TECHNICAL MANUAL

LSI53C320 Ultra320 SCSI Bus Expander

Version 2.2

September 2003

DB14-000163-05

LSI Logic products are not intended for use in life-support appliances, devices, or systems. Use of any LSI Logic product in such applications without written consent of the appropriate LSI Logic officer is prohibited.

Document DB14-000163-05, September 2003

This document describes the LSI Logic LSI53C320 Ultra320 SCSI Bus Expander and will remain the official reference source for all revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or third parties.

Copyright © 2003 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

LSI Logic, the LSI Logic logo design, LVDlink, SureLINK, and TolerANT are trademarks or registered trademarks of LSI Logic Corporation. All other brand and product names may be trademarks of their respective companies.

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource centers, view our web page located at

http://www.lsilogic.com/contacts/index.html

KL

Version 2.2

Preface

This manual provides a description of the LSI53C320 Ultra320 SCSI Bus Expander chip that supports all combinations of Single-Ended (SE) and Low Voltage Differential (LVD) SCSI bus conversions.

Audience

This manual assumes prior knowledge of the current and proposed SCSI standards. This manual also assumes that you are familiar with microprocessors and related support devices. The people who benefit from this book are

- engineers and/or managers who are evaluating the LSI53C320 for use in a system
- engineers who are designing the LSI53C320 into a system.

Related Publications

For background information, please contact:

LSI Logic World Wide Web Home Page www.lsilogic.com

ANSI

www.ansi.org

Global Engineering Documents

www.global.ihs.com Ask for document number X3.131-1994 (SCSI-2) or X3.253 (SCSI-3 Parallel Interface)

ENDL Publications

www.rahul.net/endl/ (408) 867-6630 Document names: SCSI Bench Reference, SCSI Encyclopedia, SCSI Tutor

Organization

This document has the following chapters and appendixes:

- Chapter 1, Introduction, contains the general information about the LSI53C320 product.
- Chapter 2, Functional Descriptions, describes the block diagram and operation of the LSI53C320.
- Chapter 3, Signal Description, provides signal descriptions for the LSI53C320.
- Chapter 4, Specifications, contains the electrical characteristics, timing diagrams, 272-PBGA diagram, and mechanical drawings for the LSI53C320.
- Appendix A, **Wiring Diagrams**, contains wiring diagrams for a typical LSI53C320 usage.
- Appendix B, Glossary, defines commonly used terms.

Date	Version	Remarks	
2/2001	1.0	Advance/Confidential - includes 272 PBGA mechanical drawing	
9/2002	1.1	arranged Chapters 2-3 into Chapters 2-4. dated the Specifications chapter for G12 processes. wrote in active voice.	
5/2003	2.0	Final Version for GCA. Added the serial EEPROM interface information. Added the maximum cable length information. Noted that QAS is not supported in the Ultra160 SCSI mode.	
5/2003	2.1	Added disclaimer on the EPBGA mechanical drawing.	
9/2003	2.2	Added ground to address lines in Figure 2.5 and Figure A.1.	

Revision Record

Contents

Chapter 1	Introduction			
	1.1	Genera	al Description	1-1
	1.2	Applica	ations	1-3
	1.3	Benefit	s of Ultra320 SCSI	1-5
	1.4	Benefit	s of SureLINK™ (Ultra320 SCSI Domain Validation)	1-6
	1.5	Benefit	s of LVDlink™ Technology	1-6
	1.6	Benefit	s of TolerANT [®] Technology	1-7
	1.7	Feature	9S	1-7
Chapter 2	Fund	ctional D	escriptions	
	2.1	LSI530	C320 Block Diagram Description	2-1
		2.1.1	SCSI Control Blocks	2-2
		2.1.2	Retiming Logic Block	2-2
		2.1.3	Precision Delay Control Block	2-3
		2.1.4	State Machine Control Block	2-3
		2.1.5	DIFFSENS Receiver Block	2-3
	2.2	Ultra32	20 SCSI Functional Description	2-3
		2.2.1	Ultra320 SCSI Features	2-3
		2.2.2	SCSI Bus Interface	2-7
		2.2.3	Maximum Cable Lengths	2-8
	2.3	SCSI S	Signal Processing	2-11
		2.3.1	Data and Data Parity Signals	2-11
		2.3.2	Select Signal	2-11
		2.3.3	Busy Signal	2-12
		2.3.4	Reset Signal	2-12
		2.3.5	Request and Acknowledge Signals	2-13
		2.3.6	Control/Data, Input/Output, Message, and Attentior	า
			Signals	2-14
	2.4	Interna	I Control Descriptions	2-14

	Inde	x		
Appendix B	Glos	sary		
Appendix A	Wirii A.1	n g Diagra LSI53C	ims 320 Wiring Diagrams	A-1
		4.2.2	BGA Drawing	4-11
		4.2.1	Mechanical Drawing	4-8
	4.2	Chip Dr	awings	4-8
		4.1.3	AC Characteristics	4-7
		4.1.2	TolerANT Technology Electrical Characteristics	4-6
		4.1.1	DC Characteristics	4-1
Chapter 4	Spec 4.1	cification Electric	s al Characteristics	4-1
	3.7	Signal I	_ayout Considerations	3-8
	3.6	Test Sig	-	3-7
	3.5	Power a	and Ground Signals	3-6
	3.4	Serial E	EPROM Signals	3-6
	3.3	Interfac	e Control Signals	3-5
	3.2	-	iterface Signals	3-3
Chapter 3	Sign 3.1	al Descri Signal (ption Grouping	3-1
	2.5	Serial E	EPROM Connection	2-15
		2.4.3	Busy Filters	2-15
		2.4.2		2-14
		2.4.1	Self-Calibration	2-14

Customer Feedback

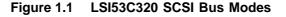
Figures

1.1	LSI53C320 SCSI Bus Modes	1-2
1.2	LSI53C320 Server Clustering	1-3
1.3	LSI53C320 SCSI Bus Device	1-4
2.1	LSI53C320 Block Diagram	2-2
2.2	Paced Transfer Example	2-5
2.3	Example of Precompensation	2-6
2.4	Electrical Cable Lengths at Ultra320 SCSI Speeds	2-10
2.5	Serial EEPROM Connection	2-16
3.1	LSI53C320 Functional Signal Grouping	3-2
4.1	LVD Driver	4-3
4.2	LVD Receiver	4-3
4.3	Rise and Fall Time Test Conditions	4-7
4.4	Clock Timing	4-8
4.5	272-Ball-Count PBGA (VG) Mechanical Drawing	4-9
4.6	LSI53C320 272-Ball BGA Top View	4-12
A.1	LSI53C320 Wiring Diagram 1 of 4	A-2
A.2	LSI53C320 Wiring Diagram 2 of 4	A-3
A.3	LSI53C320 Wiring Diagram 3 of 4	A-4
A.4	LSI53C320 Wiring Diagram 4 of 4	A-5

Tables

1.1	Types of Operation	1-2
1.2	SCSI Bus Length Limits in a Clustering Configuration	1-4
1.3	SCSI Bus Length Limits	1-5
2.1	DIFFSENS Voltage Levels	2-8
2.2	Total Cable Length for Ultra320 SCSI Using the	
	LSI53C320	2-10
3.1	SCSI A Side Interface Signals	3-3
3.2	SCSI B Side Interface Signals	3-4
3.3	Chip Interface Control Signals	3-5
3.4	Serial EEPROM Signals	3-6
3.5	Power and Ground Pins	3-6
3.6	Test Signals for LSI Logic Only	3-7
4.1	Absolute Maximum Stress Ratings	4-1
4.2	Operating Conditions	4-2
4.3	LVD Driver SCSI Signals—SD[15:0]±, SDP[1:0]±,	
	SCD±, SIO±, SMSG±, SREQ±, SACK±, SBSY±,	
	SATN±, SSEL±, SRST±	4-2
4.4	LVD Receiver SCSI Signals—SD[15:0]±, SDP[1:0]±,	
	SCD±, SIO±, SMSG±, SREQ±, SACK±, SBSY±,	
	SATN±, SSEL±, SRST±	4-3
4.5	Bidirectional SCSI Signals—SD[15:0]/, SDP[1:0]/, SREQ/,	
10	SACK/, SD[15:0]±, SDP[1:0]±, SREQ±, SACK±	4-4
4.6	Bidirectional SCSI Control Signals—SCD/, SIO/, SMSG/, SBSY/, SATN/, SSEL/, SRST/, SCD±, SIO±, SMSG±,	
	SBS17, SATNY, SSEL, SRS17, SCD \pm , SIO \pm , SMSG \pm , SBSY \pm , SATN \pm , SSEL \pm , SRST \pm	4-4
4.7	DIFFSENS SCSI Signal	4-4
4.8	Input Capacitance	4-4
4.9	Input Control Signals—CLOCK, CHIP_RESET/,	4-0
4.5	WS ENABLE/	4-5
4.10	Output Control Signals—BSY_LED, XFER_ACTIVE	4-5
4.11	TolerANT Technology Electrical Characteristics	4-6
4.12	Clock Timing	4-8

Chapter 1 Introduction


This chapter describes the LSI53C320 Ultra320 SCSI Bus Expander and includes these sections:

- Section 1.1, "General Description," page 1-1
- Section 1.2, "Applications," page 1-3
- Section 1.3, "Benefits of Ultra320 SCSI," page 1-5
- Section 1.4, "Benefits of SureLINK[™] (Ultra320 SCSI Domain Validation)," page 1-6
- Section 1.5, "Benefits of LVDlink™ Technology," page 1-6
- Section 1.6, "Benefits of TolerANT[®] Technology," page 1-7
- Section 1.7, "Features," page 1-7

1.1 General Description

The LSI53C320 Ultra320 SCSI Bus Expander is a single-chip solution allowing the extension of SCSI device connectivity and/or cable length limits. A SCSI bus expander couples bus segments without impact to the software, firmware, or SCSI protocol implementation. The LSI53C320 Ultra320 SCSI Bus Expander connects Single-Ended (SE) Ultra SCSI and Low Voltage Differential (LVD) Ultra320 SCSI peripherals together in any combination. The LSI53C320 *does not* support High Voltage Differential (HVD) mode.

The LSI53C320 supports any combination of the SE or LVD bus modes on either the A Side or B Side port. This provides the system designer with maximum flexibility in designing SCSI backplanes to accommodate any SCSI bus mode. Each bus side on the LSI53C320 has an independent RBIAS pin to allow for margining of each bus. Figure 1.1 shows the two SCSI bus modes available on the A or B Side. LVDlink transceivers provide the multimode LVD or SE capability. The LSI53C320 operates as both an expander and a converter. In both SCSI Bus Expander and Converter modes, the LSI53C320 isolates the cable segments on the A Side and the B Side. This feature maintains the signal integrity of each cable segment.

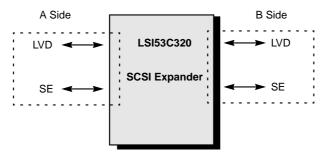


Table 1.1 shows the types of operational modes for the LSI53C320.

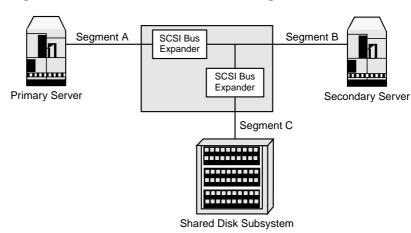
Table 1.1 Types of Operation

Signal Type	Speed
LVD to LVD	Up to Ultra320 SCSI
SE to SE	Up to Ultra SCSI
LVD to SE	Up to Ultra SCSI
SE to LVD	Up to Ultra SCSI

The LSI53C320 provides additional control capability through the pinlevel isolation mode (Warm Swap Enable). This feature permits logical disconnection of the A Side bus or the B Side bus without disrupting SCSI transfers currently in progress. For example, users can logically disconnect the B Side bus while the A Side bus remains active.

The LSI53C320 is based on proven LSI Logic bus expander technology, which includes signal filtering along with retiming to maintain skew budgets. The LSI53C320 is independent of software. However, Domain Validation technology does require software control.

<u>Note:</u> The LSI53C320 does not support Quick Arbitration and Selection (QAS) while operating at Ultra160 SCSI rates.


1.2 Applications

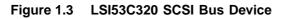
The LSI53C320 supports

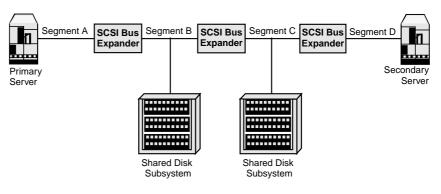
- server clustering environments
- expanders creating distinct SCSI cable segments that are isolated from each other

Configurations that use the LSI53C320 SCSI Bus Expander in the LVD to LVD mode allow the system designer to take advantage of the inherent cable distance, device connectivity, data reliability, and increased transfer rate benefits of LVD signaling with Ultra320 SCSI peripherals. Section 2.2.3, "Maximum Cable Lengths," discusses additional limits on the total SCSI cable length for systems operating at Ultra320 SCSI transfer rates.

Figure 1.2 shows how SCSI bus expanders couple bus segments with no impact on the SCSI protocol or software. Two LSI53C320 expanders configure three bus segments. Segment A is a point-to-point segment. Segments B and C are load segments and have at least 8 inches between every node. Table 1.2 shows the various distance requirements for each SCSI bus segment.

Figure 1.2 LSI53C320 Server Clustering


Segment	Mode	Length Limit
A	LVD (Ultra320 SCSI)	Up to 12 meters
	SE (Ultra SCSI)	Up to 3 meters ¹
В	LVD (Ultra320 SCSI)	Up to 12 meters
	SE (Ultra SCSI)	Up to 1.5 meters
С	LVD (Ultra320 SCSI)	Up to 12 meters
	SE (Ultra SCSI)	Up to 1.5 meters
A + B + C + D	Ultra320 SCSI (only)	Less than 29 meters ²


Table 1.2 SCSI Bus Length Limits in a Clustering Configuration

1. The cable length can be more than 1.5 meters, since this is a point-to-point connection.

2. Refer to Section 2.2.3, "Maximum Cable Lengths," for more information on cable length limits in an Ultra320 SCSI environment.

Figure 1.3 shows cascading of the LSI53C320 to achieve four distinct SCSI segments. Segments A and D are point-to-point segments. Segments B and C are load segments and have at least 8-inch spacing between every node. Table 1.3 shows the distance requirements for each SCSI bus segment.

Segment	Mode	Length Limit
A, D	LVD (Ultra320 SCSI)	Up to 12 meters
	SE (Ultra SCSI)	Up to 1.5 meters
B, C	LVD (Ultra320 SCSI)	Up to 12 meters
	SE (Ultra SCSI)	Up to 1.5 meters
A + B + C + D	Ultra320 SCSI (only)	Less than 25 meters ¹

Table 1.3 SCSI Bus Length Limits

1. Refer to Section 2.2.3, "Maximum Cable Lengths," for more information on cable length limits in an Ultra320 SCSI environment.

