status Returns either:
0x00 Speaker is currently off or no speaker installed
0x01 Speaker is currently on

f + p + d + 2 Temperature 0 Returns the integer value (0–255) of the DS1621 or
LM75 temp sensor. Additionally, if no sensor is
installed, no bytes are dedicated.

f + p + d + t + 1 Temperature t − 1 Same as above

f + p + d + t + 2 Temperature Out of Range
Flags 1

Sets the ETA (bit 7) if temperature alert or 0 if no
alert.
See Section 4.2.2.7, “Temperature Out Of Range,”
page 4-14.

SAF-TE Read Buffer Commands 4-11

4.2.2.1 Fan Status

For each fan in the enclosure, the configuration program defines whether
the fan status is determined by either one or two input MPIO pins, or by
an LM78. The Read Enclosure Configuration (0x00) command indicates
whether fans are attached. If no fans are attached, this field is truncated
from the Read Enclosure Status return values shown in Table 4.7. Based
upon the input status, the LSI53C040 will return values. Table 4.8 shows
these values:

The configuration program maps what response above should be
returned for a single-bit input pattern of 0 or 1 and for a dual-input bit
pattern of 0x00, 0x01, 0x10, or 0x11, or by the value read from the LM78.

4.2.2.2 Power Supply Status

For each power supply in the enclosure, the configuration program has
defined whether the power supply status is determined by either one or
two input MPIO pins, or by an LM78. The Read Enclosure Configuration
(0x00) command indicates whether power supplies are present. If no
power supplies are present, this field is truncated from the Read

f + p + d + t + 3 Temperature Out of Range
Flags 2

See Section 4.2.2.7, “Temperature Out Of Range,”
page 4-14.

f + p + d + t + 4 Number of Vendor Specific
Bytes

0x00

f + p + d + t + 5 Vendor Specific Not supported

Table 4.7 Read Enclosure Status Return Values (Cont.)

Byte Field Description Notes

Table 4.8 Fan Status Return Values

Value Status

0x00 Fan is operational

0x01 Fan is malfunctioning

0x02 Fan is not installed

0x80 Unknown status, or status not reportable

4-12 SAF-TE Command Implementation

Enclosure Status return values shown in Table 4.7. Based upon the
status, the LSI53C040 will return values. These values are shown in
Table 4.9:

The configuration program maps what response above will be returned
for a single-input bit pattern of 0 or 1 and for a dual-input bit pattern of
0x00, 0x01, 0x10, or 0x11, or by the value read from the LM78.

4.2.2.3 Device Slot SCSI ID

A SCSI ID (integer ID) is reported for each device slot in the enclosure.
The configuration program maps what SCSI ID is assigned to each
device slot. The SCSI ID is reported even if the drive is not present in a
slot.

Table 4.9 Power Supply Status Return Values

Value Status

0x00 Power Supply is operational and on

0x01 Power Supply is operational and off

0x10 Power Supply is malfunctioning and commanded on

0x11 Power Supply is malfunctioning and commanded off

0x20 Power Supply is not present

0x21 Power Supply is present

0x80 Unknown status, or status not reportable

SAF-TE Read Buffer Commands 4-13

4.2.2.4 Door Lock Status

The state of one MPIO pin determines the door lock status. If the user
has defined a host-controllable or a monitorable door lock in the
configuration program, the LSI53C040 will return values. Table 4.10 lists
the values and their status:

The configuration program maps what response above should be
returned for single-input bit pattern of 0 or 1. If no door lock is defined,
the LSI53C040 will return 0x01.

4.2.2.5 Speaker Status

The state of one MPIO pin determines the speaker status. If the user has
defined the speaker status in the configuration program, the LSI53C040
will return values. Table 4.11 lists these values and their status:

The configuration program maps what response above will be returned
for a single-bit input pattern of 0 or 1. If speaker is not defined, the
LSI53C040 will return 0x00.

4.2.2.6 Temperature

The integer (0 to 255) value of a temperature sensor(s) in degrees
Fahrenheit or Celsius determines the temperature status. It is assumed
that this type of sensor will be connected to one of the TWS buses as

Table 4.10 Door Lock Status Return Values

Value Status

0x00 Door is currently locked

0x01 Door is currently unlocked or no door lock is installed

0x80 Unknown status, or status not reportable

Table 4.11 Speaker Status Return Values

Value Status

0x00 Speaker is currently off (or no speaker installed)

0x01 Speaker is currently on

4-14 SAF-TE Command Implementation

the means for transferring this integer value to the LSI53C040. The
DS1621 is one example. The Read Enclosure Configuration (0x00)
command indicates whether a temperature sensor is attached. If no
temperature sensors are attached, this field is truncated from the Read
Enclosure Status return values shown in Table 4.7. The default state for
this is field is 0. This field returns 255 if an error has occurred.

4.2.2.7 Temperature Out Of Range

This status returns whether an abnormal temperature has been detected
on any thermostat hardware that only returns a binary value. Since up to
15 thermostat temperature sensors can be attached to the enclosure, up
to 15 MPIO pins would be required.

A value of 1 on any of the dedicated MPIO pins indicates an abnormal
temperature, and the corresponding flag will be set. When a value of
1 occurs on any of the dedicated MPIO pins, the ETA bit will be set
(bit 7) in the Temperature Out of Range Flags (1 byte).

4.2.3 Read Device Slot Status (0x04)

This command returns information on the current state of each
device/slot. The field that follows the device status bytes is a one byte
field and indicates the number of Vendor Specific bytes to follow. This
field will always be zero. Four bytes are associated with each device slot.
Table 4.12 summarizes each of those bytes.

SAF-TE Read Buffer Commands 4-15

Table 4.12 Read Device Slot Status Command Return Values

Byte Bit Description Notes

Byte 0 0 No Error Flag Returns value as set by Write Device Slot Status
Command

1 Device Faulty Flag Returns value as set by Write Device Slot Status
Command

2 Device Rebuilding Flag Returns value as set by Write Device Slot Status
Command

3 In Failed Array Flag Returns value as set by Write Device Slot Status
Command

4 In Critical Array Flag Returns value as set by Write Device Slot Status
Command

5 Parity Check Flag Returns value as set by Write Device Slot Status
Command

6 Predicted Fault Flag Returns value as set by Write Device Slot Status
Command

7 No Drive Flag Returns value as set by Write Device Slot Status
Command

Byte 1 0 Hot Spare Flag Returns value as set by Write Device Slot Status
Command

1 Rebuild Stopped Flag Returns value as set by Write Device Slot Status
Command

[2:7] Reserved Returns 0x00

Byte 2 [0:7] Reserved Returns 0x00

Byte 3 0 (Slot) Device Inserted
Flag

Returns either:
0 – no device inserted in slot
1 – device inserted in slot

1 (Slot) Prepared for
Insertion/Removal Flag

Returns either:
0 – device power is on
(slot not ready for insertion/removal)
1 – device power is off
(slot ready for insertion/removal)

2 (Slot) Prepared for
Operation Flag

Returns either:
0 – device power is off
(slot not prepared for operation)
1 – device power is on
(slot prepared for operation)

[3:7] Reserved Returns 0x00

4-16 SAF-TE Command Implementation

Table 4.13 lists the default slot status values that are set at power-on or
reset.

4.2.3.1 Device Inserted Bit

If the Device Present option was selected in the configuration program,
this field returns the current state of a drive (whether or not it is installed
in the device slot).

4.2.3.2 Prepared for Insertion/Removal

Setting this bit indicates the slot is ready for drive insertion or removal.
It is the complement of the Prepared for Operation bit. See Perform Slot
Operation for when this bit is set.

4.2.3.3 Prepared for Operation

This bit indicates that a drive has been inserted in a slot and is ready for
operation. It is the complement of the Ready for Insertion/Removal bit.
See Section 4.3.2, “Perform Slot Operation (0x12),” for when this bit is
set.

4.2.4 Read Global Flags (0x05)

The Read Global Flags command is used to read from the LSI53C040
the most recent state of the global flags received in the Send Global
Flags command (refer to Table 4.18). Sending this command will not
modify the state of any global flag. Table 4.14 lists the return values for
the Read Global Flags command.

Table 4.13 Power-On/Reset Default Slot Status

Value Status

Byte 0 0x01

Byte 1 0x00

Byte 2 0x00

Byte 3 0x02

SAF-TE Read Buffer Commands 4-17

Table 4.14 Read Global Flag Bytes

Byte Bit Global Bit Descriptions LSI53C040 Action

Byte 0
(Global Flag 1)

0 Audible Alarm Control Drives/Monitors an MPIO pin connected to an
alarm signal
(1 for on, 0 for off)

1 Global Failure Indication Drives LED

2 Global Warning Indication Drives LED

3 Enclosure Power Not Implemented

4 Cooling Failure Not Implemented

5 Power Failure Not Implemented

6 Drive Failure Drives LED

7 Drive Warning Drives LED

Byte 1
(Global Flag 2)

0 Array Failure Drives LED

1 Array Warning Drives LED

2 Enclosure Lock Drives/Monitors an MPIO pin connected to a
door lock

3 Identify Enclosure Drives LED

[4:7] Reserved

Byte 2
(Global Flag 3)

[0:7] Reserved

Bytes 3–15 Reserved

4-18 SAF-TE Command Implementation

4.3 SAF-TE Write Buffer Commands

This section provides information about all the various write buffer
commands that can be sent to the LSI53C040 core.

4.3.1 Write Device Slot Status (0x10)

This command informs the LSI53C040 of the state of each slot and
activates device status LEDs. In general, the Write Device Slot Status is
set by the RAID controller or host since it knows the status of the devices
in each slot. Three bytes are associated with each device slot. Bytes 1,
2, and 3 contain the desired state for the device in slot #0; Bytes 4, 5,
and 6 contain the desired state for the device in slot #1, etc.
Table 4.15 summarizes these bytes and the associated actions of the
LSI53C040.

