

Host Programmer Interface Specification for the NetXtreme® and NetLink® Family of Highly Integrated Media Access Controllers

REVISION HISTORY

<i>Revision</i>	<i>Date</i>	<i>Change Description</i>
5761-PG100-R	04/07/08	Initial release.

Broadcom Corporation
5300 California Avenue
Irvine, CA 92617

© 2008 by Broadcom Corporation
All rights reserved
Printed in the U.S.A.

Broadcom®, the pulse logo, Connecting everything®, the Connecting everything logo, NetXtreme®, and NetLink™ are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners.

Table of Contents

Section 1: About this Document	1
Introduction	1
Notational Conventions	1
Registers and Bits	1
Functional Overview	1
Operational Characteristics.....	1
Example Code	2
Related Documents.....	3
Section 2: Introduction.....	4
Introduction	4
Revision Levels	5
Programming the Ethernet Controllers.....	6
Section 3: Hardware Architecture	7
Theory of Operation	7
Receive Data Path	8
RX Engine	8
RX FIFO.....	8
Rules Checker	9
RX List Initiator.....	9
Transmit Data Path	10
TX MAC	10
TX FIFO	10
DMA Read	11
Read Engine	11
Read FIFO	11
Buffer Manager	11
DMA Write	12
Write Engine	12
Write FIFO	12
Buffer Manager	12
LED Control	13

Memory Arbiter	13
Host Coalescing	14
Host Coalescing Engine	14
MSI FIFO	15
Status Block	15
10BT/100BTx/1000BASE-T Transceiver	16
Auto-Negotiation	16
Automatic MDI Crossover	16
PHY Control	16
MII Block	16
GMII Block	18
MDIO Register Interface	20
Management Data Clock	20
Management Data Input/Output	20
Management Data Interrupt	20
Management Register Block	20
Section 4: NVRAM Configuration	21
Overview	21
Section 5: Common Data Structures	22
Theory of Operation	22
Descriptor Rings	22
Producer and Consumer Indices	23
Ring Control Blocks	24
Send Rings	24
Send Buffer Descriptors	26
Receive Rings	27
Receive Producer Ring	29
Receive Return Rings	29
Receive Buffer Descriptors	30
Status Block	33
Status Block Format	33
Device Statistics	36
MAC Statistics	36
MIB Network Interface Card Statistics	36

Host Interrupts	36
NIC BD Coalescing Thresholds	36
DMA Resources.....	37
MAC Resources.....	37
Class of Service Statistics	38
Interface Statistics in Receive Placement State Machine.....	38
Section 6: Receive Data Flow	39
Introduction	39
Receive Producer Ring	41
Setup of Producer Rings Using RCBs	41
Receive Producer Ring RCB—Register Offset 0x2450–0x245f	41
<i>Other Considerations Relating to Producer Ring Setup</i>	41
RCB Setup Pseudo Code	41
Receive Buffer Descriptors	42
Management of Rx Producer Rings with Mailbox Registers and Status Block.....	43
Status Block.....	43
Mailbox	43
<i>Receive BD Producer Ring Producer Index.....</i>	43
Receive Return Rings	45
Management of Return Rings with Mailbox Registers and Status Block	45
Host Buffer Allocation	45
Receive Rules Setup and Frame Classification	46
Receive Rules Configuration Register.....	46
Receive List Placement Rules Array.....	46
Class of Service Example	48
Checksum Calculation.....	48
VLAN Tag Strip	49
RX Data Flow Diagram	50
Receive Side Scaling	51
Overview	51
Functional Description	51
RSS Parameters	52
Hash Function.....	52
Hash Type	52

Hash Mask	52
Indirection Table.....	52
Secret Hash Key	53
RSS Initialization	53
RSS Rx Packet Flow	53
Section 7: Transmit Data Flow.....	54
Introduction.....	54
Send Rings.....	54
Ring Control Block.....	55
Host-Based Send Ring	56
Checksum Offload	56
Scatter/Gather	58
VLAN Tag Insertion	59
TX Data Flow Diagram.....	59
Reset.....	62
Firmware Download.....	62
Firmware Binary Image	62
Reset RISC Processor	64
Halt RISC Procedure	64
Start RISC Procedure.....	64
Firmware Download Procedure	65
Example Code Snippet (from ASF Firmware)	66
MAC Address Setup/Configuration.....	66
Packet Filtering	67
Multicast Hash Table Setup/Configuration	67
Ethernet CRC Calculation	67
Generating CRC	67
Checking CRC	68
Initializing the MAC Hash Registers	68
Promiscuous Mode Setup/Configuration	70
Broadcast Setup/Configuration.....	70
Section 8: PCI	71
Configuration Space.....	71
Description.....	71

Functional Overview	73
PCI Configuration Space Registers	73
PCI Required Header Region	73
PCI Device-Specific Region	75
Indirect Mode	77
Indirect Register Access	77
Indirect Memory Access	79
UNDI Mailbox Access	80
Standard Mode	82
Flat Mode	85
Memory Mapped I/O Registers	92
PCI Command Register	92
PCI State Register	92
PCI Base Address Register	93
Register Quick Cross Reference	94
Device Family	94
Pseudocode	95
Memory Window Read in Standard Mode	95
Memory Window Write in Standard Mode	95
Register Read in Standard Mode	95
Register Write in Standard Mode	95
Memory Read in Flat Mode	95
Memory Write in Flat Mode1	95
Register Read in Flat Mode	95
Register Write in Flat Mode	95
Memory Read Using Indirect Mode	95
Memory Write Using Indirect Mode	95
Register Read Using Indirect Mode	96
Register Write Using Indirect Mode	96
Bus Interface	96
Description	96
Operational Characteristics	97
Read/Write DMA Engines	97
Register Quick Cross Reference	98
Expansion ROM	98