1.3 Benefits of Ultra320 SCSI

The LSI53C320 SCSI Bus Expander supports Ultra320 SCSI. This interface expands the bandwidth of the SCSI bus to allow faster synchronous data transfers of up to 320 Mbytes/s. Ultra320 SCSI provides double the data transfer rate of the Ultra160 SCSI interface.

The LSI53C320 performs 16-bit, Ultra320 SCSI synchronous data transfers as fast as 320 Mbytes/s on the side of the device. This advantage is most noticeable in heavily loaded systems or large block size applications, such as video on-demand and image processing.

Ultra320 SCSI doubles both the data and clock frequencies from Ultra160 SCSI. Due to the increased data and clock speeds, Ultra320 SCSI introduces skew compensation and intersymbol interference (ISI) compensation. These new features simplify system design by resolving timing issues at the chip level. Skew compensation adjusts for timing differences between data and clock signals caused by cabling, board traces, and so on. ISI compensation enhances the first pulse after a change in state to ensure data integrity. The LSI53C320 performs skew compensation on the receiver side of the device and ISI compensation on the driver side of the device.

Ultra320 SCSI supports Cyclic Redundancy Check (CRC), which provides error checking code to detect the validity of data. CRC increases the reliability of data transfers by transferring four bytes of code along with data. CRC detects all single bit errors, two bits in error, or other error types within a single 32-bit range.

1.4 Benefits of SureLINK[™] (Ultra320 SCSI Domain Validation)

SureLINK Domain Validation is a procedure that allows a host computer and target SCSI peripheral to negotiate and find the optimal transfer speed. This procedure improves overall reliability of the system by ensuring data integrity.

Domain Validation software ensures robust SCSI interconnect management and low risk Ultra320 SCSI implementations by extending the domain validation guidelines documented in the SPI-4 specifications. Domain validation verifies that the system is capable of transferring data at Ultra320 SCSI speeds, allowing the LSI53C320 to renegotiate to a lower data transfer speed and bus width if necessary. SureLINK Domain Validation is the software control for the domain validation manageability enhancements in the LSI53C320. SureLINK Domain Validation software provides domain validation management at boot time as well as during system operation.

SureLINK Domain Validation ensures robust system operation by providing three levels of integrity checking on a per-device basis: Basic (Level 1) with inquiry command; Enhanced (Level 2) with read/write buffer; and Margined (Level 3) with margining of drive strength and slew rates.

1.5 Benefits of LVDlink[™] Technology

The LSI53C320 supports LVDlink technology for SCSI, a signaling technology that increases the reliability of SCSI data transfers over longer distances than those supported by SE SCSI technology. The low current output of LVD allows the I/O transceivers to be integrated directly onto the chip. For backward compatibility to existing SE devices, the LSI53C320 features multimode LVDlink transceivers that can switch between LVD and SE modes.

Some features of integrated LVDlink transceivers are listed below:

- supports SE or LVD modes
- allows greater device connectivity and longer cable length
- saves the cost of external differential transceivers
- provides a long-term performance migration path

1.6 Benefits of TolerANT[®] Technology

The LSI53C1320 features TolerANT technology, which provides active negation on the SCSI drivers and input signal filtering on the SCSI receivers. Active negation causes the SCSI Request, Acknowledge, Data, and Parity signals to be actively driven HIGH rather than passively pulled up by terminators.

TolerANT receiver technology improves data integrity in unreliable cabling environments where other devices would be subject to data corruption. TolerANT receivers filter the SCSI bus signals to eliminate unwanted transitions, without the long signal delay associated with RC-type input filters. This improved driver and receiver technology helps ensure correct clocking of data.

TolerANT technology increases noise immunity, balances duty cycles, and improves SCSI transfer rates. In addition, TolerANT SCSI devices do not cause glitches on the SCSI bus at power-up or power-down, which protects other devices on the bus from data corruption. When used with the LVDlink transceivers, TolerANT technology provides excellent signal quality and data reliability in real world cabling environments.

1.7 Features

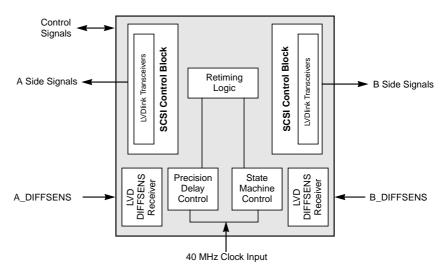
The LSI53C320

- complies with the SCSI Parallel Interface 4 (SPI-4) Specifications
 - complies with SCSI Enhanced Parallel Interface (EPI) Specifications
 - supports Double Transition (DT) clocking
 - supports CRC in DT data phases
 - supports Domain Validation technology
 - supports Ultra320 SCSI Packetized Transfers
 - provides SCSI signal and timing calibration
 - is backward-compatible with previous revisions of the SCSI specification

- provides a flexible SCSI bus expander
- supports any combination of LVD or SE transceivers
- creates distinct SCSI bus segments that are isolated from each other
- uses integrated LVDlink transceivers for direct attachment to either LVD or SE bus segments
- operates as a SCSI Bus Expander or a SCSI Bus Converter
 - LVD to LVD (Ultra320 SCSI or Ultra160 SCSI)
 - SE to SE (up to Ultra SCSI)
 - LVD to SE (up to Ultra SCSI)
 - SE to LVD (up to Ultra SCSI)
- handles targets and initiators on either the A Side bus or B Side bus
- accepts any asynchronous or synchronous transfer speeds up to Ultra320 SCSI (for LVD to LVD mode only)
- supports dynamic addition/removal of SCSI bus segments using the isolation mode
- does not consume a SCSI ID
- propagates the RESET/ signal from one side to the other regardless of the SCSI bus state
- notifies initiator(s) of changes in transmission mode (SE/LVD) on A or B Side segments by using the SCSI bus RESET/
- provides a SCSI Busy LED driver for an activity indicator
- supports cascading of up to four LSI53C320s
- does not require software
- requires a 40 MHz Input Clock
- has a 272-pin Plastic Ball Grid Array package (PBGA).

Chapter 2 Functional Descriptions

This chapter describes all signals, their groupings, and their functions. It includes these topics:


- Section 2.1, "LSI53C320 Block Diagram Description," page 2-1
- Section 2.2, "Ultra320 SCSI Functional Description," page 2-3
- Section 2.3, "SCSI Signal Processing," page 2-11
- Section 2.4, "Internal Control Descriptions," page 2-14
- Section 2.5, "Serial EEPROM Connection," page 2-15

2.1 LSI53C320 Block Diagram Description

The LSI53C320 has no user programmable registers and does not require software. SCSI control signals control all LSI53C320 functions. Figure 2.1 shows a block diagram of the LSI53C320 device, which consists of these specific areas:

- A Side SCSI Control Block
 - LVD and SE Drivers and Receivers
- B Side SCSI Control Block
 - LVD and SE Drivers and Receivers
- Retiming Logic
- Precision Delay Control
- State Machine Control

Figure 2.1 LSI53C320 Block Diagram

The LSI53C320 passes data and parity from a source bus to a load bus. The source bus receives the SCSI signals from the initiator. The load bus transmits the SCSI signals to the target. The LSI53C320 retimes signals to maintain the signal skew budget from the source bus to the load bus.

2.1.1 SCSI Control Blocks

The SCSI A Side pins internally connect to the corresponding SCSI B Side pins. In the LVD/LVD mode, the A Side and B Side control blocks connect to SCSI devices and accept any asynchronous or synchronous Ultra320 SCSI data transfer rates. The SCSI control block supports TolerANT and LVDlink technologies to enable the SCSI bus transfers. For more information on these technologies, refer to Section 2.2.2.1, "SCSI Bus Modes."

2.1.2 Retiming Logic Block

As SCSI signals propagate through the LSI53C320, the chip retimes the signals to improve the SCSI timing. The Retiming Logic block contains numerous delay elements, which the Precision Delay Control block periodically calibrates to guarantee the output pulse widths, setup times, and hold times.

A synchronous negotiation between devices forms a nexus, for which the on-chip RAM stores information. This information remains in place until a chip reset, power down, or renegotiation. The nexus information enables the LSI53C320 to make accurate retiming adjustments.

2.1.3 Precision Delay Control Block

The Precision Delay Control block provides calibration information to the precision delay elements in the Retiming Logic block. Since the LSI53C320 voltage and temperature vary with time, the Precision Delay Control block periodically updates the delay settings in the Retiming Logic block to maintain constant and precise control over the bus timing.

2.1.4 State Machine Control Block

The State Machine Control block monitors the SCSI bus phases, the initiator and target device IDs, and various timing functions. This block controls the SCSI bus signal retiming and SCSI protocol implementation.

2.1.5 DIFFSENS Receiver Block

The LSI53C320 can operate with SE or LVD SCSI buses. The DIFFSENS Receiver block determine the operating mode of the SCSI bus by monitoring the voltage level on the DIFFSENS signal. For more information, refer to Section 2.2.2.1, "SCSI Bus Modes."

2.2 Ultra320 SCSI Functional Description

The LSI53C320 supports Ultra320 SCSI. This interface expands the bandwidth of the SCSI bus to allow faster synchronous data transfers of up to 320 Mbytes/s. Ultra320 SCSI doubles the data transfer rate as compared to the Ultra160 SCSI interface. This section describes how the LSI53C320 implements the features in the SPI-4 draft specification.

2.2.1 Ultra320 SCSI Features

This section describes the Ultra320 SCSI features in the LSI53C320.

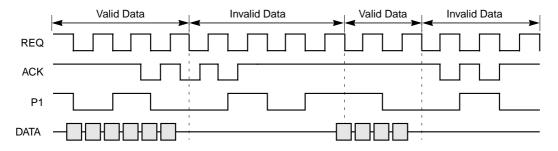
2.2.1.1 Double Transition (DT) Clocking

Ultra160 SCSI and Ultra320 SCSI implement DT clocking to provide speeds up to 80 megatransfers per second (megatransfers/s) for Ultra160 SCSI, and up to 160 megatransfers/s for Ultra320 SCSI. When implementing DT clocking, a SCSI device samples data on both the asserting and deasserting edge of REQ/ACK. DT clocking is only valid using an LVD SCSI bus.

2.2.1.2 Intersymbol Interference (ISI) Compensation

ISI Compensation uses paced transfers and precompensation to enable high data transfer rates. Ultra320 SCSI data transfers require the use of ISI Compensation.

Paced Transfers – The initiator and target must establish a paced transfer agreement that specifies the REQ/ACK offset and the transfer period before using this feature. Devices can only perform paced transfers during Ultra320 SCSI DT data phases. In paced transfers, the device sourcing the data drives the REQ/ACK signal as a free running clock. The transition of the REQ/ACK signal, either the assertion or the negation, clocks data across the bus. For successful completion of a paced transfer, the number of ACK transitions must equal the number of REQ transitions, and both the REQ and ACK lines must be negated.

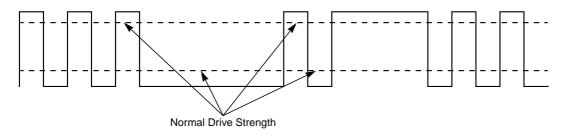

The P1 line indicates valid data in 4-byte quantities by using its phase. The transmitting device indicates the start of valid data state by holding the state of the P1 line for the first two data transfer periods. Beginning on the third data transfer period, the transmitting device continues the valid data state by toggling the state of the P1 line every two data transfer periods for as long as the data is valid. The transmitting device must toggle the P1 line coincident with the REQ/ACK assertion. This method provides a minimum valid data period of two transfer periods.

To pause the data transfer, the transmitting device reverses the phase of P1 by withholding the next transition of P1 at the start of the first two invalid data transfer periods. Beginning with the third invalid data transfer period, the transmitting device toggles the P1 line every two invalid data transfer periods until it sends valid data. The transmitting device returns to the valid data state by reversing the phase of the P1 line. The invalid data state must experience at least one P1 transition before returning to

the valid data state. This method provides a minimum invalid data period of four transfer periods.

Figure 2.2 provides a waveform diagram of paced data transfers and illustrates the use of the P1 line.

Figure 2.2 Paced Transfer Example



The LSI53C320 uses the PPR negotiation that the SPI-4 draft standard describes to establish a paced transfer agreement with the initiator on the source bus and the target on the load bus.

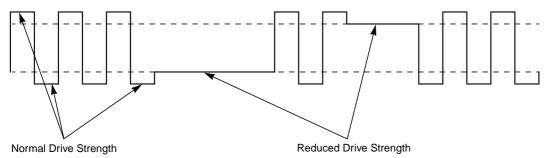

Precompensation – When transmitting in the Ultra320 SCSI mode, the LSI53C320 can use precompensation to adjust the strength of the REQ, ACK, parity, and data signals. When a signal transitions to HIGH or LOW, the LSI53C320 drives the signal at the signal drive strength for the first data transfer period, and then lowers the signal drive strength on the second data transfer period if the signal remains in the same state. The LSI53C320 maintains the lower signal drive strength until the signal again transitions HIGH or LOW. Figure 2.3 illustrates the drivers performance with precompensation enabled and disabled.

Figure 2.3 Example of Precompensation

b. Drivers with Precompensation Enabled

2.2.1.3 Packetized Transfers

Packetized transfers are also referred to as information unit transfers. They reduce overhead on the SCSI bus by merging several of the SCSI bus phases.

2.2.1.4 Skew Compensation

The LSI53C320 provides a method to account for and control system skew between the clock and data signals. Skew compensation is only available when the device operates in the Ultra320 SCSI mode. The initiator-target pair uses the training sequences in the SPI-4 draft standard to determine the skew compensation. The LSI53C320 passes the training patterns between the initiator and target. The LSI53C320 stores the adjustment parameters and recalls them on subsequent connections with the given device pair (nexus).

2.2.1.5 Cyclic Redundancy Check (CRC)

Ultra320 SCSI and Ultra160 SCSI devices employ CRC as an error detection code during the DT Data phases. The LSI53C320 handles CRC as another data phase with the appropriate specific timing values.

2.2.1.6 LSI53C320 Requirements for Synchronous SCSI Negotiation

The LSI53C320 builds a table of information regarding devices on the bus in on-chip RAM. The LSI53C320 reads the PPR, Synchronous Data Transfer Request (SDTR), and Wide Data Transfer Request (WDTR) information for each device from the MSG bytes during negotiation.

For devices to communicate accurately through the LSI53C320 at Ultra320 SCSI rates, it is necessary for a complete asynchronous negotiation to occur between the initiator and target(s) prior to any synchronous data transfer. The LSI53C320 defaults to Ultra SCSI rates when a valid negotiation between the initiator and target does not occur.

2.2.2 SCSI Bus Interface

This section describes the SCSI bus interfaces on the LSI53C320.

2.2.2.1 SCSI Bus Modes

To support greater device connectivity and longer SCSI cables, the LSI53C320 features LVDlink technology, the LSI Logic implementation of multimode LVD SCSI. The LVDlink transceivers can operate in the LVD or SE modes.

The voltage levels on the A_DIFFSENS and B_DIFFSENS signals determine the SCSI bus mode. The LSI53C320 DIFFSENS receivers detect the voltage level on the A Side or B Side DIFFSENS lines independently. The LSI53C320 does not change the present signal mode until it continuously senses a new DIFFSENS voltage level for 100 ms. Table 2.1 shows the voltages on the DIFFSENS lines.