Table 4.15 Write Device Slot Status Flag Bytes

Byte Bit State Bit Descriptions LSI53C040 Action

Byte 0 Operation Code (0x10)

Byte n + 0 0 00 No Error Flag Drives fault light LED(s) according to blink
pattern

1 03 Device Faulty Flag Drives fault light LED(s) according to blink
pattern

2 04 Device Rebuilding Flag Drives fault light LED(s) according to blink
pattern

3 05 In Failed Array Flag Drives fault light LED(s) according to blink
pattern

4 06 In Critical Array Flag Drives fault light LED(s) according to blink
pattern

5 07 Parity Check Flag Drives fault light LED(s) according to blink
pattern

6 08 Predicted Fault Flag Drives fault light LED(s) according to blink
pattern

7 09 No Drive Flag Drives fault light LED(s) according to blink
pattern

SAF-TE Write Buffer Commands 4-19

The LSI53C040 will drive zero, one, or two LEDs for each device slot,
depending on the option chosen in the configuration program. Table 4.16
shows the current default settings for each bit description in the Write
Device Slot Status command for both the one-LED and two-LED options:

Byte n + 1 0 10 Hot Spare Flag Drives fault light LED(s) according to blink
pattern

1 11 Rebuild Stopped Flag Drives fault light LED(s) according to blink
pattern

[2:7] Reserved

Byte n + 2 [0:7] Reserved

Note: Byte numbers for the Write Device Slot Status Flags are determined by using “n” = device slot
number. Therefore, the above information repeats for each device slot specified.

Table 4.15 Write Device Slot Status Flag Bytes (Cont.)

Byte Bit State Bit Descriptions LSI53C040 Action

Table 4.16 Default LED Settings for Write Device Slot Status Flags

State Bit Description One-LED Option

Two-LED Option

LED 1 LED 2

0 Default/Nothing to Report Off Off Off

1 Prepare for insertion/removal Off On On

2 Prepare for operation On Off Slow

3 Device Faulty Slow On Off

4 Device Rebuilding Slow Off Fast

5 In Failed Array Slow Fast On

6 In Critical Array Slow Slow Off

7 Parity Check operation Slow On Off

8 Predicted Fault Failure Slow Fast Off

9 No drive inserted Off On Fast

4-20 SAF-TE Command Implementation

The bit descriptions are shown in increasing priority order. If more than
one bit is set by the Write Device Slot Status command, the bit with the
highest priority dictates the LED blink pattern.

4.3.2 Perform Slot Operation (0x12)

This command performs a specific operation on an intended device slot.
In compliance with the SAF-TE specification, only one of these bits
should be set at a time.

10 Hot Spare Off Fast Fast

11 Rebuild Stopped Slow Off On

12 Identify Slot Fast Slow Fast

Table 4.16 Default LED Settings for Write Device Slot Status Flags (Cont.)

State Bit Description One-LED Option

Two-LED Option

LED 1 LED 2

Table 4.17 Perform Slot Operation Flags

Byte Bit Bit Descriptions Action

0 Operation Code (0x12)

1 Slot Number

2 0 Prepare for Operation Flag Controls power to a device slot
0 – Turn slot power off
1 – Turn slot power on

1 Prepare for
Insertion/Removal Flag

Controls power to a device slot
0 – Turn slot power on
1 – Turn slot power off

2 Identify Flag Drives LED(s) according to blink pattern

[3:7] Reserved

3–63 Reserved

SAF-TE Write Buffer Commands 4-21

4.3.2.1 Prepare for Operation

This bit is set by the host to indicate that a drive has been inserted in a
slot and is to be made ready for operation (that is, powered on). If the
Ready Device for Use option is selected in the configuration program, the
assigned MPIO pin will be asserted to turn slot power on.

These conditions apply if the Device Present option is chosen in the
configuration program:

• If a device is present in the slot, and this bit is set, power will be
turned on (by the MPIO pin). The Prepared for Operation bit will be
set and the Ready for Insertion/Removal bit will be cleared in the
Read Device Slot Status command.

• If a device is not present in the slot, and this bit is set, power will not
be turned on. The Ready for Insertion/Removal bit will be set and the
Prepared for Operation bit will be cleared in the Read Device Slot
Status command.

These conditions apply if the Device Present option is not chosen in the
configuration program:

• Power is applied to the slot, the Prepared for Operation bit will be
set, and the Ready for Insertion/Removal bit will be cleared in the
Read Device Slot Status command.

4.3.2.2 Prepare for Insertion/Removal

This bit is set by the host to indicate that the slot should be made ready
for drive insertion or removal (that is, powered off). If the Prepare Device
for Insertion/Removal option is selected in the configuration program, the
assigned MPIO pin will be asserted to turn slot power off.

These conditions apply if the Device Present option is chosen in the
configuration program:

• If a device is present in the slot, and this bit is set, power will be
turned off (by the MPIO pin). The Prepared for Operation bit will be
cleared and the Ready for Insertion/Removal bit will be set in the
Read Device Slot Status command.

4-22 SAF-TE Command Implementation

• If a device is not present in the slot, and this bit is set, power will
remain off. The Ready for Insertion/Removal bit will be set and the
Prepared for Operation bit will be cleared in the Read Device Slot
Status command.

These conditions apply if the Device Present option is not chosen in the
configuration program:

• Power will be turned off, the Prepared for Operation bit will be
cleared, and the Ready for Insertion/Removal bit will be set in the
Read Device Slot Status command.

4.3.2.3 Identify

This will drive an external LED(s) according to the blink pattern for the
specific device slot. If one LED is chosen, the Identify Slot bit is set to
the fast blink rate. If two LEDs are chosen, the LED1 bit is set to the slow
blink rate and the LED2 bit is set to the fast blink rate.

4.3.3 Send Global Flags Command (0x15)

This command is used to send commands that apply to the enclosure.
The Read Global Flags command (Table 4.14) is used to read the most
current state of the global flags sent with this command:

Table 4.18 Send Global Flag Bytes

Byte Bit Global Bit Descriptions LSI53C040 Action

Byte 0 Operation Code (0x15)

Byte 1
(Global Flag 1)

0 Audible Alarm Control Drives/Monitors an MPIO pin connected to
an alarm signal
(1 for on, 0 for off)

1 Global Failure Indication Drives LED

2 Global Warning Indication Drives LED

3 Enclosure Power Not Implemented

4 Cooling Failure Not Implemented

5 Power Failure Not Implemented

6 Drive Failure Drives LED

SAF-TE Write Buffer Commands 4-23

4.3.3.1 Audible Alarm Control

This bit is set to sound an alarm. If a controllable alarm is selected in the
configuration program, setting this bit will sound the alarm. The alarm is
turned off by clearing this bit.

4.3.3.2 Global Failure and Warning Indication

These bits are set to indicate a global failure or warning condition. If the
Global Enclosure Status LED option is selected in the configuration
program, setting of either the Global Failure or Warning Indication bits
will drive the assigned LED as shown in Table 4.19:

Byte 1
(Global Flag 1)

7 Drive Warning Drives LED

Byte 2
(Global Flag 2)

0 Array Failure Drives LED

1 Array Warning Drives LED

2 Enclosure Lock Drives/Monitors an MPIO pin connected to
a door lock

3 Identify Enclosure Drives LED

[4:7] Reserved

Byte 3
(Global Flag 3)

[0:7] Reserved

Table 4.18 Send Global Flag Bytes (Cont.)

Byte Bit Global Bit Descriptions LSI53C040 Action

Table 4.19 Global Failure/Global Warning LED Options

Global Failure Global Warning LED

0 0 Off

0 1 Slow

1 0 Fast

1 1 On

4-24 SAF-TE Command Implementation

4.3.3.3 Drive Failure and Warning

These bits are set to indicate a drive failure or warning condition. If the
Global Drive Status LED option is selected in the configuration program,
setting of either the Drive Failure or Warning Indication bits will drive the
assigned LED as shown in Table 4.20:

4.3.3.4 Array Failure and Warning

These bits are set to indicate an array failure or warning condition. If the
Global Array Status LED option is selected in the configuration program,
setting of either the Drive Failure or Warning Indication bits will drive the
assigned LED as shown in Table 4.21:

4.3.3.5 Enclosure Lock

This bit is set to lock the enclosure. If a lock is selected in the
configuration program, setting this bit will lock the enclosure. The
enclosure is unlocked by clearing this bit.

Table 4.20 Drive Failure/Drive Warning LED Options

Drive Failure Drive Warning LED

0 0 Off

0 1 Slow

1 0 Fast

1 1 On

Table 4.21 Array Failure/Array Warning LED Options

Array Failure Array Warning LED

0 0 Off

0 1 Slow

1 0 Fast

1 1 On

Unsupported SAF-TE Commands 4-25

4.3.3.6 Identify Enclosure

This bit is set to drive any global enclosure identify signal.

4.4 Unsupported SAF-TE Commands

The unsupported SAF-TE commands are:

• Read Usage Statistics (0x02)

• Read Device Insertions (0x03)

• Set SCSI ID (0x11)

• Set Fan Speed (0x13)

• Activate Power Supply (0x14)

4-26 SAF-TE Command Implementation

LSI53C040 Enclosure Services Processor Programming Guide 5-1

Chapter 5
Configuration Data and
the Configuration
Utility

This chapter describes the Configuration Utility and includes these
topics:

• Section 5.1, “Using the Configuration Utility,” page 5-1

• Section 5.2, “Questions in the Configuration Utility,” page 5-5

• Section 5.3, “After Running the Configuration Utility,” page 5-21

5.1 Using the Configuration Utility

The LSI53C040 SAF-TE firmware includes a configuration utility
(config.exe) that maps specific enclosure monitoring functions to the
MPIO and MPLED pins and sets up operating parameters for the specific
enclosure environment. Also included with the firmware are the
bootload.hex file and the safte.hex file. The configuration utility is
a DOS-based program that asks the designer a series of questions about
the enclosure design. The program uses this information to create an
Intel compatible hex file called config.hex. The user concatenates the
config.hex file with the Intel compatible SAF-TE firmware file
(safte.hex) into a file called safcon.hex. This creates the image to
be placed in the TWS flash memory device for downloading to the
LSI53C040. Table 5.1 shows the files associated with the configuration
utility.