Description.....	98
Operational Characteristics	98
BIOS	99
Preboot Execution Environment.....	99
Disable Device Through BIOS.....	99
Endian Control (Byte and Word Swapping)	100
Background	100
Architecture	101
Enable Endian Word Swap and Enable Endian Byte Swap Bits	102
Word Swap Data and Byte Swap Data Bits.....	104
Word Swap Data = 0, and Byte Swap Data = 0	105
Word Swap Data = 0, and Byte Swap Data = 1	105
Word Swap Data = 1, and Byte Swap Data = 0	106
Word Swap Data = 1, and Byte Swap Data = 1	106
Word Swap Non-Frame Data and Byte Swap Non-Frame Data Bits.....	107
Word Swap Non-Frame Data = 0 and Byte Swap Non-Frame Data = 0.....	108
Word Swap Non-Frame Data = 1 and Byte Swap Non-Frame Data = 0.....	108
Word Swap Non-Frame Data = 0 and Byte Swap Non-Frame Data = 1	108
Word Swap Non-Frame Data = 1 and Byte Swap Non-Frame Data = 1	109
Section 9: Ethernet Link Configuration	110
Overview	110
GMII/MII	110
Configuring the Ethernet Controller for GMII and MII Modes	110
Link Status Change Indications.....	111
Configuring the GMII/MII PHY	111
Reading a PHY Register	111
Writing a PHY Register	112
MDI Register Access	113
Operational Characteristics	113
Access Methods	113
Traditional Bit-Bang Method.....	114
Auto-Access Method	114
Wake on LAN Mode/Low-Power	115
Description.....	115

Functional Overview	116
Operational Characteristics.....	117
Internal Memory.....	117
WOL Pattern Configuration Register	117
WOL Streams	118
Pattern Data Structure	120
Firmware Mailbox	122
PHY Auto-Negotiation.....	122
Power Management.....	123
Integrated MACs	124
WOL Data Flow Diagram	125
Flow Control	126
Description	126
Operational Characteristics.....	126
Transmit MAC	127
Receive MAC	127
Statistics Block.....	128
PHY Auto-Negotiation.....	129
Integrated MACs	130
Flow Control Initialization Pseudocode	130
Section 10: Interrupt Processing.....	133
Host Coalescing	133
Description	133
Operational Characteristics.....	133
Registers	134
MSI	135
Traditional Interrupt Scheme.....	135
Message Signaled Interrupt	136
PCI Configuration Registers	137
MSI Address	137
MSI Data.....	137
Host Coalescing Engine.....	138
Firmware	138
Basic Driver Interrupt Processing Flow	139

Flowchart for Servicing an Interrupt.....	139
Interrupt Procedure.....	140
Other Configuration Controls.....	141
Broadcom Mask Mode.....	141
Broadcom Tagged Status Mode.....	141
Clear Ticks on BD Events Mode.....	141
No Interrupt on Force Update.....	141
No Interrupt on DMAD Force.....	141
Section 11: Text Console Redirect	142
Section 12: Ethernet Controller Register Definitions	143
PCI Configuration Registers.....	143
Device ID & Vendor ID Register (Offset: 0x00)	143
Status & Command Register (Offset: 0x04)	144
PCI Classcode & Revision ID Register (Offset: 0x8).....	145
BIST, Header Type, Latency Timer, Cache Line Size Register (Offset: 0x0C)	145
Base Address Register 1 (Offset: 0x10).....	146
Base Address Register 2 (Offset: 0x14).....	147
Base Address Register 3 (Offset: 0x18).....	147
Base Address Register 4 (Offset: 0x1c)	149
Cardbus CIS Pointer Register (Offset: 0x28)	149
Subsystem ID/Vendor ID Register (Offset: 0x2C)	149
Expansion ROM Base Address Register (Offset: 0x30).....	149
Capabilities Pointer Register (Offset: 0x34)	150
Interrupt Register (Offset: 0x3C)	150
VPD Capabilities (Offset: 0x40).....	150
VPD Data Register (Offset: 0x44)	150
Power Management Capability Register (Offset: 0x48)	151
Power Management Control/Status Register (Offset: 0x4C).....	152
MSI Capability Header (Offset: 0x50).....	153
MSI Lower Address Register (Offset: 0x54)	153
MSI Upper Address Register (Offset: 0x58)	153
MSI Data Register (Offset: 0x5c).....	153
Broadcom Vendor-Specific Capability Header (Offset: 0x60)	153
Reset Counters Initial Values Register (Offset: 0x64)	154

Miscellaneous Host Control Register (Offset: 0x68)	154
Spare Register (Offset: 0x6C)	155
PCI State Register (Offset: 0x70)	155
Clock Control Register (Offset: 0x74)	156
Register Base Register (Offset: 0x78)	157
Memory Base Register (Offset: 0x7C)	158
Register Data Register (Offset: 0x80)	158
Memory Data Register (Offset: 0x84)	158
Expansion ROM BAR Size Register (Offset: 0x88)	158
Expansion ROM Address Register (Offset: 0x8C)	158
Expansion ROM Data Register (Offset: 0x90)	159
VPD Interface Register (Offset: 0x94)	159
UNDI Receive BD Standard Producer Ring Producer Index Mailbox Register (Offset: 0x98)	160
UNDI Receive Return Ring Consumer Index Register (Offset: 0xA0)	160
UNDI Send BD Producer Index Mailbox Register (Offset: 0xA8)	160
INT Mailbox Register (Offset: 0xB0)	160
Product ID and ASIC Revision (Offset: 0xBC)	160
Function Event Register (Offset: 0xC0)–Change to Spare	161
Function Event Mask Register (Offset: 0xC4)–Change to Spare	161
Function Present Register (Offset: 0xC8)–Change to Spare	161
PCIe Capability List Register (Offset: 0xCC)	161
PCIe Next Capability Pointer Register (Offset: 0xCD)	162
PCIe Capabilities Register (Offset: 0xCE)	162
Device Capabilities Register (Offset: 0xD0)	162
Device Control Register (Offset: 0xD4)	164
Device Status Register (Offset: 0xD6)	165
Link Capability Register (Offset: 0xD8)	165
Link Control Register (Offset: 0xDC)	166
Link Status Command Register (Offset: 0xDE)	167
Device Capabilities 2 (Offset: 0xF0)	167
Device Status and Control 2 (Offset: 0xF4)	167
Link Capabilities 2 (Offset: 0xF8)	168
Link Status and Control 2 (Offset: 0xFC)	168
Advanced Error Reporting Enhanced Capability Header (Offset: 0x100)	169
Uncorrectable Error Status Register (Offset: 0x104)	169