Mode	Voltage
SE	-0.35 to +0.5
LVD	+0.7 to +1.9

Table 2.1 DIFFSENS Voltage Levels

When the DIFFSENS voltage selects SE mode, the LSI53C230 internally ties the plus signals to ground and the minus SCSI signals become the SE input/outputs. When the DIFFSENS voltage selects LVD mode, the plus and minus signals are the differential signal pairs.

Any dynamic mode change (SE-to-LVD or LVD-to-SE) on a bus segment is a significant event, and the initiator must determine if the new bus mode meets the requirements for the bus segment. The LSI53C320 supports dynamic transmission mode changes by notifying the initiator(s) of changes in the transmission mode with a SCSI bus RESET/. The DIFFSENS line detects a valid mode switch on a bus segment. After the DIFFSENS state is continuously present for 100 ms, the LSI53C320 generates a SCSI reset on the bus opposite the bus on which the transmission mode change occurred. This reset informs initiators residing on the opposite bus segment of the change in the transmission mode. The initiator(s) then renegotiates synchronous transfer rates with each device on that segment.

If the LSI53C320 detects the HVD mode on a SCSI bus segment, the LSI53C320 3-states its outputs.

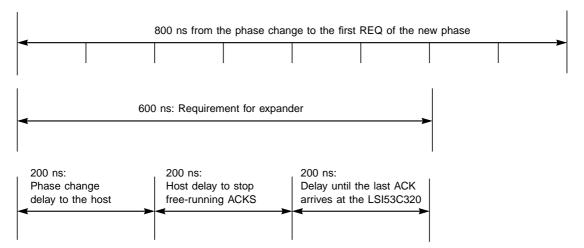
2.2.2.2 SCSI Termination

The terminator networks pull signals to an inactive voltage level and match the impedance seen at the end of the cable with the characteristic impedance of the cable. Install terminators at the ends of each SCSI segment, and only at the ends; *all SCSI buses must have exactly two terminators*.

2.2.3 Maximum Cable Lengths

The electrical length of a bus is the time required for round-trip signal propagation between bus ends. This section discusses the maximum electrical and physical cable lengths when cascading LSI53C320

expanders. For Ultra320 SCSI environments, the information in this section takes precedence over the information in Section 1.2, "Applications."


2.2.3.1 Maximum Electrical Cable Length

The SCSI Parallel Interface-4 (SPI-4) standard states that the electrical length between the hosts arbitrating on different ends of a SCSI bus must not exceed 800 nanoseconds (ns), when operating at Ultra320 SCSI data transfer rates. Due to this constraint, LSI Logic specifies that a maximum of four expanders can be cascaded on a SCSI bus.

There are additional electrical length constraints imposed by the SPI-4 standard. When ending a paced transfer from DT_{OUT} to any other phase, the target must wait 800 ns before issuing a REQ. The SPI-4 standards allows 200 ns for the host to recognize the phase change and stop the free running ACK. This requirement reduces the electrical length of the bus to 600 ns.

Because the expander resides in the middle of the bus and retimes data to the active free running clock, the expander must switch its internal logic from ACK to REQ. The expander performs this switch 600 ns after detecting the phase change. Activity on the ACK or REQ line during this period adversely affects the expander. This reduces the electrical length of the bus to 400 ns.

Figure 2.4 illustrates the bus timing. Assuming a 400 ns electrical length and that the host uses the full 200 ns time allotment, the last free running ACK from the host returns to the expander at the 600 ns mark.

Figure 2.4 Electrical Cable Lengths at Ultra320 SCSI Speeds

2.2.3.2 Maximum Physical Cable Length

Table 2.2 provides information concerning the maximum physical cable length when operating the LSI53C320 at Ultra320 SCSI transfer rates.

Table 2.2 Total Cable Length for Ultra320 SCSI Using the LSI53C320

Number of Cascaded Expanders	Maximum Physical Cable Length in Meters (m)	Comments
1	37	
2	29	LSI Logic recommends limiting the 25 m point-to-point bus cable length to 20 m and
3	25	the fully-loaded bus cable length to 12 m.
4	21	

The SPI-4 standard allows a maximum point-to-point physical cable length of 25 m and a maximum fully loaded physical cable length 12 m. This limits the total physical cable length to 37 m. To allow for board capacitance and signal propagation through the expander, LSI Logic recommends limiting the point-to-point physical cable length to 20 m. This limits the total physical cable length to 32 m.

Table 2.2 provides the total maximum cable length depending on the number of expanders that are cascaded on the bus. As long as the total cable length between expanders, hosts, and drives does not exceed these limits, the 400 ns electrical cable length requirement will be met.

In designs that use a back plane, designers must additionally consider the signal propagation velocity through the back plane to ensure that the 400 ns electrical cable length requirement is met.

2.3 SCSI Signal Processing

Figure 3.1 shows the LSI53C320 signal grouping. The following sections describes the signal processing for the LSI53C320 SCSI signals. Refer to Section Chapter 3, "Signal Description," and Section Chapter 4, "Specifications," for more information on individual signals.

2.3.1 Data and Data Parity Signals

The LSI53C320 passes the data and parity signals from the source bus to the load bus and provides the necessary edge shifting to guarantee the skew budget for the load bus. Either side of the LSI53C320 can act as the source bus or the load bus. The side that the LSI53C320 receives signals on is the source bus. The side that the LSI53C320 drives signals on is the load bus. These steps describe the LSI53C320 data processing:

- The receiver logic accepts the data. Once the clock signal (REQ/ACK) is received, the LSI53C320 gates the data from the receiver latch.
- 2. The LSI53C320 holds the asserting edge for a specified time to prevent signal bounce. The input signal controls the duration of the hold time.
- 3. The LSI53C320 samples the bus using a latch, which provides a stable data window for the load bus.
- 4. In the last stage, the LSI53C320 3-states the outputs.
- 5. To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.3.2 Select Signal

A_SSEL and B_SSEL perform bus arbitration and selection. When a bus asserts the SSEL signal, the LSI53C320 propagates the signal assertion

to the other bus. When both buses assert SSEL simultaneously, A_SSEL takes precedence over B_SSEL. The SSEL output has a pull-down control for an open collector driver. The following steps describe the select control signal process:

- 1. If the LSI53C320 is driving the SSEL signal, the LSI53C320 blocks the SSEL input signal on the other bus.
- The LSI53C320 filters the leading edge of the SSEL signal to ensure that the output does not switch for a specified time after the leading edge. The duration of the input signal determines the duration of the output signal.
- 3. To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.3.3 Busy Signal

The controller propagates the A_SBSY and B_SBSY signals from the source bus to the load bus. The following steps describe the busy control signal process:

- The LSI53C320 filters the leading edge of the SBSY signal. The LSI53C320 holds the assertion edge for a specified time to prevent signal bounce. The duration of the input signal determines the duration of the output signal.
- To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.3.4 Reset Signal

The controller passes the A_SRST and B_SRST signals from the source to the load bus. This output has pull-down control for an open collector driver. The following steps describe the processing of the reset signals:

- 1. If the LSI53C320 is driving the SRST signal, the LSI53C320 blocks the SRST input signal on the other bus.
- 2. The LSI53C320 filters the leading edge of the signal to ensure that the output does not switch during a specified time after the leading

edge. The duration of the input signal determines the duration of the output signal.

 To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.3.5 Request and Acknowledge Signals

The SREQ and SACK signal paths contain controls that guarantee minimum pulse widths, filter edges, and perform signal retiming.

When performing DT clocking, the LSI53C320 filters both the leading and trailing signal edges. When performing ST clocking, the LSI53C320 filters only the leading signal edge. The SREQ and SACK paths are from the A Side to the B Side and from the B Side to the A Side. The following steps describe the SREQ and SACK signal processing:

- The LSI53C320 senses the asserted input signal and forwards it to the next stage if the direction control permits. The LSI53C320 state machine develops the direction controls from the sequence of the bus control signals.
- The LSI53C320 filters the leading edge of the input and output signal to ensure that the signal does not switch during the specified hold time after the leading edge. The duration of the input signal determines the duration of the output signal after the hold time. The LSI53C320 guarantees a minimum pulse width.
- 3. The LSI53C320 passes the signal to the load bus if the signal is not a data clock. If SREQ or SACK is a data clock, it delays the leading edge to improve data output setup times. The duration of the input signal determines the duration of the output signal.
- 4. The LSI53C320 filters the trailing edge of the signal to prevent signal bounce after the signal deasserts. The LSI53C320 deasserts the output signal at the first deasserted edge of the input signal.
- 5. In the last stage, the LSI53C320 3-states the outputs.
- To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.3.6 Control/Data, Input/Output, Message, and Attention Signals

The following steps describe the processing of these signals:

- 1. If the LSI53C320 is driving the signal, the LSI53C320 blocks the input signal on the other bus.
- The LSI53C320 filters the leading edge of the signal to ensure that the output does not switch for a specified time after the leading edge. The duration of the input signal determines the duration of the output signal.
- 3. In the last stage, the LSI53C320 3-states the outputs.
- To assure that the LSI53C320 does not sample its own signals, the LSI53C320 delays sampling until a specified time after the last signal deassertion.

2.4 Internal Control Descriptions

This section provides information about self-calibration, delay line structures, and busy filters.

2.4.1 Self-Calibration

The LSI53C320 triggers self-calibration to adjust for variations in temperature, process, and voltage every second during bus free states.

2.4.2 Delay Line Structures

The signal and control interfaces for bus to bus transfers require fixed delay functions. The LSI53C320 uses programmable delay lines to implement the delay functions. Multiplexers select the incremental points in the delay chain. The LSI53C320 self-calibration manages the effects of temperature and voltage changes.

2.4.2.1 Data Path

The data path through the LSI53C320 includes two levels of latches. The first latch in the data path is located in the receiver and the REQ/ACK input clock and generates a hold. This latch holds the received data to capture incoming data that might have minimal setup and hold times. A

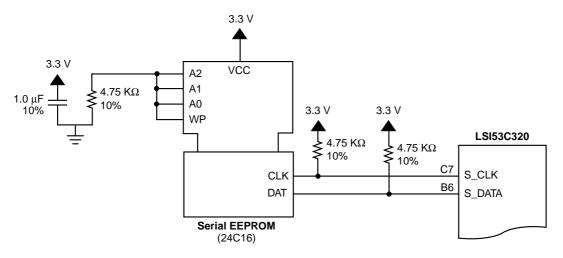
second latch is located on the transmitter side of the LSI53C320 and holds the data to enable optimal signal transmission on the isolated bus. This latch provides a regenerated clock signal and the maximum setup and hold times.

The data path also provides a timer for each data bit. This timer protects against reception from a target bus for a nominal 30 ns after the driver deasserts.

2.4.2.2 REQ/ACK Retiming

The LSI53C320 edge filters the REQ/ACK input clock signals. The chip also stretches these signals to their minimum timing values to avoid glitches. In double transition clocking, the chip filters both the leading and trailing edges. In single transition clocking, the chip filters only the leading edge. The filters remove noise within the initial signal transition. The current transmission speed determines the filter time values.

2.4.3 Busy Filters

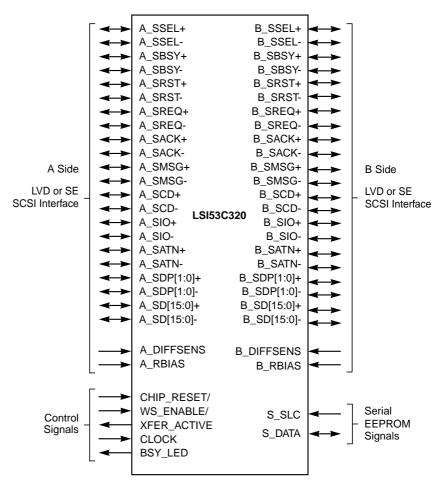

The busy control signal passes from source to load bus. The current state of the SCSI bus determines the filtering. This filter provides a synchronized leading edge signal that is not true until the input signal stabilizes. The trailing edge occurs within several nanoseconds of the input deasserting. When the BSY signal asserts before and after the SEL signal, the filter is on.

2.5 Serial EEPROM Connection

The serial EEPROM connects to the LSI53C320 through a 2-wire serial interface. SP_CLK (Ball C7) on the LSI53C320 connects to the serial EEPROM clock line and SP_DAT (Ball B6) on the LSI53C320 connects to the serial EEPROM data line. These two lines are pulled HIGH through resistors.

The LSI53C320 produces the 50 kHz SP_CLK for downloading data from the serial EEPROM. The LSI53C320 3-states the SP_CLK and SP_DAT lines during chip reset and after a successful download. The LSI53C320 continues to drive SP_CLK LOW if the download is unsuccessful, which enables detection of download failure by monitoring this signal. LSI Logic recommends using a 3.3 V, 2 Kbyte (256 x 8 bit) serial EEPROM that can accept a 50 KHz clock. Figure 2.5 provides a sample layout.

Chapter 3 Signal Description


This chapter provides the signal descriptions and electrical characteristics for the LSI53C320. It includes these topics:

- Section 3.1, "Signal Grouping," page 3-1
- Section 3.2, "SCSI Interface Signals," page 3-3
- Section 3.3, "Interface Control Signals," page 3-5
- Section 3.4, "Serial EEPROM Signals," page 3-6
- Section 3.5, "Power and Ground Signals," page 3-6
- Section 3.6, "Test Signals," page 3-7
- Section 3.7, "Signal Layout Considerations," page 3-8

3.1 Signal Grouping

Figure 3.1 illustrates the LSI53C320 signal grouping.

3.2 SCSI Interface Signals

Table 3.1 describes the SCSI interface signals for the A Side of the LSI53C320.

Table 3.1	SCSI A	Side	Interface	Signals
-----------	--------	------	-----------	---------

Signal Name	BGA Pin	Туре	Description
A_SSEL+ A_SSEL-	G1 H3	I/O	A Side Select signal.
A_SBSY+ A_SBSY-	К3 К1	I/O	A Side Busy signal.
A_SRST+ A_SRST-	J3 J2	I/O	A Side Reset signal.
A_SREQ+ A_SREQ-	F2 F1	I/O	A Side Request signal.
A_SACK+ A_SACK-	J1 K2	I/O	A Side Acknowledge signal.
A_SMSG+ A_SMSG-	H2 H1	I/O	A Side Message signal.
A_SCD+ A_SCD-	G3 G2	I/O	A Side Control and Data signal.
A_SIO+ A_SIO-	E1 F3	I/O	A Side Input and Output signal.
A_SATN+ A_SATN-	L2 L3	I/O	A Side Attention signal.
A_SDP[1:0]+ A_SDP[1:0]-	V2, M1 W1, M2	I/O	A Side Data Parity signals.
A_SD[15:0]+	W3, W4, Y3, V5, B1, D2, C1, E3, N1, N3, P2, P3, T1, T2, T3, V1,	I/O	A Side Data signals.
A_SD[15:0]-	Y2, V4, Y4, W5, C2, D3, D1, E2, N2, P1, R1, R2, R3, U1, U2, U3		
A_DIFFSENS	B3	I	A Side Differential Sense signal.
A_RBIAS	M3	RBIAS	A Side current control. Attach a 10 k Ω pull-up resistor on RBIAS to provide the correct bias level.

