
WHITE PAPER
MULTI-PRO-WP100-R

Practical System Design and Debug
Considerations for Multiprocessing in the

Embedded Environment
16215 Alton Parkway • P.O. Box 57013 • Irvine, CA 92619-7013 • Phone: 949-450-8700 • Fax: 949-450-8710 09/12/02

Broadcom Corporation
P.O. Box 57013

16215 Alton Parkway
Irvine, CA 92619-7013

© 2002 by Broadcom Corporation

All rights reserved
Printed in the U.S.A.

Broadcom® and the pulse logo® are trademarks of Broadcom Corporation and/or its subsidiaries in the United States and
certain other countries. All other trademarks are the property of their respective owners.

REVISION HISTORY

Revision Date Change Description

MULTI-PRO-WP100-R 09/12/02 Initial release.

White Paper
09/12/02
TABLE OF CONTENTS

Processing Topologies.. 1

Methods of Increasing Processing Power ... 1

Tying Two Processors Together in Hardware ... 2

Software Design for Multiple Processors .. 3

Memory Allocation ... 4

Interprocessor Communication (IPC)... 5

Build methods .. 6

Practical Considerations ... 7

Conclusion.. 8
Broadcom Corporation
Document MULTI-PRO-WP100-R Page iii

White Paper
09/12/02
Broadcom Corporation
Page iv Document MULTI-PRO-WP100-R

White Paper
09/12/02
LIST OF FIGURES

Figure 1: Simple Dual Core Configuration.. 2

Figure 2: Practical Dual Core Configuration ... 3

Figure 3: Single Code and Data Sections .. 6

Figure 4: Separate Code and Data Sections.. 7
Broadcom Corporation
Document MULTI-PRO-WP100-R Page v

White Paper
09/12/02
Broadcom Corporation
Page vi Document MULTI-PRO-WP100-R

White Paper
09/12/02
The practice of using multiple processors in embedded designs has become almost universal over the last ten years. The
practical reason for this is to provide system-wide processing power that greatly exceeds the capabilities of a commercially-
available microprocessor. Until recently, virtually all of the multiprocessing configurations have been constructed at the
board or system level by the user. Now, however, there are new devices coming onto the market that incorporate multiple
microprocessors on the same die. Using these devices effectively requires an understanding of why these devices exist and
the options they provide to a system designer.

PROCESSING TOPOLOGIES

The most common multiprocessor architecture is a collection of processors in a loosely-coupled configuration. The term
loosely-coupled indicates that these processors interact over a communication channel. This communication channel does
not have to be a conventional serial or parallel channel. It is quite often a shared area of memory used by processors on the
same board, or over a backplane. The key characteristic of these processors is that they have their own independent
memory subsystems. Each processor acts more or less as an independent node.

A more recent architecture in the embedded space is a tightly-coupled processing pair, or array. These processors share a
common bus and addressable memory space. In the overall system configuration, they operate as a single node, and appear
as a single processing element to the rest of the system. Whereas adding more loosely-coupled processing nodes increases
the overall processing power of a system, adding more tightly-coupled processors increases the power of a given node.

METHODS OF INCREASING PROCESSING POWER

When it comes to increasing the processing power of a single node, why add multiple processors instead of using a single
processor that is simply more powerful? The reason is that there are limitations to what can be done to increase the speed
of a single processor.

For example, increasing the clock speed of the processor necessitates having to design board-level signal paths and wide
busses that can keep up with the higher clock speed. Also, even though clock speeds are always increasing, at any given
time the fastest might not be fast enough.

Besides increasing clock speed, another approach to increasing processor performance is to increase the parallelism of
instruction execution within a CPU. This is already being done in modern RISC CPUs, but there is a practical limitation to
this approach. When instructions are executed serially, they can always execute when they are fetched. When two
instructions are issued in parallel, however, there is the chance that one of the instructions will affect or be affected by the
other instruction. If this happens, the hardware must be prepared to interlock and force serialization of the instructions. With
dual instructions, there is the opportunity for a single interlock. For the case where three parallel instructions are issued, there
is the opportunity for three interlocks. Four parallel instructions could potentially cause six interlocks. Thus, increasing the
parallelism of instruction execution can have diminishing returns. Although code can always be hand-written (usually by the
CPU vendor) to display the potential processing power of a CPU, the practical output of compilers used by a commercial
software development team rarely is able to make use of processors that can issue more than four instructions per clock.