Uncorrectable Error Mask Register (Offset: 0x108)	170
Uncorrectable Error Severity Register (Offset: 0x10C)	170
Correctable Error Status Register (Offset: 0x110).....	171
Correctable Error Mask Register (Offset: 0x114)	172
Advanced Error Capabilities and Control Register (Offset: 0x118)	172
Header Log Register (Offset: 0x11C)	172
Header Log Register (Offset: 0x120).....	173
Header Log Register (Offset: 0x124).....	173
Header Log Register (Offset: 0x128).....	173
Virtual Channel Enhanced Capability Header (Offset: 0x13c).....	174
Port VC Capability Register (Offset: 0x140)	174
Port VC Capability Register 2 (Offset: 0x144)	174
Port VC Control Register (Offset: 0x148)	174
Port VC Status Register (Offset: 0x14A)	175
VC Resource Capability Register (Offset: 0x14C).....	175
VC Resource Control Register (Offset: 0x150)	175
VC Resource Status Register (Offset: 0x156).....	175
Device Serial No Enhanced Capability Header Register (Offset: 0x160).....	176
Device Serial No Lower DW Register (Offset: 0x164).....	176
Device Serial No Upper DW Register (Offset: 0x168).....	176
Power Budgeting Enhanced Capability Header Register (Offset: 0x16C).....	177
Power Budgeting Data Select Register (Offset: 0x170)	177
Power Budgeting Data Register (Offset: 0x174)	177
Power Budgeting Capability Register (Offset: 0x178)	178
Firmware Power Budgeting Register 1 (Offset: 0x17C)	178
Firmware Power Budgeting Register 2 (Offset: 0x17E).....	179
Firmware Power Budgeting Register 3 (Offset: 0x180)	179
Firmware Power Budgeting Register 4 (Offset: 0x182)	180
Firmware Power Budgeting Register 5 (Offset: 0x184)	180
Firmware Power Budgeting Register 6 (Offset: 0x186)	181
Firmware Power Budgeting Register 7 (Offset: 0x188)	182
Firmware Power Budgeting Register 8 (Offset: 0x18A).....	182
PCIe 1.1 Advisory Non-Fatal Error Masking (Offset: 0x18C)	183
RSS Registers	184
Receive BD Return Ring 0 Consumer Index (High Priority Mailbox) Register (Offset: 0x280–0x287)	184

Receive BD Return Ring 1 Consumer Index (High Priority Mailbox) Register (Offset: 0x288–0x28F)	184
Receive BD Return Ring 2 Consumer Index (High Priority Mailbox) Register (Offset: 0x290–0x297)	184
Receive BD Return Ring 3 Consumer Index (High Priority Mailbox) Register (Offset: 0x298–0x29F)	184
UART Registers	185
Transmit Hold Register (Offset: 0x3F8)	185
Receive Buffer Register (Offset: 0x3F8)	185
Divisor Latch Low Register (Offset: 0x3F8)	185
Divisor Latch High Register (Offset: 0x3F9)	185
Interrupt Enable Register (Offset: 0x3F9)	185
Interrupt Identification Register (Offset: 0x3FA)	186
Line Control Register (Offset: 0x3FB)	187
Modem Control Register (Offset: 0x3FC)	188
Line Status Register (Offset: 0x3FD)	188
Modem Status Register (Offset: 0x3FE)	189
Scratch Register (Offset: 0x3FF)	190
EthernetMAC Registers	191
EMAC Mode Register (Offset: 0x400)	191
EMAC Status Register (Offset: 0x404)	192
EMAC Event Enable Register (Offset: 0x408)	193
LED Control Register (Offset: 0x40C)	193
EMAC MAC Addresses 0 High Register (Offset: 0x410)	195
EMAC MAC Addresses 0 Low Register (Offset: 0x414)	195
EMAC MAC Addresses 1 High Register (Offset: 0x418)	195
EMAC MAC Addresses 1 Low Register (Offset: 0x41C)	195
EMAC MAC Addresses 2 High Register (Offset: 0x420)	195
EMAC MAC Addresses 2 Low Register (Offset: 0x424)	195
EMAC MAC Addresses 3 High Register (Offset: 0x428)	196
EMAC MAC Addresses 3 Low Register (Offset: 0x42C)	196
WOL Pattern Pointer Register (Offset: 0x430)	196
WOL Pattern Configuration Register (Offset: 0x434)	196
Ethernet Transmit Random Backoff Register (Offset: 0x438)	196
Receive MTU Size Register (Offset: 0x43C)	197
Gigabit PCS Test Register (Offset: 0x440)	197
Transmit 1000Base-X Auto-Negotiation Register (Offset: 0x444)	197
Receive 1000Base-X Auto-Negotiation Register (Offset: 0x448)	197

MII Communication Register (Offset: 0x44C)	198
MII Status Register (Offset: 0x450)	198
MII Mode Register (Offset: 0x454)	199
Autopollling Status Register (Offset: 0x458)	199
Transmit MAC Mode Register (Offset: 0x45C)	199
Transmit MAC Status Register (Offset: 0x460)	201
Transmit MAC Lengths Register (Offset: 0x464)	201
Receive MAC Mode Register (Offset: 0x468)	202
Receive MAC Status Register (Offset: 0x46C)	203
MAC Hash Register 0 (Offset: 0x470)	203
MAC Hash Register 1 (Offset: 0x474)	204
MAC Hash Register 2 (Offset: 0x478)	204
MAC Hash Register 3 (Offset: 0x47C)	204
Receive Rules Control Registers (Offset: 0x480 + 8*N)	205
Receive Rules Value/Mask Registers (Offset: 0x484 + 8*N)	206
Receive Rules Configuration Register (Offset: 0x500)	206
Low Watermark Maximum Receive Frame Register (Offset: 0x504)	206
IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)	207
IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)	209
SADB Performance Register (Offset: 0x538)	209
RSS Registers	210
Indirection Table Register 0 (Offset: 0x630)	210
Indirection Table Register 2 (Offset: 0x634)	210
Indirection Table Register 3 (Offset: 0x638)	211
Indirection Table Register 4 (Offset: 0x63C)	212
Indirection Table Register 5 (Offset: 0x640)	212
Indirection Table Register 6 (Offset: 0x644)	213
Indirection Table Register 8 (Offset: 0x648)	213
Indirection Table Register 8 (Offset: 0x64C)	214
Indirection Table Register 9 (Offset: 0x650)	215
Indirection Table Register 10 (Offset: 0x654)	215
Indirection Table Register 11 (Offset: 0x658)	216
Indirection Table Register 12 (Offset: 0x65C)	216
Indirection Table Register 12 (Offset: 0x660)	217
Indirection Table Register 13 (Offset: 0x664)	218