Table 3.2 describes the SCSI interface signals for the B Side of the LSI53C320.

Signal Name	Pin	Туре	Description
B_SSEL+ B_SSEL-	H19 H18	I/O	B Side Select signal.
B_SBSY+ B_SBSY-	F18 E19	I/O	B Side Busy signal.
B_SRST+ B_SRST-	F20 G18	I/O	B Side Reset signal.
B_SREQ+ B_SREQ-	J20 J19	I/O	B Side Request signal.
B_SACK+ B_SACK-	F19 E20	I/O	B Side Acknowledge signal.
B_SMSG+ B_SMSG-	G20 G19	I/O	B Side Message signal.
B_SCD+ B_SCD-	J18 H20	I/O	B Side Control and Data signal.
B_SIO+ B_SIO-	K19 K18	I/O	B Side Input and Output signal.
B_SATN+ B_SATN-	D20 E18	I/O	B Side Attention signal.
B_SDP[1:0]+ B_SDP[1:0]-	A14, D19 C13, C20	I/O	B Side Data Parity signals.
B_SD[15:0]+,	B13, C12, A12, C11, N19, M18, M20, L18, C19, A19, B17, A18, C16, A16, B15, C14	I/O	B Side Data signals.
B_SD[15:0]-	A13, B12, B11, A11, N20, M19, L19, L20, B20, B18, C17, A17, B16, C15, A15, B14		
B_DIFFSENS	B2	I	B Side Differential Sense signal.
B_RBIAS	D18	RBIAS	LVD current control. Attach a 10 $k\Omega$ pull-up resistor on RBIAS to provide the correct bias level.

3.3 Interface Control Signals

Table 3.3 describes the interface control signals for the LSI53C320. The LSI53C320 requires an external POR, which is implemented using the CHIP_RESET/ signal. Figure A.1 provides an example external POR circuit.

 Table 3.3
 Chip Interface Control Signals

Signal Name	Pin	Туре	Description	
CHIP_RESET/	C10	I	The active LOW Master Reset signal provides a general purpose chip reset that forces the internal elements of the LSI53C320 to a known state. Asserting this signal places the LSI53C320 state machine in an idle state and places all controls in a passive state. The minimum CHIP_RESET/ asserted pulse width is 100 ns.	
WS_ENABLE/	A7	I	The Active LOW Warm Swap Enable signal enables and disables SCSI transfers through the LSI53C320. The WS_ENABLE/ input removes the chip from an active bus without disturbing the current SCSI transaction. When Warm Swap Enable asserts, the LSI53C320 3-states the SCSI signals after it detects the next bus free state. The LSI53C320 no longer passes on signals until the WS_ENABLE/ pin deasserts and both SCSI buses enter the Bus Free state.	
XFER_ACTIVE	A8	0	The Transfer Active signal enables and disables SCSI transfers through the LSI53C320. The LSI53C320 asserts this signal when the chip is active to indicate that the chip completed its internal testing, the SCSI bus has entered a bus free state, or that SCSI traffic can now pass from one side of the chip to the other side of the chip. The LSI53C320 deasserts this signal to detect a Bus Free state due to the WS_ENABLE/ signal being LOW. Deasserting this signal disables transfers through the device.	
CLOCK	A9	I	CLOCK provides the 40 MHz oscillator input to the LSI53C320. It is the clock source for the protocol control state machines and timing generation logic. The bus signal transfer paths do not use this clock.	
BSY_LED	B9	0	The Busy LED signal provides an 8 mA SCSI activity LED output. The LSI53C320 asserts this signal to indicate SCSI bus activity.	

3.4 Serial EEPROM Signals

Table 3.4 describes the serial EEPROM signals for the LSI53C320.

Table 3.4 Serial EEPROM Signals

Signal Name	Pin	Туре	Description
S_CLK	C7	0	The LSI53C320 uses the serial EEPROM clock signal to provide the 50 kHz clock for downloading the serial EEPROM data.
S_DATA	B6	I/O	The LSI53C320 uses the serial EEPROM data signal to download data from the serial EEPROM.

3.5 Power and Ground Signals

Table 3.5 describes the power and ground signals for the LSI53C320.

Table 3.5Power and Ground Pins

Signal Name	Pin	Туре	Description
VDD _{SCSI} ¹	D6, D11, D15, F4, F17, K4, L17, R4, R17, U6, U10, U15	I	Power supplies to the SCSI bus I/O pins.
VDD _{CORE} ²	A2, B19, D10, K17, L4, U11, W2, W19	I	Power supplies to the CORE logic.
VDD _{IO} ^{3, 4}	C8	I	Power supplies to the I/O logic.
VSS _{SCSI}	A1, D4, D8, D13, D17, H4, H17, J9, J10, J11, J12, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, M11, M12, N4, N17, U4, U8, U13, U17	I	Ground ring.
VSS _{CORE} ⁴	A20, B10, C3, K20, L1, Y1, Y11, Y20	I	Ground ring.
VSS _{IO}	В7	I	Ground ring.

Power and Ground Pins (Cont.) Table 3.5

Signal Name	Pin	Туре	Description
NC	A3, A5, A6, A10, B8, C4, C6, C9, C18, D5, D7, D9, D12, D14, D16, E4, E17, G4, G17, J4, J17, M4, M17, N18, P4, P17, P18, P19, P20, R18, R19, R20, T4, T17, T18, T19, T20, U5, U7, U9, U12, U14, U16, U18, U19, U20, V3, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W17, W18, W20, Y5, Y6, Y7, Y8, Y9, Y10, Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19	N/A	No Connections.

1. VDD_{SCSI} must be supplied with 3.3 V.

2. VDD_{CORE} pins must be supplied 1.8 V.

VDD_{IO} must be supplied with 3.3 V.
 The VDD_{IO} pin must always power down before the VDD_{CORE} pin.

3.6 Test Signals

Table 3.6 lists the LSI53C320 test signals and their associated ball number. These test signals are for use by LSI Logic only.

Note: Connect the tests signals to either test point or a header for debugging purposes.

Table 3.6 Test Signals for LSI Logic Only

Signal	Ball
TEST_3	A4
TEST_4	C5
TEST_5	B5
TEST_6	B4

3.7 Signal Layout Considerations

The pinout of the LSI53C320 package ensures that each signal requires the shortest possible trace length. Use active termination for the bus connections to the LSI53C320. When choosing an active terminator, set the load capacitance of the terminator as low as possible.

LSI Logic recommends the use of strip line. Strip line allows tighter connector placement, which reduces the noise effects from both internal and external sources. On long trace runs, such as those in a backplane environment, snaking of traces to equalize their length is appropriate. Place the decoupling capacitors as close as possible to the via attached to each corresponding voltage plane.

Chapter 4 Specifications

This chapter provides the electrical and environmental specifications for the LSI53C320 and consists of these topics:

- Section 4.1, "Electrical Characteristics," page 4-1
- Section 4.2, "Chip Drawings," page 4-8

4.1 Electrical Characteristics

This section provides the electrical characteristics of the LSI53C320.

4.1.1 DC Characteristics

Table 4.1 through 4.10 give the current and voltage specifications.Figure 4.1 and Figure 4.2 illustrate the driver and receiver schematics.

Symbol	Parameter	Min	Max	Unit	Test Conditions
T _{STG}	Storage Temperature	-40	125	°C	_
V _{DD-Core}	Supply Voltage	-0.3	2.2	V	-
V _{DD-IO}	IO Supply Voltage	-0.3	3.9	V	-
V _{IN}	Input Voltage	-0.5	V _{DD} + 0.5	V	-
I _{LP}	Latch-up current	±150	-	mA	–2 V < VPIN < 8 V
ESD	Electrostatic Discharge	_	2000	V	MIL-STD 883C, Method 3015.7

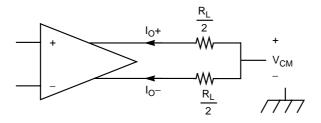
Table 4.1 Absolute Maximum Stress Ratings¹

1. Stresses beyond those listed can damage the device. These are stress ratings; functional operation at or beyond these values is not implied.

Symbol	Parameter	Min	Nominal	Max	Unit	Test Conditions
V _{DD-Core}	Supply voltage	1.71	1.80	1.89	V	_
V _{DD-IO}	I/O Supply voltage	3.13	3.30	3.47		
I _{DD-Core}	Core and Analog Supply Current (Dynamic)	-	275	360	mA	_
I _{DD-IO}	I/O Supply Current (Dynamic)	-	450	590	mA	RBIAS = 10 kΩ 1% V _{DD} = 3.3 V
I _{LP} ²	Latch-up Current	150	-	_	mA	-
Тj	Junction Temperature	-	60	115	°C	-
T _A	Operating free air	0	-	70	°C	-
θ_{JA}	Thermal resistance (junction to ambient air)	_	_	16.4	°C/W	-

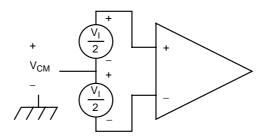
Table 4.2 Operating Conditions¹

1. Conditions that exceed the operating limits can cause the device to function incorrectly.


2. SCSI pins only.

Symbol	Parameter	Min	Max	Units	Test Conditions
I _O +	Source (+) current	9.6	14.4	mA	Asserted state
I _O -	Sink (-) current	-9.6	-14.4	mA	Asserted state
I _O +	Source (+) current	-6.4	-9.6	mA	Negated state
I _O -	Sink (-) current	6.4	9.6	mA	Negated state
I _{OZ}	3-state leakage	-20	20	μΑ	_

1. V_{CM} = 0.7 - 1.8 V, R_{bias} = 10 k $\Omega.$


Figure 4.1 LVD Driver

Symbol	Parameter	Min	Max	Units	Test Conditions
VI	LVD receiver voltage asserting	60	_	mV	_
VI	LVD receiver voltage negating	-	-60	mV	-

1. $V_{CM} = 0.7 - 1.8$ V.

Figure 4.2 LVD Receiver

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	1.9	V_{DD}	V	_
VIL	Input low voltage	V _{SS}	1.0	V	_
V _{OH} ¹	Output high voltage	2.0	V _{DD}	V	I _{OH} = 7.0 mA
V _{OL}	Output low voltage	V _{SS}	0.5	V	48 mA
I _{OZ}	3-state leakage	-10	10	μA	_

Table 4.5 Bidirectional SCSI Signals—SD[15:0]/, SDP[1:0]/, SREQ/, SACK/, SD[15:0]±, SDP[1:0]±, SREQ±, SACK±

1. TolerANT active negation enabled.

Table 4.6 Bidirectional SCSI Control Signals—SCD/, SIO/, SMSG/, SBSY/, SATN/, SSEL/, SRST/, SCD±, SIO±, SMSG±, SBSY±, SATN±, SSEL±, SRST±

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	1.9	V _{DD}	V	-
V _{IL}	Input low voltage	V _{SS}	1.0	V	-
V _{OL}	Output low voltage	V _{SS}	0.5	V	48 mA
I _{OZ}	3-state leakage	-10	10	μΑ	_

Table 4.7 DIFFSENS SCSI Signal

Symbol	Parameter	Min	Мах	Unit	Test Conditions
Vs	LVD sense voltage	0.7	1.9	V	-
VIL	Single-ended sense voltage	V _{SS} – 0.3	0.5	V	-
I _{OZ}	3-state leakage	-10	10	μA	_

Symbol	Parameter	Min	Мах	Unit	Test Conditions
Cl	Input capacitance of input pads	-	7	pF	-
C _{IO}	Input capacitance of I/O pads	_	10	pF	_

 Table 4.8
 Input Capacitance

Table 4.9 Input Control Signals—CLOCK, CHIP_RESET/, WS_ENABLE/

Symbol	Parameter	Min	Мах	Unit	Test Conditions
V _{IH}	Input high voltage	2.0	V_{DD}	V	-
V _{IL}	Input low voltage	V _{SS}	0.8	V	_
I _{OZ}	3-state leakage	-10	10	μΑ	_

Table 4.10 Output Control Signals—BSY_LED, XFER_ACTIVE

Symbol	Parameter	Min	Мах	Unit	Test Conditions
V _{OH}	Output high voltage	2.4	V _{DD}	V	8 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	8 mA
I _{OZ}	3-state leakage	-10	10	μA	_

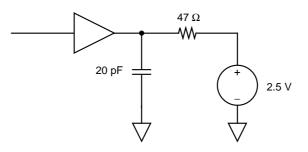
4.1.2 TolerANT Technology Electrical Characteristics

Table 4.11 provides the minimum and maximum values in units for the TolerANT Technology electrical characteristics.

Symbol	Parameter	Min	Мах	Units	Test Conditions
V _{OH} ¹	Output high voltage	2.0	V _{DD} + 0.3	V	I _{OH} = 7 mA
V _{OL}	Output low voltage	V _{SS}	0.5	V	I _{OL} = 48 mA
V _{IH}	Input high voltage	2.0	V _{DD} + 0.3	V	_
V _{IL}	Input low voltage	V _{SS} - 0.3	0.8	V	Referenced to V _{SS}
V _{IK}	Input clamp voltage	-0.66	-0.77	V	V _{DD} = 4.75; I _I = -20 mA
V _{TH}	Threshold, HIGH to LOW	1.0	1.2	V	-
V _{TL}	Threshold, LOW to HIGH	1.4	1.6	V	-
$V_{TH}-V_{TL}$	Hysteresis	300	500	mV	-
I_{OH}^2	Output high current	2.5	24	mA	V _{OH} = 2.5 V
I _{OL}	Output low current	100	200	mA	V _{OL} = 0.5 V
I _{OSH} ²	Short-circuit output high current	_	625	mA	Output driving low, pin shorted to V _{DD} supply ²
I _{OSL}	Short-circuit output low current	_	95	mA	Output driving high, pin shorted to V _{SS} supply
I _{LH}	Input high leakage	_	20	μA	-0.5 <v<sub>DD<5.25 V_{PIN} = 2.7 V³</v<sub>
I _{LL}	Input low leakage	_	-20	μA	-0.5 <v<sub>DD<5.25 V_{PIN} = 0.5 V</v<sub>
R _I	Input resistance	20	-	MΩ	Receivers Disabled ³
CP	Capacitance per pin	-	15	pF	PQFP
t _R ²	Rise time, 10% to 90%	4.0	18.5	ns	Refer to Figure 4.3
t _F	Fall time, 90% to 10%	4.0	18.5	ns	Refer to Figure 4.3
dV _H /dt	Slew rate, LOW to HIGH	0.15	0.50	V/ns	Refer to Figure 4.3

Table 4.11 TolerANT Technology Electrical Characteristics

Symbol	Parameter	Min	Max	Units	Test Conditions
dV _L /dt	Slew rate, HIGH to LOW	0.15	0.50	V/ns	Refer to Figure 4.3
ESD	Electrostatic discharge	2	-	kV	MIL-STD-883C; 3015-7
	Latch-up	100	-	mA	-
	Filter delay	20	30	ns	-
	Ultra filter delay	10	15	ns	-
	Extended filter delay	40	60	ns	-

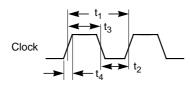

Table 4.11 TolerANT Technology Electrical Characteristics (Cont.)