5-2 Configuration Data and the Configuration Utility

Table 5.1 Configuration Utility Files

File Name Description

config.exe The main configuration program (the first element of the firmware)
provided by LSI Logic. It displays the questions one at a time,
beginning with general questions and progressing to more detailed
questions about desired MPIO/MPLED pin assignments for the
enclosure environment.

bootload.hex The second element of the firmware provided by LSI Logic. This file
contains the bootloader, which is used only if the designer selects the
download option addressed in the first question of the configuration
utility.

loader.hex The hex output of config.exe. The designer concatenates this file
with the bootload.hex firmware binary file into a file called
boot.hex (or whatever the designer wishes to call this file), which is
the image that is placed on the TWS memory device and downloaded
to the LSI53C040. Refer to Section 5.3, “After Running the
Configuration Utility,” page 5-21 about using DOS commands to
concatenate files.

safte.hex The third element of the firmware provided by LSI Logic. This file is an
Intel hex file which contains the SAF-TE firmware.

config.hex The hex output of config.exe. The designer concatenates this file
with the safte.hex firmware binary file into a file called
safcon.hex, (or whatever the designer wishes to call this file), which
is the image that is placed on the TWS memory device and
downloaded to the LSI53C040. Refer to Section 5.3, “After Running the
Configuration Utility,” page 5-21 about using DOS commands to
concatenate files.

myinput.txt The designer can create this file with a text editor using the answers
from the questions asked in the configuration program. After this file is
first created, the designer can change some of the values submitted to
the configuration program, by editing this file and running it, instead of
manually stepping through all of the questions in config.exe. Just
run config.exe again, redirecting the input to the configuration utility
to a file called myinput.txt,and redirecting the output of the
configuration utility to a file called myinput.log using the DOS
command: config<myinput.txt>myinput.log.

myinput.log When the file myinput.txt is used in the DOS command:
config<myinput.txt>myinput.log, the resulting file
(myinput.log) contains a summary of all the questions answered, as
well as a summary of any errors in the input file. When the program
runs to completion, the myinput.log file also contains a summary of
the data structure sizes and the Enclosure ID field.

Using the Configuration Utility 5-3

To start the configuration program, type config at the DOS prompt in
the directory where the config.exe program resides. Before you start
the program the first time, be aware of the following items:

• The configuration program cannot be stopped and restarted once
you begin. If you exit the program you will have to start over from the
beginning.

• The configuration program does not allow you to scroll back and view
previous answers once they scroll off the screen.

• The configuration program requires at least 10 minutes for a novice
user to enter data, depending on how many devices and options your
enclosure supports.

• Some of the questions require Yes/No responses, others have field
size limits, or other limits or expectations for the type of response you
will give. The program will not allow you to assign an MPIO or an
MPLED pin to more than one function. If you make one of these
errors, the program will reprompt for a different response. In some
cases additional information will display, such as the required format
for pin assignments, either after an incorrect answer or after you
press ENTER. The program will abort after about 20 incorrect
responses to a specific question.

To run the configuration program as quickly as possible, you should have
the following information ready when you start:

• SCSI ID for the LSI53C040 and each device slot in your system.

• Desired SCSI Bus High bits assignments for SCSI High ID 2, SCSI
High ID 1, and SCSI High ID 0.

• Vendor ID, Product ID, Enclosure ID, and Channel Identifier.

• A list of MPIO and MPLED pins mapped to desired features and
devices in the enclosure.

• A list of TWS devices and their respective bus numbers and
addresses.

• Power On Configuration Options in the LSI53C040 Enclosure
Services Processor Technical Manual.

5-4 Configuration Data and the Configuration Utility

The LSI53C040 Enclosure Services Processor Technical Manual
describes many of the MPIO and MPLED pins and other device features
in detail, and may be a useful reference as you run the configuration
program.

5.1.1 Myinput.txt File

The designer can create the myinput.txt file using a simple text editor
while answering the questions in the config.exe program. This file
then contains a plain text summary of the responses entered for the most
recent running of the config.exe program. The myinput.txt file can
then be edited to change individual answers without the user having to
step manually through config.exe all over again.

Since the myinput.txt file is a plain text file, any information can be
commented as long as the line length is not exceeded. This file does not
support line wrapping or carriage returns. If you enter new data, make
sure it is in a format identical to that requested by the configuration
program. The program looks for the proper number of fields (1, 2, or 3,
with fields separated by a space) to answer each question; thus, any
further information is considered to be comments.

For your convenience, an example of this text file follows. It does not
include all the answers to the questions contained within the
Configuration Utility. The ellipsis indicate more entries would be added
based on your system’s configuration requirements.

---begin---
n code load
n parity checking
eight---
sixteen.........
seven__
+
10 SCSI id2
9 SCSI id1
8 SCSI id0
1 SCSI id
0 fast blink value
3 slow blink value
n controllable speaker?
y monitorable speaker?
y controllable door lock?
...
1024 length of download
---end---

Questions in the Configuration Utility 5-5

5.2 Questions in the Configuration Utility

Table 5.2 through Table 5.4 and Table 5.6 through Table 5.10 discuss the
types of questions that may occur when running the configuration utility.
You may see slightly different questions, or you may not see all of these,
depending on the type of system environment you specify in the general
questions section. Italicized text provides additional information regarding
the various questions asked and does not appear in the configuration
utility program.

Table 5.2 General Questions

Question Explanation/Required Input

Welcome to the 53C040 SafTe configuration program!

First, some general questions:

The config.exe program opens with the following two questions.

Do you want to support microcode updates over
the SCSI bus?

Enter y or n.

Do you want to support parity changes on the
SCSI bus?

Enter y or n.

The following information is used to uniquely identify a specific enclosure. This information is reflected
in the response data from an INQUIRY command.

Enter text for Vendor ID to be returned in the SCSI
INQUIRY command (8 characters).

Enter an 8-character ASCII string to identify the
product vendor.

Enter text for Product ID to be returned in the
SCSI INQUIRY command (16 characters).

Enter a 16-character ASCII string to specify the
product ID.

Enter text for Enclosure ID to be returned in the
SCSI INQUIRY command (7 characters).

Enter a 7-character ASCII string to specify a
specific enclosure.

Enter text for Channel ID to be returned in the
SCSI INQUIRY command (1 character).

Enter a 1-character ASCII character to specify the
Channel ID.

The LSI53C040 has three LVD SCSI High ID pins (SHID[2:0] ±). These pins may be connected to any
of the SCSI data signals from data bit 8 through 15. This enables the LSI53C040 SCSI core to respond
to selection as a device with an ID greater than 7. The following questions assign specific SCSI data
signals to each of the SHID pins.

Which bit of the high byte of the SCSI data bus
will the LSI53C040 see as bit SCSI High ID 2?

Enter a number between 8 and 15.

5-6 Configuration Data and the Configuration Utility

Which bit of the high byte of the SCSI data bus
will the LSI53C040 see as bit SCSI High ID 1?

Enter a number between 8 and 15.

Which bit of the high byte of the SCSI data bus
will the LSI53C040 see as bit SCSI High ID 0?

Enter a number between 8 and 15.
If you accidentally enter the same ID value more
than once, the program will return to the
beginning of these questions, so you have the
opportunity to start over rather than being forced
to select only from the remaining choices.

What SCSI ID do you want for the SAF-TE
processor?

Enter a number between 0 and 15.
Based upon your SCSI Data signal assignments
above, you can assign a SCSI ID between 0
and 15 to the LSI53C040.
Note: If the ID selected here is not possible based
on your answers to the previous three questions,
the program starts over at the beginning of the
previous three questions.

Four possible slow blink rates and four possible fast blink rates are available in the LSI53C040. The
following questions assign specific rates for slow and fast blink rates. LEDs are used to indicate
various conditions such as identify slot or device faulty. See the LED blink pattern section for default
blink settings.

Prepare to enter fast and slow blink rates:
Blink rates are proportional to input clock
frequency.
Fast and slow blink rates can be set from 0 to 3.
A blink rate of 2 is twice as fast as a blink rate of
3.
A blink rate of 1 is twice as fast as a blink rate of
2.
The fast blink rates are 4 times as fast as the slow
blink rates.
Fast blink rates of 2 and 3 are the same as slow
blink rates of 0 and 1.
Which of the 4 possible blink rates would you like
for the fast blink rate (0 is the fastest, 3 is the
slowest)?

The blink rates are proportional to the input clock
frequency. See the "System Registers," chapter in
the LSI53C040 Enclosure Services Processor
Technical Manual for example blink rates based
on a 20 MHz or a 40 MHz clock.

Comparative Blink Rates
Fast Blink Slow Blink Blink
Designator Designator Rate

0 – 32 x BR
1 – 16 x BR
2 0 8 x BR
3 1 4 x BR
– 2 2 x BR
– 3 BR

Which of the 4 possible blink rates would you like
for the slow blink rate (0 is the fastest, 3 is the
slowest)?

Table 5.2 General Questions (Cont.)

Question Explanation/Required Input

Questions in the Configuration Utility 5-7

The following information determines how many MPIO/MPLED pins to allocate for the number of
speakers, door locks, fans, power supplies, device slots, and temperature devices in a specific
enclosure, as well as Global Flags.

Is there a controllable speaker? Enter y or n.

Is there a monitorable speaker? This question appears only if you replied no to the
question about a controllable speaker. Enter y or n.

Is there a controllable door lock? Enter y or n.

Is there a monitorable door lock? This question appears only if you replied no to the
question about a controllable door lock. Enter y
or n.

Is there a Global Identify Enclosure LED? Enter y or n. If yes, this will drive an LED to the
identify enclosure signal. (Send Global Flags
command).

Is there a Global Enclosure Status LED? Enter y or n. If yes, this will drive an LED to
indicate an error condition of global failure or
global warning (Send Global Flags command).

Is there a Global Drive Status LED? Enter y or n. If yes, this will drive an LED to
indicate a drive error condition of drive failure or
drive warning (Send Global Flags command).

Is there a Global Array Status LED? Enter y or n. If yes, this will drive an LED to
indicate an array error condition or array failure or
array warning (Send Global Flags command).

Table 5.3 Enclosure Components Questions

Question Explanation

These questions relate to HOW MANY various elements are in the enclosure.

How many fans supplying a single wire input do
you want to support?

Enter the number of fans in the enclosure that
have one MPIO pin assigned for status. This
allows up to two states to be determined for fan
status. Up to six fans can be specified.

How many fans supplying a dual wire input do
you want to support?

Enter the number of fans in the enclosure that
have two MPIO pins assigned for status. This
allows up to four states to be determined for fan
status. Up to six fans can be specified.

Table 5.2 General Questions (Cont.)

Question Explanation/Required Input

5-8 Configuration Data and the Configuration Utility

How many power supplies supplying a single wire
input do you want to support?

Enter the number of power supplies in the
enclosure that have one MPIO pin assigned for
status. This allows up to two states to be
determined for power supply status. Up to six
power supplies can be specified.