Another drawback associated with increased parallelism (and to some extent, increasing clock speed) is that the
disadvantages of additional design complexity and power consumption offset much of the benefit of performance gain. The
relatively low power consumption of the MIPS®/SB-1 processor compared to a Pentium® processor illustrates the difference
in power consumption between a multiple processor and a single processor.
Broadcom Corporation
Document MULTI-PRO-WP100-R Processing Topologies Page 1

White Paper
09/12/02
Because of the limitations and drawbacks associated with higher clock speed and internal parallelism, the best option for
effectively and reliably execute the code image is to add additional processors. This method allows the execution of parallel
threads, something not possible in a single, highly-parallel CPU. On the other hand, with more processing power comes
more complexity. Therefore, the key to getting the most out of using these systems is the proper understanding of code
execution, memory allocation, and how system resources will be distributed.

TYING TWO PROCESSORS TOGETHER IN HARDWARE

Multiple processors must be connected in hardware so that they can operate as a single node. A generic configuration is
shown on Figure 1. This oversimplified diagram shows the key point that the processors have access to a common bus,
which is the most basic form of a coherent interconnect. Each processor can perform identical functions with respect to any
other device on the common bus. Also, any device has an equal opportunity to generate interrupts to either processor.

Figure 1: Simple Dual Core Configuration

A more complex, and therefore more accurate diagram is shown on Figure 2 on page 3. This is actually similar to the internal
configuration of the Broadcom BCM1250 processor. As can be seen by these diagrams, a single, high-speed coherent
interconnect in the form of a common bus provides the tightly-coupled aspect of the configuration. This bus is the both the
advantage and the vulnerability of the system.

CPU0 CPU1

I/O Memory
Broadcom Corporation
Page 2 Tying Two Processors Together in Hardware Document MULTI-PRO-WP100-R

White Paper
09/12/02
Figure 2: Practical Dual Core Configuration

Because both processors are on the main bus, resources are allocated to each processor by the software. This can be done
as part of the system definition, or dynamically at execution time. This is obviously an advantage in that the memory
allocation and I/O servicing responsibility remains fluid. As an example: the system designer can partition the tasks
associated with a communication stack to each processor according to protocol level, transmit versus receive,
communication channel, and so forth. Also, these assignments can evolve and be changed even after the product has been
shipped to customers.

The problem with this configuration is that the main bus is also the opportunity for bottlenecks during operation. The solution
to this problem is a wide, high-speed bus. This bus should also have a protocol that can support cache coherency and peer-
to-peer communication between processor L1 caches. Of course, placing and routing a wide, high-speed, multidrop bus on
a board is not a small challenge. Extending the bus past 133 MHz in speed and 64 data bits in width stresses practical design
considerations. The escape pattern for modern ball grid array devices is complex in itself. All of these issues tend to push
the board layer count to the edge of economic viability.

This interconnection issue is the major obstacle to tightly-coupled processor systems. It is also the primary reason that silicon
vendors are moving to place multiple processors on a single die. Semiconductor manufacturing techniques allow for much
higher clock speeds and bus widths than are practical on a circuit board. The BCM1250 internal bus width is 256 data bits
and 128 address and control signals. It operates at 50 percent of the CPU clock frequency, or 500 MHz for 1 GHz devices.

SOFTWARE DESIGN FOR MULTIPLE PROCESSORS

Despite the hardware issues, the most complex challenges to a multiple processor design are in the software. At the highest
level, the question is how to partition the code execution among the processors. This is obviously a critical decision that must
be made early in the system design cycle. An improper method of allocating execution can eliminate any potential advantage
of using more than one processor.

The two most common approaches to allocation functions across processors in a tightly coupled system are through static
assignment at system design time, or through symmetric multiprocessing (SMP). Static allocation can be used at any level
in the software architecture, and is always present at the lowest levels, especially at boot time. SMP allows the operating
system to dynamically schedule tasks to whichever CPU has the most available idle cycles. As a result, this level of allocation

CPU0 CPU1

I/O
SDRAM
Control

L1 I$ L1 D$ L1 I$ L1 D$

Serial
I/O

External busses

L2 U$

SDRAM SDRAM
Broadcom Corporation
Document MULTI-PRO-WP100-R Software Design for Multiple Processors Page 3

White Paper
09/12/02
sits above the operating system scheduler. It should be noted that more advanced SMP operating systems will also allow
the dynamic scheduling of operating system services such as communication stacks.