1. Active negation outputs only: Data, Parity, SREQ/, and SACK/. SCSI SE mode only (minus signals).

2. Single pin only; irreversible damage may occur if sustained for one second.

3. SCSI RESET pin has a 10 k Ω pull-up resistor.

Figure 4.3 Rise and Fall Time Test Conditions

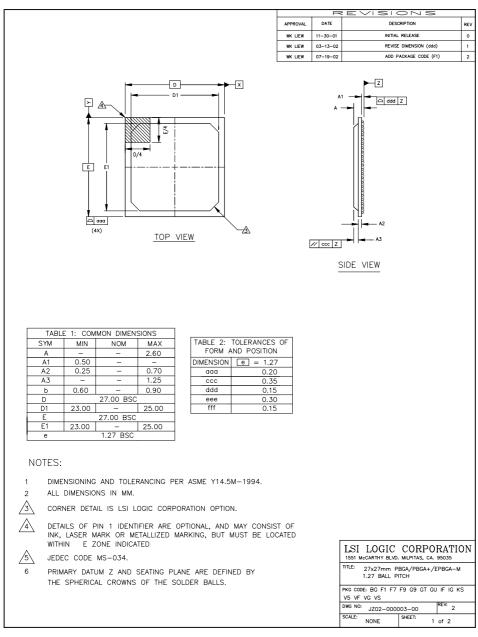

4.1.3 AC Characteristics

The AC characteristics described in this section apply over the entire range of operating conditions. Chip timing is based on simulation at worst case voltage, temperature, and processing. The LSI53C320 requires a 40 MHz clock input. Table 4.12 and Figure 4.4 provide clock timing data.

Symbol	Parameter	Min	Мах	Units
t ₁	Clock period	24.75	25.25	ns
t ₂	Clock low time	10	15	ns
t ₃	Clock high time	10	15	ns
t ₄	Clock rise time	1	_	V/ns

Table 4.12 Clock Timing

Figure 4.4 Clock Timing



4.2 Chip Drawings

This section provides the BGA and mechanical drawings for the LSI53C320.

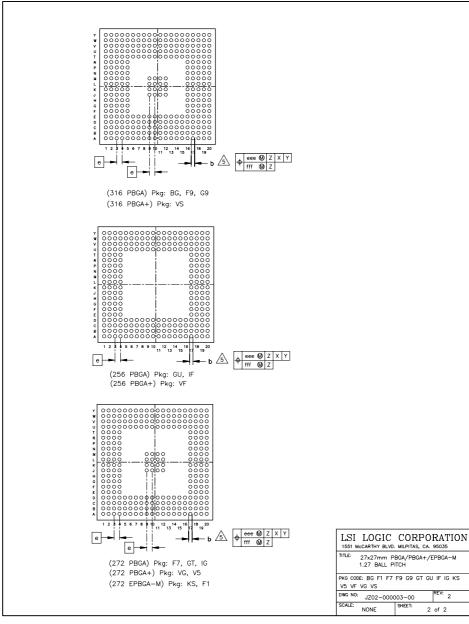

4.2.1 Mechanical Drawing

Figure 4.5 illustrates the LSI53C320 mechanical drawing. The LSI53C320 uses a 272-ball, PBGA package with a VG package code.

Figure 4.5 272-Ball-Count PBGA (VG) Mechanical Drawing (Sheet 1 of 2)

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code VG.

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code VG.

4.2.2 BGA Drawing

Figure 4.6 provides the BGA drawing for the LSI53C320. This drawing provides the pinout view when looking down on the chip from the top. Table 4.13 and Table 4.14 provide the pin lists for the LSI53C320.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
VSS _{SCSI} B1	VDD _{CORE} B2	NC B3	TEST_3 B4	NC B5	NC B6	WS_ENABLE/	XFER_ACTIVE B8	CLOCK B9	NC B10
-									
A_SD11+	B_DIFFSENS	A_DIFFSENS	TEST_6	TEST_5	S_DATA C6	VSS _{IO}	NC C8	BSY_LED	VSS _{CORE}
CI	02	63	C4	C5	C6	07	68	69	010
A_SD9+	A_SD11-	VSS _{CORE}	NC	TEST_4	NC	S_CLK	VDD _{IO}	NC	CHIP_RESET/
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
A_SD9-	A_SD10+	A_SD10-	VSS _{SCSI}	NC	VDD _{SCSI}	NC	VSS _{SCSI}	NC	VDD _{CORE}
E1	E2	E3	E4						
A_SIO+	A_SD8-	A_SD8+	NC						
F1	F2	F3	F4						
A_SREQ-	A_SREQ+	A_SIO-	VDD _{SCSI}						
G1	G2	G3	G4						
A_SSEL+	A_SCD-	A_SCD+	NC						
H1	H2	Н3	H4						
A_SMSG-	A_SMSG+	A_SSEL-	VSS _{SCSI}						
J1	J2	J3	J4					19	J10
A CACK	A CDCT	A CDCT.	NG					VSS _{SCSI}	VSS _{SCSI}
A_SACK+ K1	A_SRST- K2	A_SRST+ K3	NC K4					K9	K10
A_SBSY-	A_SACK-	A_SBSY+ L3	VDD _{SCSI}					VSS _{SCSI}	VSS _{SCSI}
VSS _{CORE}	A_SATN+ M2	A_SATN- M3	VDD _{CORE}					VSS _{SCSI}	VSS _{SCSI} M10
A_SDP0+	A_SDP0- N2	A_RBIAS	NC N4					VSS _{SCSI}	VSS _{SCSI}
A_SD7+	A_SD7-	A_SD6+	VSS _{SCSI}						
F 1	F2	F3	F4						
A_SD6-	A_SD5+	A_SD4+	NC R4						
кı	R2	R3	K4						
A_SD5-	A_SD4-	A_SD3-	VDD _{SCSI}						
T1	T2	Т3	Τ4						
A_SD3+	A_SD2+	A_SD1+	NC						
U1	U2	U3	U4	U5	U6	U7	U8	U9	U10
A_SD2-	A_SD1-	A_SD0-	VSS _{SCSI}	NC	VDD _{SCSI}	NC	VSS _{SCSI}	NC	VDD _{SCSI}
V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
A_SD0+	A_SDP1+	NC	A_SD14-	A_SD12+	NC	NC	NC	NC	NC
W1	W2	W3	W4	W5	W6	W7	W8	W9	W10
A_SDP1-	VDD _{CORE}	A_SD15+	A_SD14+	A_SD12-	NC	NC	NC	NC	NC
Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10
1/66			1.0046						
VSS _{CORE}	A_SD15-	A_SD13+	A_SD13-	NC	NC	NC	NC	NC	NC

Figure 4.6 LSI53C320 272-Ball BGA Top View¹

1. The top view drawings provides the chip pinout from the top side of the chip.

A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
B_SD12- B11	B_SD13+ B12	B_SD15- B13	B_SDP1+ B14	B_SD1- B15	B_SD2+ B16	B_SD4- B17	B_SD4+ B18	B_SD6+ B19	VSS _{CORE} B20
B_SD13-	B_SD14-	B_SD15+	B_SD0-	B_SD1+	B_SD3-	B_SD5+	B_SD6-	VDD _{CORE}	B_SD7-
CIII	012	013	014	015	016	017	0.18	019	020
B_SD12+	B_SD14+	B_SDP1-	B_SD0+	B_SD2-	B_SD3+	B_SD5-	NC	B_SD7+	B_SDP0-
D11	D12	D13	D14	D15	D16	D17	D18	D19	D20
VDD _{SCSI}	NC	VSS _{SCSI}	NC	VDD _{SCSI}	NC	VSS _{SCSI}	B_RBIAS	B_SDP0+	B_SATN+
						E17	E18	E19	E20
						NC	B_SATN-	B_SBSY-	B_SACK-
						F17	F18	F19	F20
						VDD _{SCSI}	B_SBSY+	B_SACK+	B_SRST+
						G17	G18	G19	G20
						NC	B_SRST-	B_SMSG-	B_SMSG+
						H17	H18	H19	H20
						VSS _{SCSI}	B_SSEL-	B_SSEL+	B SCD-
J11	J12	1				J17	J18	J19	J20
VSS _{SCSI}	Ves					NG	D. COD.	D ODEO	D. CDEO.
K11	VSS _{SCSI} K12					NC K17	B_SCD+ K18	B_SREQ- K19	B_SREQ+ K20
VSS _{SCSI}	VSS _{SCSI}					VDD _{CORE}	B_SIO- L18	B_SIO+ L19	VSS _{CORE}
VSS _{SCSI}	VSS _{SCSI} M12					VDD _{SCSI} M17	B_SD8+ M18	B_SD9- M19	B_SD8- M20
VSS _{SCSI}	VSS _{SCSI}					NC N17	B_SD10+	B_SD10-	B_SD9+ N20
									1120
						VSS _{SCSI}	NC P18	B_SD11+	B_SD11-
						P17	10	P19	P20
						NC	NC	NC	NC
						R17	R18	R19	R20
						VDD _{SCSI}	NC	NC	NC
						T17	T18	T19	T20
						NC	NC	NC	NC
U11	U12	U13	U14	U15	U16	U17	U18	U19	U20
VDD _{CORE}	NC	VSS _{SCSI}	NC	VDD _{SCSI}	NC	VSS _{SCSI}	NC	NC	NC
V11	V12	V13	V14	V15	V16	V17	V18	V19	V20
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
W11	W12	W13	W14	W15	W16	W17	W18	W19	W20
NC	NC	NC	NC	NC	NC	NC	NC	VDD _{CORE}	NC
Y11	Y12	Y13	Y14	Y15	Y16	Y17	Y18	Y19	Y20
1/66									1/66
VSS _{CORE}	NC	NC	NC	NC	NC	NC	NC	NC	VSS _{CORE}

Figure 4.6 LSI53C320 272-Ball BGA Top View (Cont.)

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
A_DIFFSENS	B3	A_SSEL-	H3	B_SSEL+	H19	NC	V9	VDD _{SCSI}	D6
A_RBIAS	M3	B_DIFFSENS	B2	B_SSEL-	H18	NC	V10	VDD _{SCSI}	D11
A_SACK+	J1	B_RBIAS	D18	BSY_LED	B9	NC	V11	VDD _{SCSI}	D15
A_SACK-	K2	B_SACK+	F19	CHIP_RESE	T/ C10	NC	V12	VDD _{SCSI}	F4
A_SATN+	L2	B_SACK-	E20	CLOCK	A9	NC	V13	VDD _{SCSI}	F17
A_SATN-	L3	B_SATN+	D20	NC	A3	NC	V14	VDDscsi	K4
A_SBSY+	K3	B_SATN-	E18	NC	A5	NC	V15	VDDscsi	L17
A_SBSY-	K1	B_SBSY+	F18	NC	A6	NC	V16	VDD _{SCSI}	R4
A_SCD+	G3	B_SBSY-	E19	NC	A10	NC	V17	VDD _{SCSI}	R17
A_SCD-	G2	B_SCD+	J18	NC	B8	NC	V18	VDD _{SCSL}	U6
A_SD0+	V1	B_SCD-	H20	NC	C4	NC	V19	VDDecei	U10
A_SD0-	U3	B_SD0+	C14	NC	C6	NC	V20	VDD _{SCSI}	U15
A_SD1+	Т3	B_SD0-	B14	NC	C9	NC	W6	VSS _{CORE}	A20
A_SD1-	U2	B_SD1+	B15	NC	C18	NC	W7	VSS _{CORE}	B10
A_SD10+	D2	B_SD1-	A15	NC	D5	NC	W8	VSS _{CORF}	C3
A_SD10-	D3	B_SD10+	M18	NC	D7	NC	W9	VSS _{CORE}	K20
A_SD11+	B1	B_SD10-	M19	NC	D9	NC	W10	VSS _{CORE}	L1
A_SD11-	C2	B_SD11+	N19	NC	D12	NC	W11	VSSCORE	Y1
A_SD12+	V5	B_SD11-	N20	NC	D14	NC	W12	VSS _{CORE}	Y11
A_SD12-	W5	B_SD12+	C11	NC	D16	NC	W13	VSS _{CORE}	Y20
A_SD13+	Y3	B_SD12-	A11	NC	E4	NC	W14	VSSin	B7
A_SD13-	Y4	B_SD13+	A12	NC	E17	NC	W15	VSSecel	A1
A SD14+	W4	B_SD13-	B11	NC	G4	NC	W16	VSS _{SCSI}	D4
A SD14-	V4	B SD14+	C12	NC	G17	NC	W17	VSS _{SCSI}	D8
A_SD15+	W3	B_SD14-	B12	NC	J4	NC	W18	VSS _{SCSI}	D13
A SD15-	Y2	B SD15+	B13	NC	J17	NC	W20	VSS _{SCSI}	D17
A_SD2+	T2	B_SD15-	A13	NC	M4	NC	Y5	VSSecel	H4
A_SD2-	U1	B_SD2+	A16	NC	M17	NC	Y6	VSSecel	H17
A_SD3+	T1	B_SD2-	C15	NC	N18	NC	Y7	VSS _{SCSI}	J9
A SD3-	R3	B SD3+	C16	NC	P4	NC	Y8	VSSecel	J10
A_SD4+	P3	B SD3-	B16	NC	P17	NC	Y9	VSS _{SCSI}	J11
A SD4-	R2	B SD4+	A18	NC	P18	NC	Y10	VSS _{SCSI}	J12
A SD5+	P2	B SD4-	A17	NC	P19	NC	Y12	VSS _{SCSI}	K9
A SD5-	R1	B_SD5+	B17	NC	P20	NC	Y13	VSSecel	K10
A_SD6+	N3	B_SD5-	C17	NC	R18	NC	Y14	VSSecel	K11
A_SD6-	P1	B_SD6+	A19	NC	R19	NC	Y15	VSSecel	K12
A_SD7+	N1	B_SD6-	B18	NC	R20	NC	Y16	VSS _{SCSI}	L9
A SD7-	N2	B SD7+	C19	NC	T4	NC	Y17	VSS _{SCSI}	L10
A SD8+	E3	B SD7-	B20	NC	T17	NC	Y18	VSS _{SCSI}	L11
A_SD8-	E2	B_SD8+	L18	NC	T18	NC	Y19	VSS _{SCSI}	L12
A_SD9+	C1	B_SD8-	L20	NC	T19	S_CLK	C7	VSSecel	M9
A_SD9-	D1	B_SD9+	M20	NC	T20	S_DATA	B6	VSSecer	M10
A_SDP0+	M1	B_SD9-	L19	NC	U5	TEST_3	A4	VSSecel	M11
A_SDP0-	M2	B_SDP0+	D19	NC	U7	TEST_4	C5	VSS _{SCSI}	M12
A SDP1+	V2	B SDP0-	C20	NC	U9	TEST 5	B5	VSS _{SCSI}	N4
A_SDP1-	W1	B_SDP1+	A14	NC	U12	TEST_6	B4	VSS _{SCSI}	N17
A_SIO+	E1	B SDP1-	C13	NC	U14	VDD _{CORE}	A2	VSS _{SCSI}	U4
A SIO-	F3	B SIO+	K19	NC	U16	VDD _{CORE}	B19	VSS _{SCSI}	U8
A_SMSG+	H2	B_SIO-	K18	NC	U18	VDD _{CORE}	D10	VSS _{SCSI}	U13
A_SMSG-	H1	B_SMSG+	G20	NC	U19	VDD _{CORE}	K17	VSS _{SCSI}	U17
A_SREQ+	F2	B_SMSG-	G19	NC	U20		L4	WS_ENABLE	
A_SREQ-	F1	B_SREQ+	J20	NC	V3	VDD _{CORE}	U11	XFER_ACTI	
A_SRST+	J3	B_SREQ-	J19	NC	V6	VDD _{CORE}	W2		
A_SRST-	J2	B_SRST+	F20	NC	V7	VDD _{CORE}	W19		
A_SSEL+	G1	B_SRST-	G18	NC	V8	VDDIO	C8		