Indirection Table Register 14 (Offset: 0x668)	218
Indirection Table Register 15 (Offset: 0x66C)	219
Hash Key Register 0 (Offset: 0x670)	219
Hash Key Registers 1-8 (Offset: 0x674–0x693)	220
Hash Key Register 9 (Offset: 0x694)	220
Receive MAC Programmable IPv6 Extension Header Register (Offset: 0x6A0)	220
Statistics Registers	221
Transmit MAC Static Counters	221
ifHCOutOctets (Offset: 0x800)	221
etherStatsCollisions (Offset: 0x808)	221
outXonSent (Offset: 0x80C)	221
outXoffSent (Offset: 0x810)	221
dot3StatsInternalMacTransmitErrors (Offset: 0x818)	221
dot3StatsSingleCollisionFrames (Offset: 0x81C)	221
dot3StatsMultipleCollisionFrames (Offset: 0x820)	221
dot3StatsDeferredTransmissions (Offset: 0x824)	221
dot3StatsExcessiveTransmissions (Offset: 0x82C)	221
dot3StatsLateCollisions (Offset: 0x830)	221
iHCOutUcastPkts (Offset: 0x86C)	222
iHCOutMulticastPkts (Offset: 0x870)	222
iHCOutBroadcastPkts (Offset: 0x870)	222
Receive MAC Static Counters	222
ifHCOutOctets (Offset: 0x880)	222
etherStatsFragments (Offset: 0x888)	222
ifHCInUcastPkts (Offset: 0x88C)	222
ifHCInMulticastPkts (Offset: 0x890)	222
ifHCInBroadcastPkts (Offset: 0x894)	222
dot3StatsFCSErrors (Offset: 0x898)	222
dot3StatsAlignmentErrors (Offset: 0x89C)	222
xonPauseFrameReceived (Offset: 0x8A0)	222
xoffPauseFrameReceived (Offset: 0x8A4)	223
macControlFramesRecevied (Offset: 0x8A8)	223
xoffStateEntered (Offset: 0x8AC)	223
dot3StatsFramesTooLongs (Offset: 0x8B0)	223
etherStatsJabbers (Offset: 0x8B4)	223

etherStatsUndersizePkts (Offset: 0x8B8).....	223
Send Data Initiator Registers.....	224
Send Data Initiator Mode Register (Offset: 0xC00)	224
Send Data Initiator Status Register (Offset: 0xC04)	224
Send Data Initiator Statistics Control Register (Offset: 0xC08)	224
Send Data Initiator Statistics Mask Register (Offset: 0xC0C)	225
Send Data Initiator Statistics Increment Mask Register (Offset: 0xC10)	225
Local Statistics Register (Offset: 0xC80–0xCDF).....	225
TCP Segmentation Control Registers.....	226
Lower Host Address Register for TCP Segmentation (Offset: 0xCE0)	226
Upper Host Address Register for TCP Segmentation (Offset: 0xCE4)	226
Length/Offset Register for TCP Segmentation (Offset: 0xCE8)	226
DMA Flag Register for TCP Segmentation (Offset: 0xCEC)	226
VLAN Tag Register for TCP Segmentation (Offset: 0xCF0)	227
Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0xCF4).....	228
Send Data Completion Control Registers	229
Send Data Completion Mode Register (Offset: 0x1000)	229
Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0x1008)	229
Send BD Selector Control Registers	230
Send BD Ring Selector Mode Register (Offset: 0x1400)	230
Send BD Ring Selector Status Register (Offset: 0x1404)	230
Send BD Ring Selector Hardware Diagnostics Register (Offset: 0x1408)	230
Send BD Ring Selector Local NIC Send BD Consumer Index Register (Offset: 0x1440–0x147C)	230
Send BD Initiator Control Registers	231
Send BD Initiator Mode Register (Offset: 0x1800)	231
Send BD Initiator Status Register (Offset: 0x1804)	231
Send BD Diagnostic Initiator Local NIC BD N Producer Index Registers (Offset: 0x1808–0x1844) ...	231
Send BD Completion Control Registers	232
Send BD Initiator Mode Register (Offset: 0x1C00).....	232
Receive List Placement Registers	233
Receive List Placement Mode Register (Offset: 0x2000).....	233
Receive List Placement Status Register (Offset: 0x2004).....	233
Receive Selector Non-Empty Bits Register (Offset: 0x200C).....	233
Receive List Placement Configuration Register (Offset: 0x2010)	234
Receive List Placement Configuration Register (Offset: 0x2010)	234