Making the allocation of execution cycles across processors more dynamic causes the system to be less deterministic. This
has a huge impact on the debugging environment. Because the OS can assign the execution of a task to a processor
dynamically, only the operating system can track a task to allow visibility with debug tools. Typical in-circuit emulators and
basic debuggers are unable to deal with this type of environment. It is important that the operating systems provide adequate
debugging support, and not just support only the execution environment for SMP.

SMP also requires that the operating system manage both cores. While it is possible that an operating system could have
most of its code confined to one CPU (with only a minimal scheduler on the second core), some operating systems duplicate
most of the operating system on each processor. Each CPU ends up allocating pretty much the same number of cycles to
executing overhead instructions as the other CPU in the pair. There is a significant difference between the advertised versus
the technical ability to support multiple processors. To ensure that SMP provides enhanced performance over a static
asymmetric design, it is necessary to make a very close examination of the implementation details of how the operating
system consumes CPU cycles.

An embedded system is typically a closed environment; therefore it is rare to have unexpected new code introduced into the
system that is not part of a planned upgrade. Because of this, the allocation of tasks across the CPU can be done during
software design. This allows the operating system to be restricted to one CPU, and to have operating-system-agnostic code
run on the second CPU. The advantage to this is that the CPU without the operating system is able to devote a larger
percentage of its cycles to the application. It also means that critical code that has response time restrictions can be executed
without the overhead of operating system context switching.

MEMORY ALLOCATION

When more than one processor has access to a common memory system, do the processors allocate from a common heap?
Do they have separate executable images, or do they use a single reentrant image? There are a number of issues to
consider when allocating memory space between processors. These issues include code and data space, which are treated
differently.

The data space of a processor contains static initialized and uninitialized variables, dynamically allocated memory (heap),
and the stacks. The individual characteristics of these different data types determine if they are to be shared between
processors.

The stacks must be separate for each processor. In an operating system managed environment, each task might have its
own stack, and if SMP is used, the task and its stack can be passed back and forth between CPUs. However, the system
stacks must be separate. It is the system stack that is usually referred to as "the stack" and it is this data structure that is
allocated in the linker command file.

Static variables, whether initialized or not, present more of a sticky problem. If a task is going to be passed back and forth
between CPUs, or may be scheduled to run dynamically between CPUs, then it must be able to access these static
variables. Variables that are local to a task can be confined to an area of memory, and a pointer can be passed with the task.
For variables that are system-wide in scope, a common area of memory must be specified and available to both CPUs. The
allocation of static variables is far simpler if tasks are not dynamically shared among processors. The only variables that
need to be accessed by both processors are those that are specifically designated for communication.

The heap can be shared or separate. A shared heap is theoretically more efficient because each processor can use as much
remaining memory as needed. Allocating separate heaps for each processor can result in one running out of memory while
Broadcom Corporation
Page 4 Memory Allocation Document MULTI-PRO-WP100-R

White Paper
09/12/02
the other still has unused space available. Again, practical considerations in the embedded system tend to mitigate the
advantage of a common heap. It is usually easier to predict the heap usage by each processor. Also, a common gateway
routine, which would be used by both processors to allocate and free the heap, can be a bottleneck between CPUs.

When using multiple CPUs, each typically has its own MMU. Therefore it is possible to have address aliasing between
processors. The advantage of having separate virtual address maps is that code for each processor can be completely
protected from the other processors. This can be a significant factor in designing a stable system. On the other hand, if
identical maps are used, then simply passing pointers allows the exchange of information between processors. This method
of passing by reference can have an enormous performance advantage over copying data between CPUs. Fully protected
memory support is usually supplied by an operating system, which usually support shared physical addresses for memory
areas that are accessed often. This allows a compromise between full isolation and maximum performance.

INTERPROCESSOR COMMUNICATION (IPC)

During code execution, it is common to allow processors to communicate with each other. Because task scheduling is quite
often asynchronous, most of the issues associated with having processors communicate are already handled by single
processor designs, with some important exceptions.