Table 4.13 Pin List by Signal Name

Table 4.14	Pin List	by BGA	Position
------------	----------	--------	----------

A1 VSS _{SCSI} C16 B_SD3+ H19 B_SSE1+ N18 NC V V A3 NDCORE C17 B_SD7 JJ A_SACK+ N20 B_SD1+ V10 NC A4 TEST_3 C19 B_SD70+ JJ A_SAST+ P2 A_SD6+ V12 NC A5 NC D A_SD0+ JJ A_SAST+ P2 A_SD6+ V14 NC A5 NC D A_SD10+ J0 VSS _{SCSI} P4 NC V15 NC A6 NC D A_SD10+ J10 VSS _{SCSI} P17 NC V16 NC A10 DCK D4 VSS _{SCSI} J11 VSS _{SCSI} P18 NC V17 NC A10 DCK D5 ND _{SCSI} J117 NS _{SCSI} P18 NC V17 NC A14 B_SD1+ D17 NC SD1 NC V16	Pin	Signal								
A3 NC C18 NC J1 A_SACK+ N20 B_SD1- V11 NC A5 NC C20 B_SD7+ J2 A_SRST+ P1 A_SD6- V12 NC A5 NC D1 A_SD9+ J4 NC P3 A_SD4+ V14 NC A7 WS_ENABLE/ D2 A_SD10- J0 VSSccs1 P17 NC V16 NC A9 CLOCK D4 VSSSccs1 P18 NC V17 NC A10 NC D5 NC J17 NC P20 NC V18 NC A11 B_SD12- D6 VDbcSt1 J17 NC P20 NC V18 NC A13 B_SD14- D1 NDbcore J30 B_SREC- R2 A_SD3- W1 A_SD14+ A17 B_SD2+ D11 VDbcore K1 A_SBSY+ R4 VDbccs1 W20 <t< td=""><td>A1</td><td>VSS_{SCSI}</td><td>C16</td><td>B_SD3+</td><td>H19</td><td>B_SSEL+</td><td>N18</td><td>NC</td><td>V9</td><td></td></t<>	A1	VSS _{SCSI}	C16	B_SD3+	H19	B_SSEL+	N18	NC	V9	
A3 NC C18 NC J1 A_SACK+ N20 B_SD1+ V11 NC A5 NC C20 B_SD7+ J2 A_SRST+ P1 A_SD6+ V12 NC A5 NC D1 A_SD9+ J4 NC P3 A_SD4+ V14 NC A7 WS_ENABLE/ D2 A_SD10- J0 VSS3cs1 P17 NC V16 NC A9 CLOCK D4 VSS3cs1 P18 NC V17 NC A10 NC D5 NC J17 NC P20 NC V18 NC A11 B_SD1+ D8 VSScs1 P18 NC V18 NC A13 B_SD1+ D9 NC J38 B_SSC+ R1 A_SD3- V20 NC A13 B_SD1+ D10 VDD_CORE K1 A_SBSY+ R1 A_SD3- V20 NC NS A_SD14+	A2	VDD _{CORE}	C17	B_SD5-	H20	B_SCD-				NC
A5 NC C20 B_SDP0- J3 A_SRST- P2 A_SD4+ V13 NC A6 NC D1 A_SD9- J4 NC P3 A_SD4+ V14 NC A7 WS_ENABLE/ D2 A_SD10- J9 VSS _{SCS1} P17 NC V16 NC A9 CLOCK D4 VSS _{SCS1} J11 VSS _{SCS1} P19 NC V18 NC A11 B_SD12- D6 VDD _{SCS1} J17 NC P20 NC V18 NC A12 B_SD13+ D7 NC J20 B_SREO- R2 A_SD3- V20 NC A14 B_SD1- D10 VDCoccel K1 A_SD3- V20 NC V14 A_SD1+ A14 B_SD1- D10 VDCoccel K2 A_SD3- V20 NC V14 A_SD1+ A14 B_SD1- D10 VDCoccel K12 A_SD3-	A3	NC	C18			A_SACK+		B_SD11-		NC
A6 NC D1 A SD10+ SD10+ A J4 NC P3 A SD4+ A V14 NC A7 VMS ENABLE/ A D2 A SD10+ A J10 VSS _{SCS1} P14 NC V15 NC A9 CLOCK D4 VSS _{SCS1} J11 VSS _{SCS1} P18 NC V17 NC A11 B_SD12- D5 D5 NC J11 VSS _{SCS1} P19 NC V18 NC A11 B_SD12- D5 D7 NC J18 B_SCD+ A R1 A_SD2- V20 W1 A_SD2- V20 W1 A_SD14+ A W1 A_SD2- V20 W1 A_SD14+ A W1 A_SD14+ A W1 A_SD14+ W1 W1 A_SD14+ W1 W1 A_SD2- W1 W1 A_SD14+ W1 W1 A_SD2- W1 W1 A_SD14+ A W1 A_SD14+ W1 W1 <t< td=""><td></td><td></td><td></td><td>_</td><td>1</td><td>-</td><td></td><td>_</td><td></td><td></td></t<>				_	1	-		_		
A7 WS_ENABLE/ D2 A_SD10+ J9 VSS_SCSI P4 NC V16 NC A8 XFER_ACTIVE D4 VSS_SCSI J11 VSS_SCSI P18 NC V16 NC A10 NC D5 NC J11 VSS_SCSI P19 NC V19 NC A11 B_SD12- D6 VDS_SCSI J17 NC P20 N.C V19 NC A13 B_SD15- D6 VSS_SCSI J19 B.SREQ- R2 A_SD4- V11 A_SD71- A14 B_SD12- D10 VDD_CORE K1 A_SBSY+ R1 A_SD2- W2 VD_CORE A15 B_SD4- D12 NC K3 A_SBSY+ R18 NC W7 A_SD12- A18 B_SD4- D13 VSS_SCSI R19 NC W6 NC W7 NC A20 VSS_SCBE D15 VDD_SCSI K4 NC					1					
A8 XFER_ACTIVE D3 A_SD10- J10 VSS_SCSI P17 NC V16 NC A10 NC D5 NC J12 VSS_SCSI P19 NC V17 NC A11 B_SD12- D6 VDD _{GCSI} J17 NC P20 NC V19 NC A12 B_SD15- D8 VSS _{SCSI} J19 B_SREQ- R2 A_SD2- V10 NC 20 NC V10 NC A15 B_SD1- D9 NC J20 B_SREQ- R3 A_SD3- W1 A_SD14+ A16 B_SD2+ D11 VDD _{CORE} K1 A_SBSY- R4 VDD _{SCSI} W4 A_SD14+ A17 B_SD4+ D12 NC K3 A_SBSY- R10 VSS _{SCSI} T1 A_SD2+ W9 NC A19 B_SD4+ D14 NC K3 A_SB14+ NC W6 NC W7 NC						NC	-		1	
A8 XFER_ACTIVE D3 A_SD10- J10 VSS_SCSI P17 NC V16 NC A10 NC D5 NC J12 VSS_SCSI P19 NC V17 NC A11 B_SD12- D6 VDD _{GCSI} J17 NC P20 NC V19 NC A12 B_SD15- D8 VSS _{SCSI} J19 B_SREQ- R2 A_SD2- V10 NC 20 NC V10 NC A15 B_SD1- D9 NC J20 B_SREQ- R3 A_SD3- W1 A_SD14+ A16 B_SD2+ D11 VDD _{CORE} K1 A_SBSY- R4 VDD _{SCSI} W4 A_SD14+ A17 B_SD4+ D12 NC K3 A_SBSY- R10 VSS _{SCSI} T1 A_SD2+ W9 NC A19 B_SD4+ D14 NC K3 A_SB14+ NC W6 NC W7 NC		_		_	1	VSS _{SCSI}			-	
A9 CLOCK D4 VSSscsi J11 VSSscsi P18 NC V17 NC A10 NC D5 NC J17 NC P20 NC V18 NC A11 B_SD12+ D6 VDD _{SCSI} J17 NC P20 NC V18 NC A13 B_SD13+ D7 NC J18 B_SCD+ R1 A_SD2- V10 NC A14 B_SD1+ D8 NC J20 B_SREQ+ R2 A_SD3- W2 VDD _{OCRE} A15 B_SD4- D10 VD _{SSCSI} K14 A_SB5Y- R4 VD _{DSCSI} W3 A_SD12+ A18 B_SD4- D12 NC K3 A_SB5Y- R1 VD _{DSCSI} W3 A_SD12+ A18 B_SD4+ D13 VSSccsi R14 A_SD2+ W9 NC A19 B_SD6+ D14 NC K4 VD_DSCSi R14 NC		_			1	VSS _{SCSI}				
A11 B_SD12+ D6 VDD _{SCSI} J17 NC P20 NC V19 NC A12 B_SD13+ D7 NC J19 B_SCD+ R1 A_SD5- V20 NC A14 B_SD15- D8 VSS _{SCSI} J19 B_SRE0+ R2 A_SD3- W2 VDD _{CORE} A15 B_SD1- D10 VDD _{CORE} K1 A_SBSY- R4 VDD _{SCSI} W3 A_SD14+ A17 B_SD4- D12 NC K3 A_SBSY- R19 NC W5 A_SD12+ A18 B_SD4+ D13 VSS _{SCSI} K4 VDD _{SCSI} R19 NC W6 NC A19 B_SD6+ D16 VC K10 VSS _{SCSI} R20 NC W7 NC B_2 D1FFSENS D18 B_RBAS K11 VDS _{SCSI} T3 A_SD1+ W10 NC B_3 A_SD17+ D18 SD17 VSS _{SCSI} <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>VSS_{SCSI}</td> <td>-</td> <td></td> <td></td> <td></td>					-	VSS _{SCSI}	-			
A12 B_SD13+ D7 NC J18 B_SCD+ R1 A_SD5- V20 NC A13 B_SD15- D8 VSS _{SCSI} J19 B_SREQ- R2 A_SD3- W2 VDD _{CORE} A14 B_SD1- D10 VDD _{CORE} K1 A_SBSY- R4 VDD _{SCSI} W3 A_SD15- A16 B_SD4- D12 NC K3 A_SBSY- R17 VDD _{SCSI} W4 A_SD14- A17 B_SD4+ D12 NC K3 A_SBSY- R18 NC W6 A_SD12- A18 B_SD4+ D14 NC K4 VDS _{SCSI} R19 NC W6 A_SD12- A18 B_SD4+ D16 NC K11 VSS _{SCSI} R2 NC W7 NC B2 B_DIFFSENS D18 B_SD0+ K11 VSS _{SCSI} T3 A_SD1+ W10 NC B4 TEST_6 D19 B_SD1+ K10 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>VSS_{SCSI}</td> <td>-</td> <td></td> <td>-</td> <td></td>		-				VSS _{SCSI}	-		-	
A13 B_SDP1+ D9 NC J19 B_SRE0+ R2 A_SD4- W1 A_SDP1- A14 B_SD1+ D9 NC J20 B_SRE0+ R3 A_SD3- W2 VDD _{CORE} A15 B_SD1- D10 VDD _{CORE} K1 A_SBSY- R3 A_SD3- W2 VDD _{CORE} A16 B_SD4- D12 NC K3 A_SBSY+ R1 VDD _{SCSI} W4 A_SD14+ A17 B_SD4- D13 VSS _{SCSI} K4 VDD _{SCSI} R19 NC W6 NC A19 B_SD6+ D14 NC K9 VSS _{SCSI} T1 A_SD3+ W8 NC B1 A_SD11+ D16 NC K11 VSS _{SCSI} T2 A_SD2+ W9 NC B2 B_DIFFSENS D18 B_RBIAS K17 VD _{CORE} T4 NC W11 NC B4 TEST_6 D20 B_SATN+ K19		_		VDD _{SCSI}	1		-			
A14 B_SDP1+ D9 NC J20 B_SREQ+ R3 A_SD3- W2 VDD _{CORE} A15 B_SD4+ D10 VDD _{CORE} K1 A_SBSY- R14 VDD _{SCSI} W3 A_SD14+ A17 B_SD4+ D12 NC K3 A_SBSY+ R18 NC W5 A_SD14+ A18 B_SD4+ D12 NC K3 A_SBSY+ R18 NC W5 A_SD14+ A19 B_SO6+ D14 NC K9 VSS _{SCSI} R20 NC W7 NC A20 VSS _{CORE} D15 VDD _{SCSI} K11 VSS _{SCSI} T2 A_SD2+ W9 NC B3 A_DIFFSENS D18 B_RBIAS K17 VD _{CORE} T4 NC W11 NC B4 TEST_6 D19 B_SDP0+ K18 B_SIO+ T18 NC W13 NC B5 TEST_5 D20 B_SATN+ K19		_			1				-	
A15 B_SD1- D10 VDD_CORE K1 A_SBSY- R4 VDD_SCSI W3 A_SDT4- A16 B_SD2+ D11 VDD_SCSI K2 A_SACK- R17 VDD_SCSI W4 A_SD14+ A17 B_SD4+ D12 NC K3 A_SBSY+ R18 NC W5 A_SD14- A18 B_SD6+ D14 NC K9 VSS _{SCSI} R19 NC W6 NC A19 B_SD6+ D14 NC K9 VSS _{SCSI} T1 A_SD2+ W9 NC A20 VSS _{CORE} D16 NC K11 VSS _{SCSI} T2 A_SD2+ W9 NC B3 A_DIFFSENS D18 B_RBIAS K17 VD _{CORE} T4 NC W11 NC B4 TEST_6 D20 B_SATN+ K19 B_SIO- T17 NC W14 NC B5 S_DATA E1 A_SIO+ K18 <				VSS _{SCSI}						_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1			_	1	
A17 B_SD4+ D12 NC K3 A_SBSY+ R18 NC W5 A_SD12- A18 B_SD6+ D14 NC K4 VDDScS1 R19 NC W6 NC A20 VSS _{CORE} D15 VDD _{SCS1} K10 VSS _{SCS1} T1 A_SD3+ W8 NC B1 A_SD11+ D16 NC K11 VSS _{SCS1} T1 A_SD2+ W9 NC B2 B_DIFFSENS D17 VSS _{SCS1} K12 VSS _{SCS1} T3 A_SD1+ W10 NC B3 A_DIFFSENS D18 B_SD0+ K18 B_SIO- T17 NC W11 NC B6 S_DATA E1 A_SIO+ K20 VSS _{CORE} T19 NC W14 NC B7 VSSi0 E2 A_SD8+ L2 A_SATN+ U2 A_SD1- W17 NC B9 BSY_LED E4 NC L3 A_SATN		_		VDD _{CORE}						_
A18 B_SD4+ D13 VSS _{SCSI} K4 VDD _{SCSI} R12 NC W6 NC A19 B_SD6+ D14 NC K9 VSS _{SCSI} R20 NC W7 NC A20 VSS _{CORE} D15 VDD _{SCSI} K10 VSS _{SCSI} T2 A_SD2+ W9 NC B1 A_SD11+ D16 NC K11 VSS _{SCSI} T2 A_SD2+ W9 NC B3 A_DIFFSENS D18 B_RBIAS K17 VDD _{CORE} T4 NC W11 NC B5 TEST_5 D20 B_SATN+ K19 B_SIO+ T18 NC W13 NC B6 S_DATA E1 A_SIO+ K20 VSS _{CORE} T19 NC W14 NC B7 VSio E2 A_SD8+ L1 VSS _{CORE} T19 NC W15 NC B8 NC E3 A_SD8+ L2 A_SATN+				VDD _{SCSI}				VDD _{SCSI}	1	