How many power supplies supplying a dual wire
input do you want to support?

Enter the number of power supplies in the
enclosure that have two MPIO pins assigned for
status. This allows up to four states to be
determined for power supply status. Up to 6
power supplies can be specified.

How many device slots do you want to support? Enter the number of drive slots that the enclosure
can support. Up to three MPIO pins and as many
as two LEDs will be assigned for each drive slot.
Up to 14 slots can be specified.

How many temperature inputs supplying a single
wire input do you want to support?

Enter the number of temperature sensors that
return a binary signal (under/over preset
threshold) in the enclosure. One MPIO pin will be
assigned for each of these temperature sensors.
Up to 15 temperature inputs can be specified.

How many temperature inputs with 2-wire serial
(TWS) input do you want to support?

Enter the number of temperature sensors in the
enclosure that will be read over the TWS
interface. This information is used to determine
the number of integer temperature fields returned
by the Read Enclosure Status command. Up to
four TWS temperature inputs can be specified.

How many LM78 parts [max 1 per 2-wire serial
(TWS) bus] do you want to support?

Enter 0, 1, or 2.

Table 5.3 Enclosure Components Questions (Cont.)

Question Explanation

Questions in the Configuration Utility 5-9

Table 5.4 Pin Assignment Questions

Question Explanation

More detailed questions are asked based on your previous input.

The following questions assign specific MPIO and MPLED pins according to the questions answered
above. Below are the specific pin assignments for each MPIO and MPLED pin. The MPIO and
MPLED banks are organized as follows:
Pin Type Bank Pins Available
MPIO 0 [7:0]
MPIO 1 [7:0]
MPIO 2 [7:0]
MPIO 3 [3:0]
MPLED 0 [7:0]
MPLED 1 [7:0]
MPLED 2 [7:0]

The format of your answers should be:
IO[space]bank number[space]pin number (for MPIO pins) Example: IO 3 1
LED[space]bank number[space]pin number (for MPLED pins) Example: LED 2 2
The MPLED pins can be used for general IO as well as LED functions if your design does not use all
available MPLED pins. The MPIO pins cannot be used for LED functions, however, because they do
not support blinking.

Enter input (output) pin to be used for door lock: Enter the MPIO pin for the door lock signal.

Enter input (output) pin to be used for speaker: Enter the MPIO pin for the speaker/alarm.

Enter input (output) pin to be used for Global
Identify Enclosure LED:

Enter the MPLED pin for the global enclosure
identification LED.

Enter input (output) pin to be used for Global
Enclosure Status LED:

Enter the MPLED pin for the global enclosure
status LED.

Enter output pin to be used for Global Drive Status
LED:

Enter the MPLED pin for the global drive status
LED.

Enter output pin to be used for Global Array Status
LED:

Enter the MPLED pin for the global array status
LED.

Enter input pin to be used for single input fan # x: Enter the MPIO pin for each single input fan
specified above.
This question repeats for the number of single
input fans specified.

Enter input pin to be used for dual input fan # x
MSB:

Enter the MPIO pin for the MSB for each dual
input fan specified above.
Enter the MPIO pin for the LSB for each dual
input fan specified above.
These two questions repeat for the number of
dual input fans specified.

Enter input pin to be used for dual input fan # x
LSB:

5-10 Configuration Data and the Configuration Utility

Enter input pin to be used for single input power
supply # x:

Enter the MPIO pin for each single input power
supply specified above.
This question repeats for each single input
power supply specified.

Enter input pin to be used for dual input power
supply # x MSB:

Enter the MPIO pin for the MSB for each dual
input power supply specified above.
Enter the MPIO pin for the LSB for each dual
input power supply specified above.
These questions repeat for each dual input
power supply specified.

Enter input pin to be used for dual input power
supply # x LSB:

How many LED outputs do you want to support per
device slot?

Enter 0, 1, or 2 to specify the number of LEDs
to drive for each device slot specified above.

Will there be a Device Present input signal for each
device?

Enter y or n to indicate whether you want to
detect when a device has been inserted or
removed from its slot.
This will assign one MPIO pin to each device
slot supported.

Will there be a Ready Device for Use output signal
for each device?

Enter y or n to indicate whether you want to
control some specific operation for each device.
One example would be to control power to a
device slot.
If yes, one MPIO pin will be assigned to each
device slot supported. The Prepare for
Operation bit (Byte 2 bit 0) in the Perform Slot
Operation Command, will be used to activate
this signal. This signal is the complement of the
Prepare Device for Insertion/Removal output
signal.

Table 5.4 Pin Assignment Questions (Cont.)

Question Explanation

Questions in the Configuration Utility 5-11

Will there be a Prepare Device for
Insertion/Removal output signal for each device?

Enter y or n to indicate whether you want to
control some specific operation for each device.
Typically, only a Ready Device for Use output
signal or Prepare Device for Insertion/Removal
output signal will be chosen, but not both.
If yes, one MPIO pin will be assigned to each
device slot supported. The Prepare for Insertion
bit (Byte 2 bit 1) in the Perform Slot Operation
Command will be used to activate this signal.
This signal is the complement of the Ready
Device for Use output signal.

Do you want to override the LED patterns that
display drive status?

Enter y or n. If you enter n, you accept the
default LED settings shown in Table 5.5 on the
next page. If you enter y, the program will
prompt you with the questions shown in
Table 5.6. The format of your responses to
those questions depends on how you
responded to the previous question, “How many
LED outputs do you want to support per device
slot?”.

Table 5.4 Pin Assignment Questions (Cont.)

Question Explanation

5-12 Configuration Data and the Configuration Utility

Table 5.5 shows the current default LED settings for each bit description
in the Write Device Slot Status Command. The bit descriptions are
shown in increasing priority order. If more than one bit is set by the Write
Device Slot Status Command, the bit with the highest priority will dictate
the LED blink patterns.

Table 5.5 Default LED Settings for Write Device Slot Status Flags

Stat
e Bit Description One-LED Option

Two-LED Option

LED 1 LED 2

0 Default/Nothing to Report Off Off Off

1 Prepare for
insertion/removal

Off On On

2 Prepare for operation On Off Slow

3 Device Faulty Slow On Off

4 Device Rebuilding Slow Off Fast

5 In Failed Array Slow Fast On

6 In Critical Array Slow Slow Off

7 Parity Check operation Slow On Off

8 Predicted Fault Failure Slow Fast Off

9 No drive inserted Off On Fast

10 Hot Spare Off Fast Fast

11 Rebuild Stopped Slow Off On

12 Identify Slot Fast Slow Fast

Questions in the Configuration Utility 5-13

Table 5.6 Selections for Custom LED Settings for Write Device Slot Status Flags

Question Explanation

Answers to the following questions permit the designer to change the LED settings for the Write
Device Slot Status Flags. These questions appear in the configuration utility only if the designer has
answered the previous question “Do you want to override the LED patterns that display drive status?”
with a “yes” response. Table 5.5 shows the default settings for both the one and two-LED options.
In this section, you will need to issue responses for each of the states 0 through 12.

Please specify one of:
0 - for off 1 - for slow blink 2 - for fast blink 3 - for on

State 0 - Default/Nothing to Report:
Off/0 Off/0 -

Enter new settings per the choices above after the “dash”.
The format of your answers should be:
Two-LED option: LED1[space]LED2 Example: 3 3
One-LED option: LED1 Example: 0

State 1 - Ready for
Insertion/Removal:

On/3 On/3 -

Enter new settings after the dash (-), per the choices above.

State 2- Prepare for Operation:
Off/0 Slow/1 -

Enter new settings after the dash (-), per the choices above.

State 3 - Device Faulty:
On/3 Off/0 -

Enter new settings after the dash (-), per the choices above.

State 4 - Device Rebuilding:
Off/0 Fast/2 -

Enter new settings after the dash (-), per the choices above.

State 5 - In Failed Array:
Fast/2 On/3 -

Enter new settings after the dash (-), per the choices above.

State 6 - In Critical Array:
Slow/1 Off/0 -

Enter new settings after the dash (-), per the choices above.

State 7 - Parity Check Operation:
On/3 Off/0 -

Enter new settings after the dash (-), per the choices above.

State 8 - Predicted Fault Failure:
Fast/2 Off/0 -

Enter new settings after the dash (-), per the choices above.

State 9 - No Drive Inserted
(Unconfigured Drive):
On/3 Fast/2 -

Enter new settings after the dash (-), per the choices above.

State 10 - Hot Spare:
Fast/2 Fast/2 -

Enter new settings after the dash (-), per the choices above.

State 11 - Rebuild Stopped:
Off/0 On/3 -

Enter new settings after the dash (-), per the choices above.

State 12 - Identify Slot:
Slow/1 Fast/2 -

Enter new settings after the dash (-), per the choices above.

5-14 Configuration Data and the Configuration Utility

Table 5.7 Device Slot Operation Questions

Question Explanation

What SCSI ID to you want associated
with device slot x?

Enter the SCSI ID you want to associate with each device slot
specified above. This question repeats for each device slot
specified.

Enter output pin to be used for device
slot x (SCSI ID y) LED MSB:

Enter the MPLED pin assignments for each device slot LED
MSB and LSB specified above, using the format described at
the beginning of Table 5.4. This pair of questions repeats for
each device slot specified.
Note: If only one LED was selected for each device slot in the
previous questions, then only one MPLED pin will be
assigned here for each device slot (that is, not an MSB and
an LSB).

Enter output pin to be used for device
slot x (SCSI ID y) LED LSB:

Enter input pin to be used for device
slot x (SCSI ID y) Device Present:

Enter the MPIO pin assignment for device present status for
each device slot specified above, using the format described
at the beginning of Table 5.4.
This question repeats for each device slot specified, provided
that the user has answered “y” to the previous question, “Will
there be a Device Present input signal for each device?”

Enter output pin to be used for device
slot x (SCSI ID y) Ready Device:

Enter the MPIO pin assignment for device ready for each
device slot specified above, using the format described at the
beginning of Table 5.4.
This question repeats for each device slot specified, provided
that the user has answered “y” to the previous question, “Will
there be a Ready Device for Use output signal for each
device?”

Enter output pin to be used for device
slot x (SCSI ID y) Remove/Insert
Device:

Enter the MPIO pin assignment for device remove/insert for
each device slot specified above, using the format described
at the beginning of Table 5.4.
This question repeats for each device slot specified, provided
that the user has answered “y” to the previous question, “Will
there be a Prepare Device for Insertion/Removal output signal
for each device?”