Receive List Placement Statistics Enable Mask Register (Offset: 0x2018)	235
Receive List Placement Statistics Increment Mask Register (Offset: 0x201C)	235
Receive Selector List Head & Tail Pointers (Offset: 0x2100).....	235
Receive Selector List Count Registers (Offset of List N: 0X2108 + 16*[N-1]).....	236
Local Statistics Counter Registers (Offset: 0x2200–0x2258).....	236
Receive Data and Receive BD Initiator Control Registers	237
Receive Data and Receive BD Initiator Mode Register (Offset: 0x2400).....	237
Receive Data and Receive BD Initiator Status Register (Offset: 0x2404)	237
Standard Receive BD Ring RCB Registers	237
Receive Producer Ring Host Address High Register (Offset: 0x2450).....	237
Receive Producer Ring Host Address Low Register (Offset: 0x2454).....	238
Receive Producer Length/Flags Register (Offset: 0x2458)	238
Receive Producer Ring NIC Address Register (Offset: 0x245C).....	238
Receive Diagnostic Data and Receive BD Ring Initiator Local NIC Standard Receive BD Consumer Index (Offset: 0x2474)	238
Receive Data and Receive BD Initiator Hardware Diagnostic Register (Offset: 0x24C0).....	238
Receive Data Completion Control Registers	239
Receive Data Completion Mode Register (Offset: 0x2800)	239
Receive BD Initiator Control Registers	240
Receive BD Initiator Mode Register (Offset: 0x2C00).....	240
Receive BD Initiator Status Register (Offset: 0x2C04)	240
Receive BD Initiator Local NIC Receive BD Producer Index Register (Offset: 0x2C08–0x2C13)	240
Standard Receive BD Producer Ring Replenish Threshold Register (Offset: 0x2C18)	241
Receive BD Completion Control Registers	242
Receive BD Completion Mode Register (Offset: 0x3000).....	242
Receive BD Completion Status Register (Offset: 0x3004).....	242
NIC Standard Receive BD Producer Index Register (Offset: 0x300C)	242
Host Coalescing Control Registers	243
Host Coalescing Mode Register (Offset: 0x3C00)	243
Host Coalescing Status Register (Offset: 0x3C04)	244
Receive Coalescing Ticks Register (Offset: 0x3C08)	244
Send Coalescing Ticks Register (Offset: 0x3C0C)	244
Receive Max Coalesced BD Count Register (Offset: 0x3C10)	245
Send Max Coalesced BD Count Register (Offset: 0x3C14).....	245
Status Block Host Address Register (Offset: 0x3C38).....	245

Status Block Base Address Register (Offset: 0x3C44)	245
Flow Attention Register (Offset: 0x3C48)	246
NIC Receive BD Consumer Index Register (Offset: 0x3C50–0x3C58).....	246
NIC Diagnostic Return Ring 0 Producer Index Register (Offset: 0x3C80)	247
NIC Diagnostic Return Ring 1 Producer Index Register (Offset: 0x3C84)	247
NIC Diagnostic Return Ring 2 Producer Index Register (Offset: 0x3C88)	247
NIC Diagnostic Return Ring 3 Producer Index Register (Offset: 0x3C8C).....	247
NIC Diagnostic Send BD Consumer Index Register (Offset: 0x3CC0)	248
Memory Arbiter Control Registers	249
Memory Arbiter Mode Register (Offset: 0x4000).....	249
Memory Arbiter Status Register (Offset: 0x4004).....	250
Memory Arbiter Trap Address Low Register (Offset: 0x4008).....	250
Memory Arbiter Trap Address High Register (Offset: 0x400C)	250
Buffer Manager Registers	251
Buffer Manager Mode Register (Offset: 0x4400).....	251
Buffer Manager Status Register (Offset: 0x4404)	251
MBUF Pool Base Address Register (Offset: 0x4408).....	252
MBUF Pool Length Register (Offset: 0x440C)	252
Read DMA MBUF Low Watermark Register (Offset: 0x4410)	252
MA MBUF Low Watermark Register (Offset: 0x4414).....	252
MBUF High Watermark Register (Offset: 0x4418)	252
RX RISC MBUF Cluster Allocation Request Register (Offset: 0x441C).....	252
RX RISC MBUF Allocation Response Register (Offset: 0x4420).....	253
BM Hardware Diagnostic 1 Register (Offset: 0x444C)	253
BM Hardware Diagnostic 2 Register (Offset: 0x4450).....	253
BM Hardware Diagnostic 3 Register (Offset: 0x4454).....	254
Receive Flow Threshold Register (Offset: 0x4458)	254
RDMA Registers	255
Read DMA Mode Register (Offset: 0x4800).....	255
Read DMA Status Register (Offset: 0x4804).....	256
Read DMA Programmable IPv6 Extension Header Register (Offset: 0x4808)	257
Security Association Database Registers	258
WDMA Registers	259
Write DMA Mode Register (Offset: 0x4C00)	259
Write DMA Status Register (Offset: 0x4C04)	260

RX-CPU Registers	261
RX RISC Mode Register (Offset: 0x5000)	261
RX RISC Status Register (Offset: 0x5004)	262
RX RISC Program Counter (Offset: 0x501C).....	263
RX RISC Hardware Breakpoint Register (Offset: 0x5034).....	263
Low Priority Mailboxes	264
Interrupt Mailbox 0 Register (Offset: 0x5800)	264
Other Interrupt Mailbox Register (Offset: 0x5808–0x5818)	264
General Mailbox Registers 1-8 (Offset: 0x5820–0x5858)	264
Receive BD Standard Producer Ring Index Register (Offset: 0x5868).....	264
Receive BD Return Ring 0 Consumer Index (Low Priority Mailbox) Register (Offset: 0x5880–0x5887)	264
Receive BD Return Ring 1 Consumer Index (Low Priority Mailbox) Register (Offset: 0x5888–0x588F)	264
Receive BD Return Ring 2 Consumer Index (Low Priority Mailbox) Register (Offset: 0x5890–0x5897)	264
Receive BD Return Ring 3 Consumer Index (Low Priority Mailbox) Register (Offset: 0x5898–0x589F)	265
Send BD Ring Consumer Index (Low Priority Mailbox) Register (Offset: 0x5900)	265
Flow Through Queues	266
FTQ Reset Register (Offset: 0x5C00).....	266
MAC TX FIFO Enqueue Register (Offset: 0x5CB8).....	267
RXMBUF Cluster Free Enqueue Register (Offset: 0x5CC8)	267
RDIQ FTQ Write/Peak Register (Offset: 0x5CFC).....	268
Message Signaled Interrupt Registers	269
MSI Mode Register (Offset: 0x6000)	269
MSI Status Register (Offset: 0x6004)	269
DMA Completion Registers	270
GRC Register	270
Mode Control Register (Offset: 0x6800)	270
Miscellaneous Configuration Register (Offset: 0x6804).....	271
Miscellaneous Local Control Register (Offset: 0x6808).....	272
Timer Register (Offset: 0x680C)	273
RX-CPU Event Register (Offset: 0x6810).....	273
RX-CPU Timer Reference Register (Offset: 0x6814)	274
RX-CPU Semaphore Register (Offset: 0x6818).....	274