In single processor systems, task entry and exit usually pass through operating system code. Therefore, raising a flag or
semaphore that alters execution priority will cause the appropriate code to execute on the next system call or clock tick. In
multiple processor systems, it may be necessary to cause an exception of the other CPU to guarantee a timely response.
The BCM1250 has mailboxes that can trigger an exception when written. A CPU can set a flag in these registers, or write
an entire pointer to cause the other CPU to respond immediately.

A more subtle issue is that of testing and setting of flags or semaphores. RISC machines do not allow indivisible read-modify-
write cycles. They provide atomic access through bus snooping and conditional stores. Basically, a read of a semaphore is
performed, followed by a conditional write instruction to seize the flag if it is available. If there are no intervening exceptions
or writes to the semaphore, then the write executes with a condition that can be detected by the CPU. This mechanism will
work at its basic level with single or multiple processors. However, slight differences in the execution environment for multiple
processors can result in live lock.

In single processor systems, tasks can be nested within each other because of preemptive scheduling. Because preemptive
task scheduling passes through the processor's exception mechanism, this can allow a task to attempt to take a semaphore
within the test and conditional store of another task. This is not a problem because the second task will get the semaphore
and the first task will see its store fail. This can, in theory, nest as deeply as the entire task schedule, and will function and
maintain order in all single processor systems. The only caveat is that the test and set loops must be nested by preemption
through an exception.

In multiple processor systems, things can get more complicated. It is possible for two CPUs to enter a test and set loop on
the same flag at the same time. Processor "A" would perform a read of the flag, followed by processor "B." Although the read
of the flag by processor "B" is not guaranteed to cause the failure of the subsequent store of processor "A," this behavior is
implementation dependent. It is possible for the two processors to spin forever, with the read of each causing the store of
the other to fail. To solve this problem, the BCM1250 processor supports only the MIPS LL/SC instructions to cacheable
memory. This forces the flag location to reside in L1 data cache of one of the processors. This automatically introduces a
different latency for each processor. This prevents the occurrence of a live lock situation on a flag. In fact, the device is
specifically designed to prevent such an event. However, when dealing with multiple processors that have not had this issue
addressed by the silicon designers, the software must be prepared to detect and survive extensive time in a spin lock.
Broadcom Corporation
Document MULTI-PRO-WP100-R Interprocessor Communication (IPC) Page 5

White Paper
09/12/02
BUILD METHODS

There are several approaches that can be used to construct an executable image. If the operating system is not designed
for multiple processors, then the system designer has to perform a build that will allow code to execute on each processor.
One method is to build two independent applications, creating a separate image for each processor (see Figure 3). On the
Broadcom BCM1250 processor, both cores use the same reset vector; however, only one core is released from reset at a
time. This allows the first core to perform system-wide one-time initialization before releasing the second processor. If the
second processor is going to start fetching code from the same boot flash device as the first CPU, then the startup code
must first check the processor number field in the processor ID register. The code will branch based on this value and from
that point on execute independently on each CPU. Using this method, one build is performed and, while each processor
executes out of an isolated area of the final image, the code is the result of a single link. Therefore, global memory locations
shared by the processors can be referenced to symbols, which are located at link time.

Figure 3: Single Code and Data Sections

A variation of this method is to build separate images for each application and a third routine to sit at the reset vector (see
Figure 4 on page 7). Each of the main executable images would have a predefined static entry address for startup. The small
reset vector code could read the processor number and then jump to one of the two specified entry points.

The other option would be to build a common image that is simultaneously executed by both processors. Because each of
the CPUs on the Broadcom 1250 processor has its own 32 K 4-way set associative instruction cache, there is little concern
of a bottleneck when both processors are trying to fetch instructions from the same part of the code image. In such systems,

Code Image

Exception Vectors

Static Variables

Heap

Stacks

Jump to application
entry point after
initialization and
code relocation

Reset entry point

Application code and
initialized data images

CPU 0 cold starts CPU
and system

CPU 1 cold starts CPU
Broadcom Corporation
Page 6 Build methods Document MULTI-PRO-WP100-R

White Paper
09/12/02
the initialization assembly code can load the CPU registers for the stack, heap, and static data to point to different memory
areas for each processor. Thus, while both processors are running out of the same image, they are effectively running
independently.