Enter input pin to be used for single
input temp alarm #x:

Enter the MPIO pin assignment for each binary temperature
sensor specified above, using the format described at the
beginning of Table 5.4.
This question repeats for each single input temperature
sensor specified.

Questions in the Configuration Utility 5-15

Table 5.8 Status Signal Questions

Question Explanation

The questions covered in this Table assign specific fan, power supply, door lock, and speaker status
to be returned in response to the Read Enclosure Status command for single and dual inputs.

For each fan, enter one of the following responses for each input pattern:
Choose:
0x00 Fan is operational
0x01 Fan is malfunctioning
0x02 Fan is not installed
0x80 Unknown status, or status not reportable

Enter the Read Enclosure Status
command’s response for a single
input fan with an input bit pattern of 0:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this fan.

Note: These two questions are asked only if the user has
specified in the previous questions that there are single-wire
input fans in this enclosure.

Enter the Read Enclosure Status
command’s response for a single
input fan with an input bit pattern of 1:

Enter the Read Enclosure Status
command’s response for a dual input
fan with an input bit pattern of 00:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this fan.

Note: These four questions are asked only if the user has
specified in the previous questions that there are dual-wire
input fans in this enclosure.

Enter the Read Enclosure status
command’s response for a dual input
fan with an input bit pattern of 01:

Enter the Read Enclosure status
command’s response for a dual input
fan with an input bit pattern of 10:

Enter the Read Enclosure status
command’s response for a dual input
fan with an input bit pattern of 11:

For each power supply, enter one of the following responses for each input pattern:
Choose:
0x00 Power supply is operational and on
0x01 Power supply is operational and off
0x10 Power supply is malfunctioning and commanded on
0x11 power supply is malfunctioning and commanded off
0x20 Power supply is not present
0x21 Power supply is present
0x80 Unknown status, or status not reportable

5-16 Configuration Data and the Configuration Utility

Enter the Read Enclosure status
command’s response for a single
input power supply with an input bit
pattern
of 0:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this power supply.

Note: These two questions are asked only if the user has
specified in the previous questions that there are single-wire
input power supplies in this enclosure.

Enter the Read Enclosure status
command’s response for a single
input power supply with an input bit
pattern
of 1:

Enter the Read Enclosure status
command’s response for a dual input
power supply with an input bit pattern
of 0x00:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this power supply.

Note: These two questions are asked only if the user has
specified in the previous questions that there are dual-wire
input power supplies in this enclosure.Enter the Read Enclosure status

command’s response for a dual input
power supply with an input bit pattern
of 0x01:

Enter the Read Enclosure status
command’s response for a dual input
power supply with an input bit pattern
of 0x10:

Enter the Read Enclosure status
command’s response for a dual input
power supply with an input bit pattern
of 0x11:

For door lock, enter one of the following responses for each input pattern:
Choose:
0x00 Door is currently locked
0x01 Door is currently unlocked, or door lock not installed
0x80 Unknown status, or status not reportable

Enter the Read Enclosure status
command’s response for a single
input door lock with an input bit
pattern of 0:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this door lock.

Note: These two questions are asked only if the user has
specified in the previous questions that there are single-wire
input door locks in this enclosure.Enter the Read Enclosure status

command’s response for a single
input door lock with an input bit
pattern of 1:

Table 5.8 Status Signal Questions (Cont.)

Question Explanation

Questions in the Configuration Utility 5-17

For speaker, enter one of the following responses for each input pattern:
Choose:
0x00 Speaker is currently off, or no speaker installed
0x01 Speaker is currently on

Enter the Read Enclosure status
command’s response for a single
input speaker with an input bit pattern
of 0:

The input bit pattern is read from the LSI53C040 MPIO pin(s)
assigned to this speaker.

Note: These two questions are asked only if the user has
specified in the previous questions that there are single-wire
input speakers in this enclosure.Enter the Read Enclosure status

command’s response for a single
input speaker with an input bit pattern
of 1:

Table 5.9 TWS Bus Operation Questions

Question Explanation

The following questions are for TWS bus operation.

For each 2-wire serial bus, specify the bus speeds desired for operation:
0 - 2-wire serial 78 KHz, system 20 MHz
1 - 2-wire serial 312 KHz, system 20 MHz
2 - 2-wire serial 78 KHz, system 40 MHz
3 - 2-wire serial 312 KHz, system 40 MHz

Please select the speed for the 2-wire
serial bus number 0 relative to the
system clock you are using:

Enter 0, 1, 2, or 3.

Please select the speed for the 2-wire
serial bus number 1 relative to the
system clock you are using:

Enter 0, 1, 2, or 3.

Do you want the temperature reported
in the Read Enclosure Status
command’s response reported in:
0 - Fahrenheit, or
1 - Celsius?

Enter 0 or 1.

How many 2-second intervals would
you like between 2-wire serial input
passes?

Specify the desired sampling period.

Table 5.8 Status Signal Questions (Cont.)

Question Explanation

5-18 Configuration Data and the Configuration Utility

Please select the chip type for 2-wire
serial (TWS) temperature sensor
number x:

0 - National LM75
1 - Dallas 1621
2 - National LM78

These questions repeat for each 2-wire serial temperature
sensor specified.

Which 2-wire serial (TWS) bus (0 or 1)
will this chip be on?

At what address (0 to 7) will this chip
be?

The following questions refer to the LM78 on TWS bus number x.
These questions repeat for each serial bus specified.

What value is to be used for the first fan
divisor?

Enter 0, 1, 2, or 3. For more details regarding the operation
of the LM78, please refer to the LM78 specification.

What value is to be used for the second
fan divisor?

Enter 0, 1, 2, or 3. For more details regarding the operation
of the LM78, please refer to the LM78 specification.

Will there be a fan connected to fan
monitor number m?

Enter y or n. This question and the next one repeat for each
fan connected to a monitor (m = 0, 1, or 2).

What is the highest value that indicates
that the fan is functioning correctly?

Enter a number between 1 and 254.

Will there be a power supply connected
to voltage monitor number n?

Enter y or n. This question and the next two repeat for each
power supply connected to a voltage monitor (n = 0, 1, ...,
5, or 6).

What is the lowest value that indicates
that the power supply is functioning
correctly?

Enter a number between 1 and 254.

What is the highest value that indicates
that the power supply is functioning
correctly?

Enter a number between 1 and 254.

Table 5.9 TWS Bus Operation Questions (Cont.)

Question Explanation

Questions in the Configuration Utility 5-19

Table 5.10 Questions for Firmware Bootloader

Questions Explanation

The following questions are related to the hardware-based power-on serial ROM download, which will
load and run the firmware bootloader.

All the remaining questions are asked only if the user replied "yes" to support microcode updates
over the SCSI bus.

On which 2-wire serial (TWS) bus
(0 or 1) will this download happen?

A pull-up resistor on LSI53C040, pin A11 changes the serial
ROM download from TWS port 0 to port 1. Note that the
answer to this question must be consistent with the use of a
pull-up resistor on pin A11.

What chip address (0 to 7) will the
download be from?

LSI53C040 pins A10, A9, and A8 define the address from
which the LSI53C040 will attempt the initial configuration
download. Note that the answer to this question must be
consistent with the use of pull-up resistors on pin A10, A9,
and A8. See Chapter 2 of the LSI53C040 Enclosure Services
Processor Technical Manual for further information.

Do you want to use an LED to
indicate bootload failures?

Enter y or n.

Select the LED bank (0–2). The two questions are asked only if the user has chosen to
use an LED to indicate bootload failures, by answering “y” to
the previous question.Select the LED (0–7).

5-20 Configuration Data and the Configuration Utility

The following questions are related to the first SAF-TE firmware image that will be loaded, and run
by the bootloader.

On which 2-wire serial (TWS) bus (0
or 1) will this download happen?

A pull-up resistor on LSI53C040, pin A11 changes the serial
ROM download from TWS port 0 to port 1. Note that the
answer to this question must be consistent with the use of a
pull-up resistor on pin A11.

What chip address (0 to 7) will the
download be from?

LSI53C040 pins A10, A9, and A8 define the address from
which the LSI53C040 will attempt the initial configuration
download. Note that the answer to this question must be
consistent with the use of a pull-up resistor on pin A10, A9,
and A8. See pages 2-20 to 2-22 of the LSI53C040 Enclosure
Services Processor Technical Manual for further information.

From which address will the download
start?

Please answer the question with a number from 0 to 32767
(The recommended default value is 0).

What length will the download be? Please answer the question with a number from 1024 to
12192 (This value is equal to or greater than the number of
bytes of the firmware program that will be downloaded).

The following questions are related to the second SAF-TE firmware image that will be loaded, and
run by the bootloader.

On which 2-wire serial (TWS) bus (0
or 1) will this download happen?

A pull-up resistor on LSI53C040, pin A11 changes the serial
ROM download from TWS port 0 to port 1. Note that the
answer to this question must be consistent with the use of a
pull-up resistor on pin A11.

From which chip address (0 to 7) will
the download be?

LSI53C040 pins A10, A9, and A8 define the address from
which the LSI53C040 will attempt the initial configuration
download. Note that the answer to this question must be
consistent with the use of a pull-up resistor on pin A10, A9,
and A8. See pages 2-20 to 2-22 of the LSI53C040 Enclosure
Services Processor Technical Manual for further information.

From which address will the download
start?

Please answer the question with a number from 0 to 32767
(The recommended default value is 0).

What length will the download be? Please answer the question with a number from 1024 to
12192 (This value is equal to or greater than the number of
bytes of the firmware program that will be downloaded).

Table 5.10 Questions for Firmware Bootloader (Cont.)

Questions Explanation

After Running the Configuration Utility 5-21

5.3 After Running the Configuration Utility

After all questions are answered, the utility creates the config.hex file,
the loader.hex file, and provides the data structure sizes, as shown in
the example below.