Serial EEPROM Address Register	276
MDI Control Register (Offset: 0x6844)	276
Serial EEPROM Delay Register (Offset: 0x6848)	276
RX CPU Event Enable Register (Offset: 0x684C)	276
Miscellaneous Control Registers	278
Miscellaneous Control Register (Offset: 0x6890)	278
Fast Boot Program Counter Register (Offset: 0x6894)	279
CableSense Control Register (Offset: 0x689C).....	279
Miscellaneous Clock Control Register (Offset: 0x68A0).....	279
Power Management Debug Register (Offset: 0x68A4)	280
LAN & TPM Programmable DLL Lock Timer Register (Offset: 0x68A8)	281
E-Switch Control & Status Registers	282
E-Switch Status Register 1 (Offset: 0x68B4).....	282
E-Switch Status Register 2 (Offset: 0x68B8).....	283
E-Switch Control Register (Offset: 0x68BC).....	283
E-Switch Timer Register 1 (Offset: 0x68C0)	286
E-Switch Timer Register 2 (Offset: 0x68C4)	287
E-Switch Timer Register 3 (Offset: 0x68C8)	287
E-Switch Timer Register 4 (Offset: 0x68CC).....	288
E-Switch Timer Register 5 (Offset: 0x68D0)	288
E-Switch Arbitration Register (Offset: 0x68D4)	288
Memory TM Control1 (Offset: 0x68E0).....	289
Memory TM Control2 (Offset: 0x68E4).....	290
Memory TM Control3 (Offset: 0x68E8).....	290
Memory TM Control4 (Offset: 0x68EC)	290
ASF/Legacy SMBus Registers	291
ASF Control Register (Offset: 0x6C00)	291
SMBus Input Register (Offset: 0x6C04)	292
SMBus Output Register (Offset: 0x6C08)	292
ASF Watchdog Timer Register (Offset: 0x6C0C)	294
ASF Heartbeat Timer Register (Offset: 0x6C10).....	294
Poll ASF Timer Register (Offset: 0x6C14).....	294
Poll Legacy Timer Register (Offset: 0x6C18)	294
Retransmission Timer Register (Offset: 0x6C1C)	295
Time Stamp Counter Register (Offset: 0x6C20).....	295

SM Bus Driver Select Register (Offset: 0x6C24)	295
ASF RNG Command Register (Offset: 0x6C30).....	295
ASF_RNG Data Register (Offset: 0x6C34).....	296
Non-Volatile Memory (NVM) Interface Registers.....	297
NVM Command Register (Offset: 0x7000h)	297
NVM Status Register (Offset: 0x7004h).....	298
NVM Write Register (Offset: 0x7008h).....	298
NVM Address Register (Offset: 0x700Ch)	299
NVM Read Register (Offset: 0x7010h)	299
NVM Config 1 Register (Offset: 0x7014h)	299
NVM Config 2 Register (Offset: 0x7018h)	301
NVM Config 3 Register (Offset: 0x701Ch).....	301
Software Arbitration Register (Offset: 0x7020h)	302
NVM Access Register (Offset: 0x7024h)	303
NVM Write1 Register (Offset: 0x7028h).....	303
Arbitration Watchdog Timer Register (Offset: 0x702Ch).....	303
Address Lockout Boundary Register (Offset: 0x7030h).....	304
Address Lockout Address Counter Debug Register (Offset: 0x7034h).....	304
NVM Auto-Sense Status Register (Offset: 0x7038h).....	304
UART Register	306
Data Register (Offset: 0x7800)	306
Transmit Holding Register (THR) (DLAB=0).....	307
Divisor Latch (Low) (DLL) (DLAB=1)	307
UART Interrupt Enable Register (Offset: 0x7804).....	307
Interrupt Enable Register (IER) (DLAB=0).....	307
Divisor Latch (High) (DLH) (DLAB=1).....	307
UART Control Register (Offset: 0x7808).....	308
Interrupt Identity Register (IIR)	308
FIFO Control Register (FCR)	308
UART Control Register (Offset: 0x780C)	308
Modem Control Register (Offset: 0x7810)	309
Line Status Register (Offset: 0x7814)	309
Modem Status Register (Offset: 0x7818).....	310
Scratch Register (Offset: 0x781C)	310
CPMU Registers	311

CPMU Control Register (Offset: 0x3600)	311
Link Speed 10MB/No Link Power Mode Clock Policy Register (Offset: 0x3604)	313
Link Speed 100MB Power Mode Clock Policy Register (Offset: 0x3608)	314
Link Speed 1000MB Power Mode Clock Policy Register (Offset: 0x360C).....	316
Link Aware Power Mode Clock Policy Register (Offset: 0x3610).....	317
Airplane Power Mode Clock Policy Register (Offset: 3614)	318
Link Idle Power Mode Clock Policy Register (Offset: 0x3618)	320
Host Access Clock Policy Register (Offset: 0x361C)	321
APE Sleep State Clock Policy Register (Offset: 0x3620)	322
Clock Speed Override Policy Register (Offset: 0x3624).....	323
Clock Override Enable Register (Offset: 0x3628)	325
Status Register (Offset: 0x362C).....	326
Clock Status Register (Offset: 0x3630)	327
PCIe Status Register (Offset: 0x3634)	328
GPHY Control/Status Register (Offset: 0x3638)	329
RAM Control Register (Offset: 0x363C)	330
IPSEC Idle Detection De-Bounce Control Register (Offset: 0x3640)	330
IPSEC SHA1 Idle Detection De-Bounce Control Register (Offset: 0x3644).....	331
Core Idle Detection De-Bounce Control Register (Offset: 0x3648)	331
PCIe Idle Detection De-Bounce Control Register (Offset: 0x364C)	332
Energy Detection De-Bounce Timer (Offset: 0x3650)	332
DLL Lock Timer Register (Offset: 0x3654)	334
Mutex Request Register (Offset: 0x365C).....	335
Mutex Grant Register (Offset: 0x3660).....	335
GPHY Strap Register (Offset: 0x3664).....	335
Padring Control Register (Offset: 0x3668)	336
Host Access Control Register (Offset: 0x366C)	336
Link Idle Control Register (Offset: 0x3670)	336
Link Idle Status Register (Offset: 0x3674).....	339
CPMU Energy Detect Raw Debounce Control 1 Register (Offset: 0x3678).....	341
CPMU Energy Detect Raw Debounce Control 2 Register (Offset: 0x367C)	341
CPMU Debug Register (Offset: 0x3680)	342
CPMU Debug Select Register (Offset: 0x3684)	342
Common Debug Mode Registers	343
Common Debug Mux Control Register (Offset: 0x3900).....	343