A19 B_SD6+ D14 NC K9 VSS_SCSI R20 NC W7 NC A20 VSS_SCSI T1 A_SD3+ W8 NC W7 NC B1 A_SD11+ D16 VDD_SCSI K10 VSS_SCSI T2 A_SD2+ W9 NC B2 B_DIFFSENS D17 VSS_SCSI K12 VSS_SCSI T3 A_SD1+ W10 NC B3 A_DIFFSENS D18 B_RBIAS K17 VDD_CORE T4 NC W11 NC B4 TEST_5 D20 B_SATN+ K19 B_SIO+ T18 NC W13 NC B6 S_DATA E1 A_SIO+ K20 NSC W14 NC W14 NC B7 VSS ₁₀ E2 A_SD8+ L1 VSS_CORE T19 NC W14 NC B8 NC E3 A_SD8+ L2 A_SATN+ U2 A_SD0-		_			1				1	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				VSS _{SCSI}	1	VDD _{SCSI}	-		-	
Bit A_SD1+ D16 NC K11 VSS _{SCSI} T2 A_SD2+ W9 NC B2 B_DIFFSENS D17 VSS _{SCSI} K12 VSS _{SCSI} T3 A_SD1+ W10 NC B3 A_DIFFSENS D18 B_BIAS K17 VDD _{CORE} T4 NC W11 NC B4 TEST_6 D19 B_SDP0+ K18 B_SIO- T17 NC W12 NC B5 TEST_5 D20 B_SATN+ K19 B_SOP W14 NC B6 S_DATA E1 A_SD8+ L1 VSS _{CORE} T19 NC W14 NC B7 VSS _{IO} E2 A_SD8- L1 VSS _{CORE} W17 NC B8 NC E3 A_SD8+ L10 VSS _{SCSI} U4 VSS _{SCSI} W17 NC B11 B_SD13+ E20 B_SACK+ L10 VSS _{SCSI} U7 NC Y2 A_SD15-		_			1	VSS _{SCSI}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				VDD _{SCSI}	1	VSS _{SCSI}		-	1	
B3 A_DIFFSENS D18 B_RBIAS K17 VDD _{CORE} T4 NC W11 NC B4 TEST_6 D19 B_SDP0+ K18 B_SIO- T17 NC W12 NC B5 TEST_5 D20 B_SATN+ K19 B_SIO+ T18 NC W13 NC B6 S_DATA E1 A_SIO+ K20 VSS _{CORE} T20 NC W14 NC B7 VSS _{IO} E2 A_SD8+ L2 A_SATN+ U1 A_SD2- W16 NC B8 NC E3 A_SD8+ L2 A_SATN+ U2 A_SD1- W17 NC B10 VSS _{CORE} E17 NC L4 VDD _{CORE} U3 A_SD0- W18 NC B11 B_SD15+ E10 B_SBSY- L10 VSS _{SCSI} U5 NC W20 NC B13 B_SD15+ E14 A_SREQ- L12 VSS _{SCS}		_			1	VSS _{SCSI}			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		VSS _{SCSI}	1	VSS _{SCSI}			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_			1					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					-				1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		_	1	VSSCORE	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	A SATNI			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	1		_	_		
Bit B_SD13- E18 B_SATN- L9 VSS_SCSI U4 VSS_SCSI W19 VDD_CORE B12 B_SD14- E19 B_SBSY- L10 VSS_SCSI U5 NC W20 NC B13 B_SD15+ E20 B_SACK- L11 VSS_SCSI U6 VDD_SCSI Y1 VSS_CORE B14 B_SD0- F1 A_SREQ- L12 VSS_SCSI U7 NC Y2 A_SD13- B15 B_SD3- F3 A_SIO- L18 B_SD8+ U9 NC Y4 A_SD13- B17 B_SD5+ F4 VDD_SCSI L19 B_SD9- U10 VDD_SCSI Y5 NC B18 B_SD6- F17 VDS_SCSI L20 B_SD8- U11 VDD_CORE Y8 NC C1 A_SD9+ F20 B_SRST+ M3 A_RBIAS U14 NC Y9 NC C2 A_SD11- G1 A_SSEL+					1			_	1	
B12B_SD14-E19B_SBSY-L10VSSSCSIU5NCW20NCB13B_SD15+E20B_SACK-L11VSSSCSIU6VDDSCSIY1VSSCOREB14B_SD0-F1A_SREQ-L12VSSSCSIU7NCY2A_SD15-B15B_SD1+F2A_SREQ+L17VDDSCSIU8VSSSCSIY3A_SD13+B16B_SD3-F3A_SIO-L18B_SD9-U10VDDSCSIY5NCB18B_SD6-F17VDDSCSIL20B_SD9-U10VDDCREY6NCB19VDDCOREF18B_SBSY+M1A_SDP0+U12NCY7NCB20B_SD7-F19B_SACK+M2A_SDP0+U13VSSSCSIY8NCC1A_SD9+F20B_SRST+M3A_RBIASU14NCY9NCC2A_SD11-G1A_SSEL+M4NCU15VDDSCSIY10NCC3VSSCOREG2A_SCD-M9VSSSCSIU16NCY11VSSCOREC4NCG3A_SCD+M10VSSSCSIU17VSSSCSIY12NCC5TEST_4G4NCM11VSSSCSIU19NCY14NCC6NCG17NCM12VSSSCSIU19NCY14NCC7S_CLKG18B_SRST-M17NCU20NC<		B SD13-				VSSoool				
B13B_SD15+E20B_SACK-L11VSSSCSIU6VDDSCSIY1VSSCOREB14B_SD0-F1A_SREQ-L12VSSSCSIU7NCY2A_SD15-B15B_SD1+F2A_SREQ+L17VDDSCSIU8VSSSCSIY3A_SD13+B16B_SD3-F3A_SIO-L18B_SD8+U9NCY4A_SD13-B17B_SD5+F4VDDSCSIL19B_SD9-U10VDD_COREY6NCB18B_SD6-F17VDDSCSIL20B_SD8-U11VDD_COREY6NCB19VDD_COREF18B_SBSY+M1A_SDP0+U12NCY7NCB20B_SD7-F19B_SACK+M2A_SDP0-U13VSSSCSIY10NCC1A_SD9+F20B_SRST+M3A_RBIASU14NCY9NCC3VSSCOREG2A_SCD-M9VSSSCSIU16NCY11VSScoreC4NCG3A_SCD+M10VSSScSIU17VSSSCSIY10NCC5TEST_4G4NCM11VSSSCSIU17VSSSCSIY12NCC6NCG17NCM12VSSSCSIU18NCY14NCC7S_CLKG18B_SRST-M17NCU20NCY14NCC7S_CLKG18B_SRG6-M18B_SD10+V1 <t< td=""><td></td><td>_</td><td></td><td>_</td><td>1</td><td>VSScore</td><td></td><td></td><td>1</td><td>NC</td></t<>		_		_	1	VSScore			1	NC
B14 B_SD0- F1 A_SREQ- L12 VSS _{SCSI} U7 NC Y2 A_SD15- B15 B_SD1+ F2 A_SREQ+ L17 VDD _{SCSI} U8 VSS _{SCSI} Y3 A_SD13+ B16 B_SD3- F3 A_SIO- L18 B_SD8+ U9 NC Y4 A_SD13- B17 B_SD5+ F4 VDD _{SCSI} L19 B_SD9- U10 VDD _{SCSI} Y5 NC B18 B_SD6- F17 VDD _{SCSI} L20 B_SD8- U11 VDD _{CORE} Y6 NC B19 VDD _{CORE} F18 B_SBSY+ M1 A_SDP0- U13 VSS _{SCSI} Y8 NC C1 A_SD9+ F20 B_SRST+ M3 A_RBIAS U14 NC Y9 NC C2 A_SD11- G1 A_SSEL+ M4 NC U15 VDD _{SCSI} Y10 NC C3 VSS _{CORE} G2 A_SCD+ M9 VSS _{SCSI} U17 VSS _{SCSI} Y12 NC C4		_		_	-	VSSecel			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		_	1	VSSecel		NC		A SD15-
B16 B_SD3- F3 A_SIO- L18 B_SD8+ U9 NC Y4 A_SD13- B17 B_SD5+ F4 VDD _{SCSI} L19 B_SD9- U10 VDD _{SCSI} Y5 NC B18 B_SD6- F17 VDD _{SCSI} L20 B_SD8- U11 VDD _{CORE} Y6 NC B19 VDD _{CORE} F18 B_SBSY+ M1 A_SDP0+ U12 NC Y7 NC B20 B_SD7- F19 B_SACK+ M2 A_SDP0- U13 VSS _{SCSI} Y8 NC C1 A_SD9+ F20 B_SRST+ M3 A_RBIAS U14 NC Y9 NC C3 VSS _{CORE} G2 A_SCD- M9 VSS _{SCSI} U16 NC Y11 VSS _{CORE} C4 NC G3 A_SCD+ M10 VSS _{SCSI} U17 VSS _{SCSI} Y12 NC C5 TEST_4 G4 NC M11 VSS _{SCSI} U19 NC Y14 NC C7 S_CLK		_		-	1				1	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B16	_	F3	_	L18		U9	NC	Y4	_
B18 B_SD6- F17 VDD_{SCSI} L20 B_SD8- U11 VDD_{CORE} Y6 NC B19 VDD_{CORE} F18 B_SBSY+ M1 A_SDP0+ U12 NC Y7 NC B20 B_SD7- F19 B_SACK+ M2 A_SDP0- U13 VSS_{SCSI} Y8 NC C1 A_SD9+ F20 B_SRST+ M3 A_RBIAS U14 NC Y9 NC C2 A_SD11- G1 A_SSEL+ M4 NC U15 VDD_{SCSI} Y10 NC C3 VSS _{CORE} G2 A_SCD- M9 VSS _{SCSI} U16 NC Y13 NC C4 NC G1 A_SCD+ M10 VSS _{SCSI} U17 VSS _{SCSI} Y12 NC C5 TEST_4 G4 NC M11 VSS _{SCSI} U18 NC Y13 NC C6 NC G17 NC M12 VSS _{SCSI} U19 NC Y14 NC C7 S_LCLK <			F4				U10	VDDscsi	Y5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B18	B_SD6-	F17	VDD _{SCSI}	L20		U11	VDD _{CORE}	Y6	NC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B19	VDD _{CORE}	F18	B_SBSY+	M1	A_SDP0+	U12	NC	Y7	NC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B20	B_SD7-	F19	B_SACK+	M2	A_SDP0-	U13	VSS _{SCSI}	Y8	NC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	A_SD9+	F20	B_SRST+	M3	A_RBIAS	U14	NC	Y9	NC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2		G1	A_SSEL+	M4		U15	VDD _{SCSI}	Y10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	VSS _{CORE}	G2	A_SCD-	M9	VSS _{SCSI}	U16	NC	Y11	VSS _{CORE}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	NC	G3	A_SCD+	M10	VSS _{SCSI}	U17	VSS _{SCSI}	Y12	NC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C5	TEST_4	G4	NC		VSS _{SCSI}	U18	NC		NC
C7 S_CLK G18 B_SRST- M17 NC U20 NC Y15 NC C8 VDD _{IO} G19 B_SMSG- M18 B_SD10+ V1 A_SD0+ Y16 NC C9 NC G20 B_SMSG+ M19 B_SD10+ V2 A_SDP1+ Y17 NC C10 CHIP_RESET/ H1 A_SMSG- M20 B_SD9+ V3 NC Y18 NC C11 B_SD12+ H2 A_SMSG+ N1 A_SD7+ V4 A_SD14- Y19 NC C12 B_SD14+ H3 A_SSEL- N2 A_SD7- V5 A_SD12+ Y20 VSS _{CORE} C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC V7 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC V7			G17		1	VSS _{SCSI}			1	
C9 NC G20 B_SMSG+ M19 B_SD10- V2 A_SDP1+ Y17 NC C10 CHIP_RESET/ H1 A_SMSG- M20 B_SD9+ V3 NC Y18 NC C11 B_SD12+ H2 A_SMSG+ N1 A_SD7+ V4 A_SD14- Y19 NC C12 B_SD14+ H3 A_SSEL- N2 A_SD7- V5 A_SD12+ Y20 VSS _{CORE} C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC V7 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC V7					1	NC			-	
C10 CHIP_RESET/ H1 A_SMSG- M20 B_SD9+ V3 NC Y18 NC C11 B_SD12+ H2 A_SMSG+ N1 A_SD7+ V4 A_SD14- Y19 NC C12 B_SD14+ H3 A_SSEL- N2 A_SD7- V5 A_SD12+ Y20 VSS _{CORE} C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC				-	-	-			-	
C11 B_SD12+ H2 A_SMSG+ N1 A_SD7+ V4 A_SD14- Y19 NC C12 B_SD14+ H3 A_SSEL- N2 A_SD7- V5 A_SD12+ Y20 VSS _{CORE} C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC					1	-		_	1	
C12 B_SD14+ H3 A_SSEL- N2 A_SD7- V5 A_SD12+ Y20 VSS _{CORE} C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC V7 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC V7 NC					1				1	
C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC					1				1	
C13 B_SDP1- H4 VSS _{SCSI} N3 A_SD6+ V6 NC C14 B_SD0+ H17 VSS _{SCSI} N4 VSS _{SCSI} V7 NC		_		-	1	-			Y20	VSS _{CORE}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1					
CIS B_SDZ- HIN B_SSEL- N1/ VSS _{SCSI} VN NC		_			1	VSS _{SCSI}				
	C15	B_SD2-	H18	B_SSEL-	N1/	VSS _{SCSI}	V8	NC		

Appendix A Wiring Diagrams

A.1 LSI53C320 Wiring Diagrams

Figures A.1 through A.4 provide wiring diagrams for a typical LSI53C320 configuration in a evaluation test board application.