94.= 0x05E bytes of 256.= 0x100 state machine data
memory used

50.= 0x032 words of 300.= 0x12C state machine program
memory used

1194.= 0x4AA bytes used by the config_data structure

The Enclosure ID field of the SCSI Inquiry command is stored at offset

61.= 0x03D from the start of the config_data structure
which is at address

64.= 0x04D which places the Enclosure ID field at
address

125.= 0x07D

The program then returns to the DOS prompt. At this point, the
config.hex file is ready to concatenate with the safte.hex file, and the
loader.hex file is ready to concatenate with the bootload.hex file,
using the following DOS commands:

copy config.hex + safte.hex safcon.hex

and

copy loader.hex + bootload.hex boot.hex

or you can refer to the myinput.txt file to see a summary of your
answers.

5-22 Configuration Data and the Configuration Utility

LSI53C040 Enclosure Services Processor Programming Guide A-1

Appendix A
LSI53C040 Board Utilities

A.1 Data Transfers

The LSI53C040 board supports serial, ISA, SCSI and 8067 data
transfers. This section discusses these various data transfers.

A.1.1 Serial Port

The LSI53C040 board contains a serial port that is accessible if the
MPIO Bank 3 Bits 0 and 1 are not used for other purposes. The
SAF-TE firmware uses the 80C32 Timer 2 as the transmit and receive
clock. It is configured for autoreload mode. The BAUD rate for the serial
port is

BAUD = (Oscillator Frequency)/(# Clicks between Timer 2 rollovers)/32

The on-board oscillator operates at 40 MHz. The settings for the capture
registers RCAP2H and RCAP2L, as well as the resulting error are shown
in Table A.1.

Any serial port management system can be used on the monitoring
station. However, note that the data transfer is setup to transmit 8-bits
plus a stop bit and the hardware setting is for XON/XOFF.

Table A.1 Capture Register Settings

BAUD Rate RCAPH2/RCAP2L # Clicks Error (%)

19200 (default) 0xFFBF 65 0.16

9600 0xFF7E 130 0.16

4800 0xFEFC 260 0.16

A-2 LSI53C040 Board Utilities

Information to be transmitted over the serial port is sent using the
standard printf statement. To enable existing print statements, compile
the SAF-TE source code with VERBOSE and/or DEBUG true. Additional
statements can be added as necessary.

A.1.2 ISA

Any of the serial EEPROMs on the LSI53C040 board can be
programmed with the ISA bus using the utility cl_isa (formerly named
cl2). Typing cl_isa on the command line will result in the syntax for the
utility. As designed, command line inputs for this utility are shown in
Table A.2.

Note: If the ISA bus or a programmer is used to download the
firmware, the firmware is not limited to 12192 (0x2FA0)
bytes.

Table A.2 Command Line Inputs

Option Description

-HAddress Address is Hardware address of the boards ISA bus. Valid
values are 0xC000, 0xD000, 0xE000 or 0xF000. Default is
0xD000.

-bBus Bus is the Two Wire Serial bus number of the serial EEPROM.
Bus should be 0 or 1. Default value is 0.

-cChip Chip is the TWS chip address. The utility supports addresses
0, 6, and E(e). Default value is 0.

-h Suppresses adding the header and checksum used by the
ISA hardware during download.

-a Write address (in HEX) in serial EEPROM. Default is 0x0.

-s Slow operation (not implemented).

-v Suppresses writing to the TWS EEPROM. Performs a read
from specified device and compares to loaded image.

filename
(required)

Source filename. Must be in the Intel Hex format.

Data Transfers A-3

All of the serial EEPROMS are programmable through the ISA interface,
however the firmware that will execute is set by the jumpers JP8 (A8),
JP5 (A9) and JP6 (A10). Refer to the Section A.1.5, “LSI53C040 Board
Layout/Jumper Settings,” page A-6 for more detailed information.

The ISA bus can be reset by running the program reset.exe.

A.1.3 SCSI

The LSI53C040 board can terminate or be inserted into the middle of a
single-ended SCSI bus. As the board is self-terminating, in the former
case, a terminator is not required on the unused SCSI port. To use the
code load feature of the SAF-TE firmware:

Step 1. The firmware must be compiled with CODE_LOAD_ENABLED
set to true.

Step 2. Execute config.exe.

Step 3. Create boot.hex (loader.hex + bootload.hex) and
firmware.hex (config.hex + safte.hex).

Note, During the execution of config.exe, if a code download
is allowed, you are required to enter the bus and chip
numbers for the boot code, primary firmware image and
secondary firmware image. The bus and chip numbers for
the boot code MUST be entered to match the jumper
settings on the board. The boot code contains information
on the location of the primary (active) and secondary
(inactive) images.

Step 4. Download the primary firmware image to the board using
cl_isa. Select the command line arguments to suppress the
creation of the four-byte header. As an example, to download
firmware to the serial EEPROM on Bus 1 with Chip ID 0xE
enter:

A:\>cl_isa –b1 –cE –h firmware.hex

Step 5. Download the boot image using cl_isa (include the header).

Step 6. At this point, on a reboot, the boot code will be executed
automatically by the hardware. It will copy the active firmware
image to program memory and begin execution of the firmware
itself.

A-4 LSI53C040 Board Utilities

Step 7. To update the firmware using the SCSI bus, execute cl_scsi.
This program will automatically write the new firmware to the
location specified for the inactive firmware image and modify
the boot image to update the active/inactive image flags.
(cl_scsi requires that an ASPI manager be installed).

Step 8. On a reboot, the image downloaded in Step 7 will be loaded
into program memory and will be executed.

Note: Once Steps 1–6 have been performed, all future updates of
the firmware through the SCSI bus can be accomplished
with Step 7.

A.1.3.1 Example 1

Upon execution of config.exe, these lines specify that the default
EEPROM is on bus 1 at address E (7 << 1). The active (first) firmware
is to be stored on bus 1, chip address 6 (3 << 1), with beginning address

Table A.3 Configuration Using Three Serial EEPROMS

The tail of the file myInput.txt contains this data:

1 tws serial rom download bus

7 tws serial rom download chip

y download error led

0 led bank

0 led bit

1 bus 0

3 chip 0

0 start 0

12192 length 0

0 bus 1

7 chip 1

0 start 1

12192 length 1

Data Transfers A-5

of 0 and maximum length of 12192 bytes. The inactive (second) image
is to be stored on bus 0, chip address E, with beginning address of 0 and
maximum length of 12192 bytes.

Create boot.hex and firmware.hex (Step 3 above).

Download the active image (suppress the header):

c:\> cl_isa –b1 –c6 –h firmware.hex

Download the boot image:

c\:>cl_isa –b1 –cE boot.hex

Upon a reset (will occur automatically), firmware.hex will be loaded
into program memory and executed. If cl_scsi is executed, the new
firmware will be stored on bus 0 at chip address E, and upon a reset it
will be downloaded into program memory and executed.

A.1.3.2 Example 2

Table A.4 Configuration Using Two Serial EEPROMS

The tail of the file myInput.txt contains this data:

1 tws serial rom download bus

7 tws serial rom download chip

y download error led

0 led bank

0 led bit

1 bus 0

7 chip 0

4186 start 0

12192 length 0

0 bus 1

7 chip 1

A-6 LSI53C040 Board Utilities

In config.exe, enable the code load option and specify that the default
EEPROM is at address E on bus 1. The active (first) firmware is to be
stored on bus 1, chip address E, with beginning address of 4186
(0x105A) and maximum length of 12192 bytes. The inactive (second)
image is to be stored on bus 0, chip address E, with beginning address
of 0 and maximum length of 12192 bytes. (The boot code limits the
firmware to a maximum size of 0x2FA0 or 12912 bytes.)

Create boot.hex and firmware.hex (Step 3 above).

Download the active image (suppress the header and specify the hex
address):

c:\> cl_isa –b1 –cE –h –a105A firmware.hex

Download the boot image:

c:\>cl_isa –b1 –cE boot.hex

With this configuration, the boot code is located in addresses 0x0000
through 0x1059 and the firmware is at addresses 0x105A through
0x4000. (The boot code limits the firmware to have a maximum size of
0x2FA0 or 12912 bytes). Upon a reset, the firmware is downloaded into
program memory and executed. If cl_scsi is executed, the new firmware
will be placed in the EEPROM on bus 1 at address 6.

A.1.4 8067 Utilities

Currently, there are no 8067 utilities available.

A.1.5 LSI53C040 Board Layout/Jumper Settings

The LSI53C040 board contains two banks of switches or jumpers that
specify the behavior of the board hardware.

0 start 1

12192 length 1

Table A.4 Configuration Using Two Serial EEPROMS (Cont.)

The tail of the file myInput.txt contains this data:

Data Transfers A-7

The board-reset push button is located in the upper left-hand corner of
the board. Immediately to the right of the reset button, is the switch SW2.
This switch controls the hardware address of the ISA bus. Table A.5
specifies the state of the switches relative to the address:

The LSI53C040 board contains 4 serial EEPROMS, two on each bus,
that can be used for firmware. The jumpers located in the bottom center
of the board specify the bus number and the chip address of the serial
EEPROM whose code will be executed upon a reset. For all jumpers, the
state is 1 if the top two pins are connected and 0 if the bottom two pins
are connected.

Note 1: The Chip address is (JP8 JP9 JP6) <<1, so a setting of 111
becomes 0b1110 = 0x0E.

Note 2: The default settings for the board have serial EEPROMS on
bus 1 and bus 0 at addresses 6 and E.

Table A.5 Switch Controls and Address

Switch 1 Switch 2 Address

On On 0xF000

Off On 0xE000

On Off 0xD000

Off Off 0xC000

Table A.6 Jumpers and Chip Address

JP8 JP5 JP6 Chip Address

1 1 1 E

0 1 1 6

A-8 LSI53C040 Board Utilities

The branch address for the default serial EEPROM is selected by the
settings on jumpers nine and three. Table A.8 specifies the relationship
between the jumpers and the branch address.