Common Debug Mux Debug Vector Register (Offset: 0x3904).....	345
PCI Express Registers	346
TL Registers.....	346
TL Control Register (Offset: 0x0–00).....	346
Transaction Configuration Register (Offset: 0x0–04).....	347
Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–08)	349
Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–0C).....	349
DMA Request Upper Address Diagnostic Register (Offset: 0x0–10).....	349
DMA Request Lower Address Diagnostic Register (Offset: 0x0–14).....	350
DMA Request Length/Byte Enable Diagnostic Register (Offset: 0x0–18)	350
DMA Request Tag/Attribute/Function Diagnostic Register (Offset: 0x0–1C).....	350
Read DMA Split IDs Diagnostic Register (Offset: 0x0–20)	350
Read DMA Split Length Diagnostic Register (Offset: 0x0–24)	351
XMT State Machines and Request Diagnostic Register (Offset: 0x0–3C).....	351
DMA Completion Misc. Diagnostic Register (Offset: 0x0–58)	351
Split Controller Misc 0 Diagnostic Register (Offset: 0x0–5C)	352
Split Controller Misc 1 Diagnostic Register (Offset: 0x0–60)	352
Split Controller Misc 2 Diagnostic Register (Offset: 0x0–64)	352
TL Register Bus No, Dev. No., Func. No. Register (Offset: 0x0–68).....	352
TL Debug Register (Offset: 0x0–6C)	353
Data Link Layer Registers (dbg 0x1xx/0x7Dxx for client designs)	353
Data Link Control Register (Offset: 0x1–00)	353
Data Link Status Register (Offset: 0x1–04)	354
Data Link Attention Register (Offset: 0x1–08)	355
Data Link Attention Mask Register (Offset: 0x1–0C)	355
Next Transmit Sequence Number Debug Register (Offset: 0x1–10).....	356
Ack'ed Transmit Sequence Number Debug Register (Offset: 0x1–14)	356
Purged Transmit Sequence Number Debug Register (Offset: 0x1–18).....	356
Receive Sequence Number Debug Register (Offset: 0x1–1C).....	356
Data Link Replay Register (Offset: 0x1–20)	356
Data Link Ack Timeout Register (Offset: 0x1–24).....	357
Power Management Threshold Register (Offset: 0x1–28).....	357
Retry Buffer Write Pointer Debug Register (Offset: 0x1–2C).....	357
Retry Buffer Read Pointer Debug Register (Offset: 0x1–30)	357
Retry Buffer Purged Pointer Debug Register (Offset: 0x1–34)	358

Retry Buffer Read/Write Debug Port 0x1–38	358
Error Count Threshold Register (Offset: 0x1–3C)	358
TL Error Counter Register (Offset: 0x1–40)	358
DLLP Error Counter (Offset: 0x1–44)	359
Nak Received Counter (Offset: 0x1–48)	359
Data Link Test Register (Offset: 0x1–4C)	359
Packet BIST Register (Offset: 0x1–50)	360
Link PCIe 1.1 Control Register (Offset: 0x1–54)	360
Reserved (Offset: 0x1–58–0x1–FC)	362
PHY Layer Internal Registers (dbg 0x2xx/0x7Exx for client designs)	362
PHY Mode Register (Offset: 0x2–00)	362
PHY/Link Status Register (Offset: 0x2–04)	362
PHY/Link LTSSM Control Register (Offset: 0x2–08)	362
PHY/Link Training Link Number (Offset: 0x2–0C)	363
PHY/Link Training Lane Number (Offset: 0x2–10)	363
PHY/Link Training N_FTS (Offset: 0x2–14)	364
PHY Attention Register (Offset: 0x2–18)	364
PHY Attention Mask Register (Offset: 0x2–1C)	364
PHY Receive Error Counter (Offset: 0x2–20)	365
PHY Receive Framing Error Counter (Offset: 0x2–24)	365
PHY Receive Error Threshold Register (Offset: 0x2–28)	365
PHY Test Control Register (Offset: 0x2–2C)	366
PHY/SerDes Control Override (Offset: 0x2–30)	366
PHY Timing Parameter Override (Offset: 0x2–34)	367
PHY Hardware Diagnostic1—TX/RX SM States (Offset: 0x2–38)	367
PHY Hardware Diagnostic2—LTSSM States (Offset: 0x2–3C)	368
PCI Express SerDes Registers	369
Port Address Map	369
MII Map	370
PLL Registers	371
PLL Status (Offset: 0x0)	371
PLL Control (Offset: 0x1)	371
PLL Timer 1 (Offset: 0x2)	372
PLL Timer 2 (Offset: 0x3)	372
Cap Control (Offset: 0x5)	372