Figure 4: Separate Code and Data Sections

PRACTICAL CONSIDERATIONS

Although there is an almost infinite variety of ways to approach a multiprocessor design, there is usually a limited number of
methods that are feasible for a particular system. The most effective way to choose system architectures is to focus on the
methods that will be used to get them working.

Start by looking at the tool suite that will be used for development and debug. Although running one processor without an
operating system can provide better throughput on that CPU, are the tools available to debug in a real-time operating system
(RTOS)-free environment? It is important that the development team can work with emulators and/or debuggers that do not
require RTOS services. Most RTOS debug tools are very powerful, but their features are supported by extensive facilities
running in the operating system on the target. RTOS-agnostic tools are usually more basic in their operation. An RTOS will
allow an engineer to stop or pause a task while the rest of the system continues to run. Typical emulators and debuggers

Code Images

Exception Vectors

Static Variables

Heap

Stack

Application 0

Application 1

Flash Based Startup Image RAM Based Execution Image

Jump to application
entry point after
initialization and
code relocation

Reset Entry Point

Application Code and
Initialized Data Images

• Initialize CPU
• Initialize System (first

CPU only)
• Relocate/Decompress

Code Image
• Heap/Stack/Variable

initialization may be
done here or at
application entry point
Broadcom Corporation
Document MULTI-PRO-WP100-R Practical Considerations Page 7

White Paper
09/12/02
that are not running with an RTOS will halt the CPU when a breakpoint is hit. Running one CPU with an RTOS and one
without will result in separate development environments for each processor.

If SMP, or any other method that dynamically allocates tasks between processors is used, the ability to corral such tasks is
important. If a breakpoint is set, will it stop the task on either CPU, or only on one? Software breakpoints will stop an
execution thread regardless of where it is being executed; hardware execution breakpoints are usually local to a single CPU.
Unless the operating system provides extensive and easy-to-use tools for handling such events, assigning a task to a
particular CPU is the most practical solution. It is also important to remember that when one CPU halts for a debug event,
the other CPU is likely to continue to run. While asynchronous operation is to be expected during normal operation of more
than one CPU, be prepared for unexpected behavior if one CPU suddenly begins executing alone.

Similar considerations are also important for the data areas of memory. The more fluid and open memory usage is between
processors, the more difficult it is to identify a particular access. Having separate heaps and initialized data areas with tightly
controlled communication structures at fixed memory addresses greatly helps in being able to isolate a problem. Also be
aware of potential stalls from one CPU waiting at a spinlock for access to a common structure if the other CPU is stopped
at a breakpoint.

CONCLUSION

A realistic method of determining the layout of execution and memory allocation is to see everything from the debug point
of view. At each system design decision, stop and ask how each component will be handled if it doesn’t work. Some specific
issues that should be determined early in the design process include the following:

• Determine if it is reasonable to restart from a breakpoint on one CPU without restarting the entire system. This can kill
the debug schedule if the system must be restarted and it takes a while to reach a particular state.

• Does one CPU require the other to be alive for it to remain stable? The ability to isolate and determine the basic
functionality of each processor is critical.

• In statically allocated execution environments, be prepared to reassign tasks between CPUs after a first pass at
execution determines real-world conditions. This is especially sensitive if one CPU is running an operating system and
the other is not.

• For common data structures, do the tools allow trapping accesses for either processor as well as isolating accesses
from a single processor? The Broadcom 1250 processor has internal bus trapping that supports both options.

It is often true that the more theoretical or novel approaches to multiprocessor designs do not work as expected in actual
practice. A system that cannot be properly debugged cannot be shipped, and there is no point in designing a system that
won’t leave the laboratory.
Broadcom Corporation
Page 8 Conclusion Document MULTI-PRO-WP100-R

White Paper
09/12/02
Broadcom Corporation
Document MULTI-PRO-WP100-R Conclusion Page 9

White Paper
09/12/02
Document MULTI-PRO-WP100-R

Broadcom Corporation

16215 Alton Parkway
P.O. Box 57013

Irvine, CA 92619-7013
Phone: 949-450-8700

Fax: 949-450-8710

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation

does not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

	Table of Contents
	List of Figures
	Processing Topologies
	Methods of Increasing Processing Power
	Tying Two Processors Together in Hardware
	Software Design for Multiple Processors
	Memory Allocation
	Interprocessor Communication (IPC)
	Build methods
	Practical Considerations
	Conclusion