Table A.7 Jumper and Bus

JP7 Bus

1 1

0 0

Table A.8 Jumpers and Branch Address

JP9 JP3 Branch Address

1 1 0x8000

1 0 0x4000

0 1 0x0033

0 0 0x0

Table A.9 Jumper and Code Load

JP4 Code Load

1 Enabled

0 Disabled

LSI53C040 Enclosure Services Processor Programming Guide IX-1

Index

Symbols

#Define parameter
dma_data_in_enabled 3-41

at
compiler keyword 2-5

Numerics

8032 architecture features 2-2 to 2-4
8032 microcontroller 2-7 to 2-12
8032 registers 2-15
8051 tools 2-13
80C32 microcontroller core 1-2

A

address decode block 2-3
archimedes compiler features 2-4 to 2-7
archimedes tools 2-12

B

background module
main program 3-22

background_code_load
describing function 3-23

background_code_load()
high-level subroutine 3-30

bdata
compiler keyword 2-5

bit
array failure and warning 4-24
audible alarm control 4-23
drive failure and warning 4-24
enclosure lock 4-24
global failure and warning indication 4-23
identify enclosure 4-25

boot module 3-2
bootload.c source file

lines of code 2-14
summary calling tree 2-23
switches 3-3

bootload.hex
generic boot component 3-2

C

cl_addr
global variable 3-33

cl_byte_count
global variable 3-33

cl_status
global variable 3-33

code
compiler keyword 2-6

code load
target operations 3-33

command
make 3-4
nmake 3-4

command line
inputs A-2

command_and_data_phases() flow diagram 3-44
compiler keywords 2-5 to 2-6
config data structure

main elements 3-5 to 3-12
config.c source file

lines of code 2-14
summary calling tree 2-21

config.hex file 5-21
configuration

dual input fans 2-29
optional drive slot power 2-28
using three serial EEPROMS A-4
using two serial EEPROMS A-5

configuration module 3-3 to 3-18
configuration utility

questions 5-5
configuration utility files 5-2
control directive

AREGS 2-5
NOAREGS 2-5
REGISTERBANK 2-5
SMALL 2-5

D

data
compiler keyword 2-5

data memory
config data structure 3-10

data structure
config 2-7, 3-5
loader_options 3-4

data transfers
supported by LSI53C040 A-1
TWS 3-30

debugging 2-12
development environment

makeall.bat file 2-13

IX-2 Index

development environment (Cont.)
makeboot.bat file 2-12
setting up 2-12

development tools 2-13
device slot operation

questions 5-14
DMA

completing the SCSI work 2-8
do_debug_r_mem

read buffer subroutine 3-48
do_read_xxxx.xxxx

read buffer subroutines 3-48
do_send_global_flags

write buffer subroutine 3-48
DOS commands 5-21

E

EEPROM 3-2
enclosure configuration

config data structure 3-7
enclosure configuration monitoring 1-4
enclosure services processor 1-1
external data memory map 2-3
external interrupt 0/1

interrupt service routines 3-41

F

files
source code 2-14

firmware bootloader
questions 5-19

firmware register names 2-18 to 2-20
firmware update 3-33
firmware_buffer 3-37
flow diagram

command_and_data_phases() 3-44
ir_external1() 3-43

function name
fill_program 3-12
ir_external1() 3-42
ir_external10() 3-41
ir_serial() 3-40
ir_timer0() 3-40
ir_timer1() 3-40
ir_timer2() 3-40

G

gather_LM78_input
high-level subroutine 3-30

gather_TWS_input
describing function 3-24

gather_TWS_input()
high-level subroutine 3-30

general information
config data structure 3-6

generic pointers 2-6
global variables 3-33

I

idata
compiler keyword 2-6

initiator operations
during a cold load 3-35

inquiry command 4-1
inquiry response information

config data structure 3-7
instructions per device

config data structure 3-13
interface peripheral support

two-wire serial 1-2
internal data memory 2-2
internal RAM layout 2-3
internal watchdog timer 3-40
interrupt

compiler keyword 2-6
interrupt destination register 2-12
interrupt levels

low and high 2-8
interrupt mask register 2-12
interrupt service routines 3-40

general 3-46
SCSI commands 3-47
SCSI read 3-48
SCSI write 3-48

interrupt status register 2-12
ir_external1() flow diagram 3-43
ISA bus

using cl_isa command A-2
ISR flow diagrams 3-41 to 3-45

J

jumpers A-7 to A-8

L

LED settings
custom 5-13
write device slot status 5-12

lines of code
all files for source code 2-14

LM78 configuration
for bus #0 and bus #1 3-8 to 3-9

low-level subroutines 3-32
LSI53C040 board

containing a serial port A-1
containing four serial EEPROMS A-7
layout/jumper settings A-6
self-terminating A-3
supporting data transfers A-1

LSI53C040 firmware
address decode block 2-3
DMA engine 2-8
features 1-2 to 1-4
reconnection/reselection 2-8
registers 3-39
software state machine 2-7
using SAF-TE 1-1

LSI53C040 interrupts 2-12

M

main module
high-level flow diagram 3-22

main program 3-22 to 3-24
memory area

external data memory map 2-3

Index IX-3

memory area (Cont.)
internal data memory 2-2
program memory 2-2

memory-specific pointers 2-6
microcontroller

8032 and 8051 2-1
MPIO/MPLED mapping 1-2
multipurpose IO (MPIO)

programmable 1-1
myinput.log

describing 5-2
myinput.txt file

creating 5-4
describing 5-2

O

on-board oscillator A-1

P

pdata
compiler keyword 2-6

perform slot operation command 4-20
pin assignment

questions 5-9
pointers

generic 2-6
memory-specific 2-6

polling routines
for TWS 2-9

printf() calls
using 2-12

program memory 2-2
config data structure 3-11 to 3-13

program tag
opc_device_to_state 3-28
opc_done 3-29
opc_read_mem_bit 3-25
opc_read_mem_indexed 3-26
opc_read_reg_bit 3-25
opc_write_led_bits 3-28
opc_write_led_reg_bit 3-27
opc_write_mem_bit 3-26
opc_write_mem_byte 3-27
opc_write_reg_bit 3-26
program_memory_size 3-12

programmable enclosure configuration monitoring 1-4
pseudo-code

for firmware upload 3-37
pull-up resistors 3-2

Q

questions and comments
about source code issues 3-49

R

read buffer command 4-3
read device slot status command 4-14
read enclosure configuration command 4-7
read enclosure status command 4-9
read global flags command 4-16
received byte

rcv_byte 3-41

reconnection/reselection
LSI53C040 firmware 2-8

register and device state maps
config data structure 3-10

register naming translations 2-14
register settings

capturing A-1
registers

8032 2-15
banks 2-2
interrupt 2-12
LSI53C040 (8-bit) 2-16
miscellaneous 2-17
special function 2-4, 2-15
system 2-18
two_wire serial (TWS) 2-17

request sense
command 4-4
issuing after the write buffer 3-36

reset_scsi_hw()
describing function 3-23

S

SAF-TE commands
unsupported 4-25

SAF-TE interface
specification R041497 1-3
supporting read buffer commands 1-3
supporting write buffer commands 1-3

SAF-TE mappings 3-31
SAF-TE module 3-19 to 3-21
SAF-TE read buffer commands

read device slot status 4-14
read enclosure configuration 4-7
read enclosure status 4-9
read global flags 4-16

SAF-TE source code
boot module 3-2
calling trees 2-20 to 2-24
compiling safte.c program 3-19
configuration module 3-3 to 3-18
files and lines of code 2-14
SAF-TE module 3-19 to 3-38
safte.c 3-1 to 3-49

SAF-TE write buffer commands
perform slot operation 4-20
send global flags 4-22
write device slot status 4-18

sbit
compiler keyword 2-5

SCSI code 2-8
SCSI commands

inquiry 4-1
read buffer 4-3
request sense 4-4
send diagnostic 4-4
subroutines 3-47
test unit ready 4-5
write buffer 4-5
write SEP device 4-5

SCSI Core/SFF-8067 registers 2-16
SCSI interface 2-8
SCSI interrupt

level code 2-10
low-level interrupt 2-8

IX-4 Index

SCSI read buffer subroutines 3-48
SCSI write buffer subroutines 3-48
send diagnostic command 4-4
send global flags command 4-22
serial EEPROMS A-3
serial port

configuration for 8032 2-12
interrupt service routine 3-40

SFR
compiler keyword 2-6
special function registers 2-15

software flow control 2-12
software state machine 2-7
status signal

questions 5-15
subroutine

background_code_load 3-30
command_and_data_phases 3-42
for SCSI commands 3-47
gather_LM78_input 3-30
gather_TWS_input() 3-30
SCSI read buffer 3-48
SCSI write buffer 3-48
tws_init 3-32
tws_memory_write 3-32
tws_poll_bb() 3-32
tws_poll_Irb() 3-32
tws_poll_pin() 3-32
tws_read 3-32
tws_setup(bus) 3-32
tws_write 3-32

summary calling tree
bootload.c 2-23
config.c 2-21
safte.c 2-24

switches
controls and address A-7

system configuration
example 2-25

T

test unit ready command 4-5
timer 0, timer 1, timer 2

interrupt service routines 3-40
timer setup information

config data structure 3-7
tools

8051 2-13
development 2-13

two-wire serial (TWS) bus 2-9
two-wire serial (TWS) registers 2-17
two-wire serial bus

questions 5-17
TWS bus configuration

config data structure 3-10
TWS high-level subroutines 3-30
TWS low-level subroutines 3-31, 3-32
TWS temperature sensor

config data structure 3-8
tws_car_ptr

SAF-TE mappings 3-31
tws_data_ptr

SAF-TE mappings 3-31

U

unsupported SAF-TE commands 4-25
using

compiler keyword 2-6
function attribute 2-5

V

void function
timer 1, timer 2, and serial port 3-40

W

write buffer command 4-5
write device slot status command 4-18
write SEP device command 4-5

X

xdata
compiler keyword 2-6

XON/XOFF
software flow control 2-12

LSI53C040 Enclosure Services Processor Programming Guide

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Customer Feedback

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: LSI53C040 Enclosure
Services Processor Programming Guide. Place a check mark in the
appropriate blank for each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____

Technical content ____ ____ ____ ____ ____
Usefulness of examples and

illustrations
____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

U.S. Distributors
by State

A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,

Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com

Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953

Alaska
A. E. Tel: 800.332.8638

Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515

Arkansas
W. E. Tel: 972.235.9953

California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101

Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703

Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
A. E. Tel: 800.526.4812

Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110

Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000

Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812

Hawaii
A. E. Tel: 800.851.2282

Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953

Illinois
North/South
A. E. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700

Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500

Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033

Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408

Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253

Tel: 800.231.5775

Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131

Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305

Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363

Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999

Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119

Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182

Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953

Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953

Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

New Jersey
North/South
A. E. Tel: 201.515.1641

Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010

New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119

U.S. Distributors
by State
(Continued)

New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927

North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953

North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333

Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664

Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996

Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953

South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502

South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200

Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970

Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045

Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953

West Virginia
A. E. Tel: 800.638.5988

Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338

Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953

Direct Sales
Representatives by State
(Components and Boards)

E. A. Earle Associates
E. L. Electrodyne - UT
GRP Group 2000
I. S. Infinity Sales, Inc.
ION ION Associates, Inc.
R. A. Rathsburg Associ-

ates, Inc.
SGY Synergy Associates,

Inc.