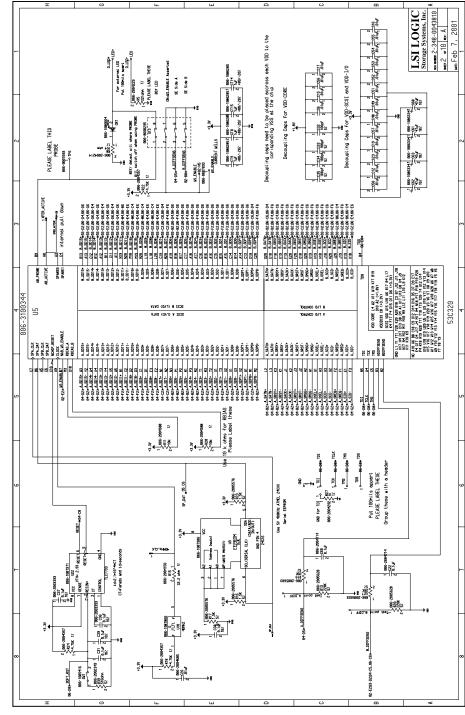


Figure A.1 LSI53C320 Wiring Diagram 1 of

4

Wiring Diagrams Version 2.2

A-2

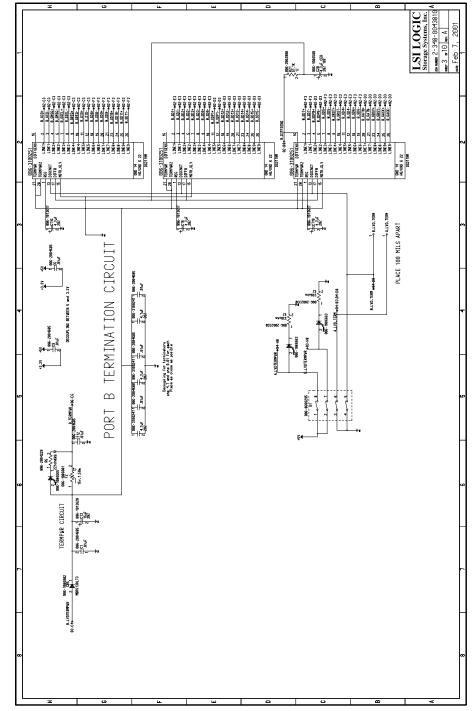


Figure A.2 LSI53C320 Wiring Diagram 2 of 4

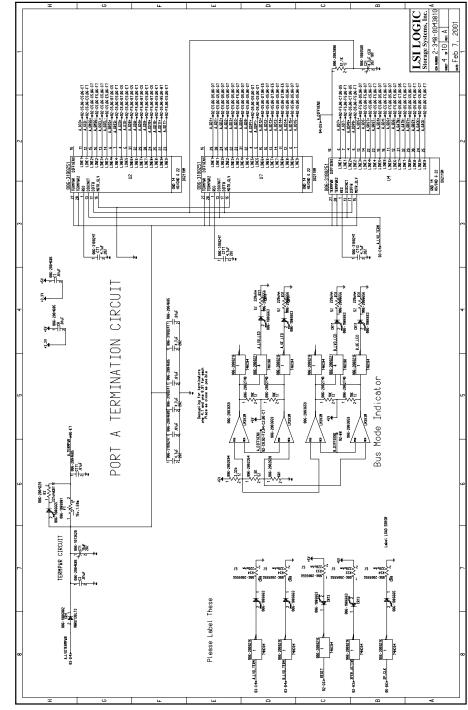


Figure A.3 LSI53C320 Wiring Diagram 3 of

4

Wiring Diagrams Version 2.2

A-4

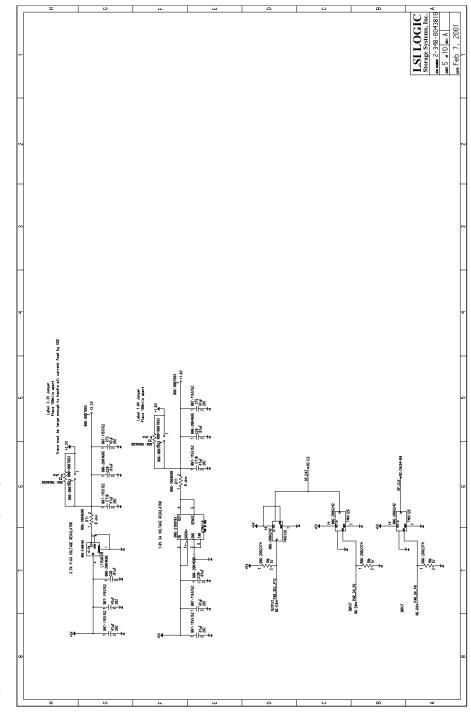


Figure A.4 LSI53C320 Wiring Diagram 4 of 4

Appendix B Glossary

Block	A block is the basic 512 byte size of storage that the storage media is divided into. The Logical Block Address protocol uses sequential block addresses to access the media.
Bus Expander	Bus expander technology permits the extension of a bus by providing some signal filtering and retiming to maintain signal skew budgets.
Device	A single unit on the SCSI bus, identifiable by a SCSI address. It can be a processor unit, a storage unit (such as a disk or tape controller or drive), an output unit (such as a controller or printer), or a communications unit.
Differential	A signaling alternative that employs differential drivers and receivers to improve signal-to-noise ratios and increase maximum cable lengths.
Double Transition Clocking	In Double Transition (DT) Clocking data is sampled on both the asserting and deasserting edge of the REQ/ACK signal. DT clocking may only be implemented on an LVD SCSI bus.
Host	A processor, usually consisting of the central processing unit and main memory. Typically, a host communicates with other devices, such as peripherals and other hosts. On the SCSI bus, a host has a SCSI address.
Initiator	A SCSI device that requests another SCSI device (a target) to perform an operation. Usually, a host acts as an initiator and a peripheral device acts as a target.
Logical Unit	The logical representation of a physical or virtual device, addressable through a target. A physical device can have more than one logical unit.
LVD	Low Voltage Differential. LVD is a robust design methodology that improves power consumption, data integrity, cable lengths and support for multiple devices, while providing a migration path for increased I/O performance.

Negation	The act of driving a signal to the false state or allowing the cable terminators to bias the signal to the false state.
Parity	A method of checking the accuracy of binary numbers. An extra bit, called a parity bit, is added to a number. If even parity is used, the sum of all 1s in the number and its corresponding parity is always even. If odd parity is used, the sum of the 1s and the parity bit is always odd.
Port	A connection into a bus.
Priority	The ranking of the devices on the bus during arbitration.
Receiver	The circuitry that receives electrical signals on a line.
Reconnect	The function that occurs when a target reselects an initiator to continue an operation after a disconnect.
Reselect	A target can disconnect from an initiator in order to perform a time- consuming function, such as a disk seek. After performing the operation, the target can "reselect" the initiator.
Target	A SCSI device that performs an operation requested by an initiator.
Termination	The electrical connection at each end of the SCSI bus, composed of a set of resistors.
TolerANT	A technology developed and used by LSI Logic to improve data integrity, data transfer rates, and noise immunity through the use of active negation and input signal filtering.
Ultra320 SCSI	A standard for SCSI data transfers. It allows a transfer rate of up to 320 Mbytes/s over a 16-bit SCSI bus. STA (SCSI Trade Association) supports using the terms "Ultra320 SCSI" over the term "Fast-160."

Index

Numerics

272-ball plastic ball grid array 1-8 3-state leakage 4-4 40 MHz oscillator 3-5

A

A DIFFSENS 2-7 A_SACK 3-3 A_SATN 3-3 A_SBSY 2-12, 3-3 A_SCD 2-14, 3-3 A_SD[15:0] 3-3 A_SDP[1:0] 3-3 A SIO 3-3 A_SMSG 3-3 A_SREQ 2-13, 3-3 A_SRST 2-12 A SSEL 2-11 absolute maximum stress ratings 4-1 AC characteristics 4-7 applications 1-3 attention signal (SATN) 2-14

В

B DIFFSENS 2-7 B_SACK 3-4 B_SATN 3-4 B_SBSY 2-12, 3-4 B SCD 3-4 B_SD[15:0] 3-4 B_SDP[1:0] 3-4 B_SIO 3-4 B_SMSG 3-4 **B_SRST 2-12** B_SSEL 2-11, 3-4 backward compatibility 1-6 bidirectional SCSI signals 4-4 block B-1 BSY_LED 3-5 bus timing 2-3 bus expander B-1 busy filters 2-15 busy control SBSY 2-12

busy LED 3-5

С

```
cable length 2-9
calibration 2-3
CHIP_RESET/ 3-5
CLOCK 3-5
clock
signal 2-11
skew control 2-6
clock signal 3-6
control signals
input 4-5
output 4-5
CRC 1-5, 2-7
current 4-2
cyclic redundancy check 2-7
```

D

```
data
   path 2-14
   signal 2-11
data signal 3-6
DC characteristics 4-1, 4-5
delay line structures 2-14
delay settings 2-3
device B-1
differential B-1
   transceivers 1-6
DIFFSENS 2-7
   LVD receivers 2-3
   SCSI signal 4-4
distance requirements 1-3, 1-4-1-5, 2-8
domain validation 1-6
double transition clocking 2-4, B-1
drive strength 1-6, 2-5
DT clocking 2-4, B-1
dynamic transmission mode
   changing 2-8
```

Ε

EEPROM 2-15, 3-6 electrical cable length 2-9 electrical characteristics 4-1 electrostatic discharge 4-1 enable/disable SCSI transfers 3-5 ESD 4-1

F

filter edges 2-13 functional signal grouping 3-2

Н

high voltage differential 1-1 host B-1 host adapter B-1

I

I/O voltage 4-2
information unit 2-6
Initiator B-1
initiator B-1
input
 capacitance 4-5
 I/O pads 4-5
 input pads 4-5
 low voltage 4-4
 voltage 4-4
 voltage 4-1
input colck signals 2-15
input control signals
 CLOCK, RESET/, WS_ENABLE/ 4-5
intersymbol interference 1-5
ISI 1-5, 2-4

J

junction temperature 4-2

L

latch-up current 4-1, 4-2 leading edge filter 2-11, 2-12 LED 3-5 load bus 2-11 logical unit B-1 low voltage differential 1-1 LSI53C320 272-ball BGA (left half) 4-12 272-ball BGA (right half) 4-13 additional control capability 1-2 applications 1-3 clock 3-5 dynamic transmission mode 2-8 features 1-7 independent RBIAS pins 1-1 processing data 2-11 receiver logic 2-11 retiming logic 2-2 server clustering 1-3 LVD 2-8, B-1 driver SCSI signals 4-2 receiver SCSI signals 4-3 LVDlink 1-6 features 1-6 transceivers 1-6, 2-7

Μ

master reset 3-5 maximum cable lengths 2-8 migration path 1-6

Ν

negation B-2 nexus 2-3

0

on-chip RAM 2-3 operating conditions 4-2 operating free air 4-2 output low voltage 4-4 output control signals BSY_LED, XFER_ACTIVE 4-5

Ρ

P1 line 2-4 paced transfers 2-4 packetized protocol 2-6 parity B-2 physical cable length 2-9, 2-10 port B-2 PPR 2-5 precision delay control 2-3 precompensation 2-5 priority B-2 pulse width 2-13

R

receiver B-2 latch 2-11 reconnect B-2 REQ/ACK input signals 2-15 request (REQ) 2-13 reselect B-2 reset control signals 2-12 RESET/ signal 3-5 retiming logic 2-2

S

S_CLK 3-6 S DATA 3-6 SACK 2-13 SCSI A side interface pins 3-3 B side interface pins 3-4 bidirectional signals 4-4 bus distance requirements 1-4, 2-8 bus mode changing 2-8 CRC 2-7 DIFFSENS signal 4-4 DT clocking 2-4 information unit transfers 2-6 ISI 2-4 paced transfers 2-4 packetized transfers 2-6 parallel interconnect 3 1-7

phases 2-3 precompensation 2-5 skew compensation 2-6 termination 2-8 TolerANT technology 1-7 Ultra320 B-2 features 2-4 SE 2-8 select (SSEL) 2-11 self-calibration 2-14 serial EEPROM 2-15, 3-6 server clustering 1-3 signal groupings 2-11, 3-1 skew 2-2 signal drive strength 2-5 signals busy control 2-12 reset control 2-12 select control 2-11 single-ended 1-1 skew compensation 1-5, 2-6 slew rate 1-6 source bus 2-2, 2-11 SP_CLK 2-15 SP_DAT 2-15 SREQ 2-13 state machine control 2-3 storage temperature 4-1 supply voltage 4-1, 4-2 SureLINK 1-6

Т

target B-2 termination B-2 test conditions rise/fall time 4-7 thermal resistance 4-2 TolerANT 1-7, B-2 electrical characteristics 4-6, 4-7 transceivers LVDlink multimode 1-6 transfer active 3-5 transfers information units 2-6 packetized 2-6 transmission mode distance requirements 1-5

U

Ultra160 SCSI DT clocking 2-4 Ultra320 SCSI 1-5, 2-3, B-2 benefits 1-5 CRC 2-7 DT clocking 2-4 features 2-4 information unit 2-6 ISI 1-5, 2-4 maximum cable length 2-8 paced transfers 2-6 precompensation 2-5 skew compensation 1-5, 2-6

۷

VDD_CORE 3-6 VDD_SCSI 3-6 voltage 4-2 voltage levels DIFFSENS 2-7

W

warm swap 3-5 WS_ENABLE/ 3-5

Х

XFER_ACTIVE 3-5

Customer Feedback

We would appreciate your feedback on this document. Please copy the following page, add your comments, and fax it to us at the number shown.

If appropriate, please also fax copies of any marked-up pages from this document.

Important: Please include your name, phone number, fax number, and company address so that we may contact you directly for clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader's Comments

Fax your comments to: LSI Logic Corporation Technical Publications M/S AF-198 Fax: 408.433.4333

Please tell us how you rate this document: *LSI53C320 Ultra320 SCSI Bus Expander Technical Manual.* Place a check mark in the appropriate blank for each category.

	Excellent	Good	Average	Fair	Poor
Completeness of information					
Clarity of information					
Ease of finding information					<u> </u>
Technical content					
Usefulness of examples and illustrations					
Overall manual					

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you directly for clarification or additional information.

Name	Date
Telephone	
Title	
Department	
Company Name	
Street	
City, State, Zip	

You can find a current list of our U.S. distributors, international distributors, and sales offices and design resource centers on our web site at

http://www.lsilogic.com/contacts/index.html