Arizona
Tempe
E. A. Tel: 480.921.3305

California
Calabasas
I. S. Tel: 818.880.6480
Irvine
I. S. Tel: 714.833.0300
San Diego
E. A. Tel: 619.278.5441

Illinois
Elmhurst
R. A. Tel: 630.516.8400

Indiana
Cicero
R. A. Tel: 317.984.8608
Ligonier
R. A. Tel: 219.894.3184
Plainfield
R. A. Tel: 317.838.0360

Massachusetts
Burlington
SGY Tel: 781.238.0870

Michigan
Byron Center
R. A. Tel: 616.554.1460
Good Rich
R. A. Tel: 810.636.6060
Novi
R. A. Tel: 810.615.4000

North Carolina
Cary
GRP Tel: 919.481.1530

Ohio
Columbus
R. A. Tel: 614.457.2242
Dayton
R. A. Tel: 513.291.4001
Independence
R. A. Tel: 216.447.8825

Pennsylvania
Somerset
R. A. Tel: 814.445.6976

Texas
Austin
ION Tel: 512.794.9006
Arlington
ION Tel: 817.695.8000
Houston
ION Tel: 281.376.2000

Utah
Salt Lake City
E. L. Tel: 801.264.8050

Wisconsin
Muskego
R. A. Tel: 414.679.8250
Saukville
R. A. Tel: 414.268.1152

Sales Offices and Design
Resource Centers

LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612

♦ Tel: 949.809.4600
Fax: 949.809.4444

Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700

San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548

Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035

♦ Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695

Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171

Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301

♦ Tel: 303.447.3800
Fax: 303.541.0641

Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020

Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549

Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237

Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147

Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235

Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040

Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham
200 West Street
Waltham, MA 02451

♦ Tel: 781.890.0180
Fax: 781.890.6158

Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801

Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437

♦ Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643

Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531

New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010

North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171

Plano
500 North Central Expressway
Suite 440
Plano, TX 75074

♦ Tel: 972.244.5000
Fax: 972.244.5001

Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818

Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1

♦ Tel: 613.592.1263
Fax: 613.592.3253

INTERNATIONAL

France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris

♦ Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich

♦ Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart

♦ Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Italy
Milan
LSI Logic S.P.A.
Centro Direzionale Colleoni Palazzo
Orione Ingresso 1
20041 Agrate Brianza, Milano

♦ Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075

♦ Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014

♦ Tel: 81.6.947.5281
Fax: 81.6.947.5287

Sales Offices and Design
Resource Centers
(Continued)

Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista

♦ Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB

♦ Tel: 44.1344.426544
Fax: 44.1344.481039

♦ Sales Offices with
Design Resource Centers

International Distributors

Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089

♦ Tel: 612.9953.9844
Fax: 612.9953.9683

Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014

China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521

France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340

Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840

Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75

Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341

Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386

India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078

♦ Tel: 91.80.664.5530
Fax: 91.80.664.9748

Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666

Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984

Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200

Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669

Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101

Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065

Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141

The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255

Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233

Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391

Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756

Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123

United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730

Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422

Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555

♦ Sales Offices with
Design Resource Centers

	LSI53C040 Enclosure Services Processor
	Chapter�1 Using the Programming Guide
	1.1 Introduction
	1.2 General Description
	1.3 Features
	1.3.1 MPIO/MPLED Mapping
	1.3.2 TWS Interface Peripheral Support
	1.3.3 SAF-TE Interface
	1.3.4 Programmable Enclosure Configuration Monitoring

	Chapter�2 General Design Considerations
	2.1 8051/8032 Background
	2.1.1 8032 Architecture Features
	Figure�2.1 Internal RAM
	Figure�2.2 LSI53C040 Memory Map

	2.1.2 Archimedes Compiler Features

	2.2 The LSI53C040 Firmware
	2.3 SCSI and DMA
	2.4 8032-Based Timer
	2.5 TWS Bus
	2.6 Power-On/Start-up
	2.7 Normal Processing
	2.8 Interrupts
	2.8.1 8032 Processor Interrupts
	2.8.2 LSI53C040 Interrupts

	2.9 Debugging
	2.10 Setting Up A Development Environment
	2.10.1 Development Tools
	2.10.2 Source Code Composition
	Table 2.1 Source Code Files

	2.10.3 Register Naming Translations
	Table 2.2 Special Function Register Names
	Table 2.3 SCSI Core/SFF-8067 Registers
	Table 2.4 TWS Registers
	Table 2.5 Miscellaneous Registers�
	Table 2.6 System Registers�

	2.10.4 Calling Trees

	2.11 Configuration Examples
	2.11.1 Example 1
	Figure�2.3 System Configuration
	Table 2.7 MPLED/MPIO Pin Usage for Example 1 �

	2.11.2 Example 2
	Figure�2.4 Optional Drive Slot Power Configuration
	Table 2.8 MPLED/MPIO Pin Usage for Example 2

	2.11.3 Example 3
	Figure�2.5 Dual Fans and Power Supplies Configuration
	Table 2.9 MPLED/MPIO Pin Usage for Example 3�

	Chapter�3 SAF-TE Source Code
	3.1 SAF-TE Source Code Overview
	3.2 Boot Module
	Table 3.1 Source file - bootload.c - Switches

	3.3 Configuration Module
	3.3.1 Loader_Options Data Structure
	3.3.2 Config Data Structure
	Table 3.2 Instructions Per Device
	Table 3.3 Mapping of devices to MPIO and MPLED Banks�

	3.4 SAF-TE Module
	3.4.1 Compilation Instructions for safte.c
	Table 3.4 Switch Name and Action�

	3.4.2 Main Program
	Figure�3.1 Main Program
	Table 3.5 Accumulator Settings
	Table 3.6 TWS High-Level Subroutines
	Table 3.7 SAF-TE Mappings
	Table 3.8 TWS Low-level Subroutines
	Table 3.9 Subroutine background_code_lode
	Table 3.10 Subroutine do_code_load
	Table 3.11 background_code_load operation
	Table 3.12 Upper Byte Choices

	3.4.3 Interrupts
	Table 3.13 Interrupts Processed by 80C32 Microcontroller
	Figure�3.2 Flow Diagram of ir_external1()
	Figure�3.3 Flow Diagram of Command_and_Data_Phases()
	Table 3.14 Interrupt Service Routines - General
	Table 3.15 Interrupt Service Routines - SCSI Commands
	Table 3.16 Interrupt Service Routines - SCSI Read
	Table 3.17 Interrupt Service Routines - SCSI Write�

	3.4.4 Error Reporting

	3.5 Frequently Asked Questions (FAQ)
	Table 3.18 Source Code Issues�

	Chapter�4 SAF-TE Command Implementation
	4.1 SCSI Commands
	4.1.1 Inquiry
	Table 4.1 Inquiry Command Response Data�

	4.1.2 Read Buffer
	Table 4.2 Read Buffer Data Format

	4.1.3 Request Sense
	Table 4.3 Sense Key Information�

	4.1.4 Send Diagnostic
	4.1.5 Test Unit Ready
	4.1.6 Write Buffer
	Table 4.4 Write Buffer Data Format�
	Table 4.5 Write Buffer Data Format (Updating SAF-TE Firmware)�

	4.2 SAF-TE Read Buffer Commands
	4.2.1 Read Enclosure Configuration (0x00)
	Table 4.6 Read Enclosure Configuration Return Values�

	4.2.2 Read Enclosure Status (0x01)
	Table 4.7 Read Enclosure Status Return Values�
	Table 4.8 Fan Status Return Values�
	Table 4.9 Power Supply Status Return Values�
	Table 4.10 Door Lock Status Return Values�
	Table 4.11 Speaker Status Return Values�

	4.2.3 Read Device Slot Status (0x04)
	Table 4.12 Read Device Slot Status Command Return Values�
	Table 4.13 Power-On/Reset Default Slot Status�

	4.2.4 Read Global Flags (0x05)
	Table 4.14 Read Global Flag Bytes �

	4.3 SAF-TE Write Buffer Commands
	4.3.1 Write Device Slot Status (0x10)
	Table 4.15 Write Device Slot Status Flag Bytes�
	Table 4.16 Default LED Settings for Write Device Slot Status Flags�

	4.3.2 Perform Slot Operation (0x12)
	Table 4.17 Perform Slot Operation Flags�

	4.3.3 Send Global Flags Command (0x15)
	Table 4.18 Send Global Flag Bytes �
	Table 4.19 Global Failure/Global Warning LED Options�
	Table 4.20 Drive Failure/Drive Warning LED Options
	Table 4.21 Array Failure/Array Warning LED Options�

	4.4 Unsupported SAF-TE Commands

	Chapter�5 Configuration Data and the Configuration Utility
	5.1 Using the Configuration Utility
	Table 5.1 Configuration Utility Files�
	5.1.1 Myinput.txt File

	5.2 Questions in the Configuration Utility
	Table 5.2 General Questions�
	Table 5.3 Enclosure Components Questions�
	Table 5.4 Pin Assignment Questions�
	Table 5.5 Default LED Settings for Write Device Slot Status Flags�
	Table 5.6 Selections for Custom LED Settings for Write Device Slot Status Flags�
	Table 5.7 Device Slot Operation Questions�
	Table 5.8 Status Signal Questions�
	Table 5.9 TWS Bus Operation Questions�
	Table 5.10 Questions for Firmware Bootloader�

	5.3 After Running the Configuration Utility

	Appendix�A LSI53C040 Board Utilities
	A.1 Data Transfers
	A.1.1 Serial Port
	Table�A.1 Capture Register Settings

	A.1.2 ISA
	Table�A.2 Command Line Inputs

	A.1.3 SCSI
	Table�A.3 Configuration Using Three Serial EEPROMS�
	Table�A.4 Configuration Using Two Serial EEPROMS�

	A.1.4 8067 Utilities
	A.1.5 LSI53C040 Board Layout/Jumper Settings
	Table�A.5 Switch Controls and Address
	Table�A.6 Jumpers and Chip Address
	Table�A.7 Jumper and Bus
	Table�A.8 Jumpers and Branch Address
	Table�A.9 Jumper and Code Load

	Index
	Customer Feedback