Freq Detect Counter (Offset: 0x7)	373
PLL Analog Status 1 (Offset: 0x8)	373
PLL Analog Control 1 (Offset: 0xA)	373
PLL Analog Control 2 (Offset: 0xB)	373
PLL Analog Control 3 (Offset: 0xC)	374
PLL Analog Control 4 (Offset: 0xD)	375
Transmit Registers	376
TX Status (Offset: 0x0)	376
TX Control (Offset: 0x1)	376
TX mdata 0 (Offset: 0x2)	376
TX mdata 1 (Offset: 0x3)	377
TX Analog Status 1 (Offset: 0x4)	377
TX Analog Control 1 (Offset: 0x5)	377
TX Analog Control 2 (Offset: 0x6)	377
TX Analog Control 3 (Offset: 0x7)	378
Receive Registers	378
RX Status (Offset: 0x0)	378
RX Status 0 (Status Select: "000")	378
RX Status 1 (Status Select: "001")	378
RX Status 2 (Status Select: "010")	379
RX Status 3 (Status Select: "011")	379
RX Status 4 (Status Select: "100")	379
RX Control (Offset: 0x1)	379
RX Timer 1 (Offset: 0x2)	380
RX CDR Phase (Offset: 0x5)	380
RX CDR Freq (Offset: 0x6)	380
RX CDR BW (Offset: 0x7)	381
RX Test Control (Offset: 0x9)	381
RX Analog Status (Offset: 0xB)	381
RX Analog Control 1 (Offset: 0xC)	382
RX Analog Control 2 (Offset: 0xD)	382
Appendix A: Flow Control	383
Notes	383
Flow Control Scenario	383

File Transfer	384
Speed Mismatch.....	384
Switch Buffers Run Low	385
Switch Backpressure	386
Switch Flow Control.....	386
File Transfer Complete	387
Pause Control Frame.....	387
Appendix B: Terminology.....	389

LIST OF FIGURES

Figure 1: Functional Block Diagram	7
Figure 2: Receive Data Path	8
Figure 3: Transmit Data Path	10
Figure 4: DMA Read Engine	11
Figure 5: DMA Write Engine.....	12
Figure 6: Host Coalescing Engine.....	14
Figure 7: Media Independent Interface	17
Figure 8: GMII Block.....	19
Figure 9: MDI Register Interface	20
Figure 10: Generic Ring Diagram.....	23
Figure 11: Transmit Ring Data Structure Architecture Diagram.....	25
Figure 12: Receive Return Ring Memory Architecture Diagram	28
Figure 13: Receive Buffer Descriptor Cycle	40
Figure 14: Receive Producer Ring RCB Setup	42
Figure 15: Mailbox Registers.....	44
Figure 16: Class of Service Example	48
Figure 17: Overview Diagram of RX Flow	50
Figure 18: RSS Receive Processing Sequence.....	52
Figure 19: Relationships Between All Components of a Send Ring	55
Figure 20: Max_Len Field in Ring Control Block.....	55
Figure 21: Relationship Between Send Buffer Descriptors	56
Figure 22: Scatter Gather of Frame Fragments	58
Figure 23: Transmit Data Flow	60
Figure 24: Basic Driver Flow to Send a Packet.....	61
Figure 25: Firmware Image Moved to Scratch Pad/RXMBUF.....	63
Figure 26: Local Contexts	72
Figure 27: Header Type Register 0xE.....	73
Figure 28: Header Region Registers.....	74
Figure 29: Device-Specific Registers	76
Figure 30: Register Indirect Access	78
Figure 31: Indirect Memory Access.....	79
Figure 32: Low-Priority Mailbox Access for Indirect Mode	81
Figure 33: Standard Memory Mapped I/O Mode.....	82

Figure 34: Memory Window Base Address Register	83
Figure 35: Standard Mode Memory Window	84
Figure 36: Flat Mode Memory Map	86
Figure 37: Flat Mode Memory Map	90
Figure 38: Techniques for Accessing Ethernet Controller Local Memory	91
Figure 39: PCI Command Register	92
Figure 40: PCI Base Address Register	93
Figure 41: PCI Base Address Register Bits Read in Standard Mode	93
Figure 42: PCI Base Address Register Bits Read in Flat Mode	94
Figure 43: Read and Write Channels of DMA Engine	96
Figure 44: Default Translation (No Swapping) on 64-Bit PCI	102
Figure 45: Default Translation (No Swapping) on 32-bit PCI	102
Figure 46: Word Swap Enable Translation on 32-Bit PCI (No Byte Swap)	103
Figure 47: Byte Swap Enable Translation on 32-Bit PCI (No Word Swap)	103
Figure 48: Byte and Word Swap Enable Translation on 32-Bit PCI	103
Figure 49: WOL Functional Block Diagram	116
Figure 50: Comparing Ethernet Frames Against Available Patterns (10/100 Ethernet WOL)	119
Figure 51: Unused Rows and Rules Must Be Initialized with Zeros	120
Figure 52: Traditional Interrupt Scheme	135
Figure 53: Message-Signaled Interrupt Scheme	136
Figure 54: MSI Data Field	137
Figure 55: Basic Driver Interrupt Service Routine Flow	139
Figure 56: Interrupt Identification Register (Offset: 0x3FA)	187
Figure 57: File Transfer Scenario: FTP Session Begins	384
Figure 58: File Transfer Scenario: Speed Mismatch	384
Figure 59: File Transfer Scenario: Speed Buffers Run Low	385
Figure 60: File Transfer Scenario: Switch Backpressure	386
Figure 61: File Transfer Scenario: Switch Flow Control	387
Figure 62: File Transfer Scenario: File Transfer Complete	387
Figure 63: Pause Control Frame	388

LIST OF TABLES

Table 1: Pseudocode.....	2
Table 2: Family Revision Levels.....	5
Table 3: Ring Control Block Format	24
Table 4: Flag Fields for a Ring	24
Table 5: Send Buffer Descriptors Format.....	26
Table 6: Defined Flags for Send Buffer Descriptors.....	26
Table 7: Receive Return Rings.....	29
Table 8: Receive Descriptors Format.....	30
Table 9: Defined Flags for Receive Buffers.....	30
Table 10: Defined Error Flags for Receive Buffers.....	32
Table 11: Status Block Format.....	33
Table 12: Status Word Flags	34
Table 13: Send Data Initiator Host Interrupts Statistics.....	36
Table 14: Send Data Initiator NIC BD Coalescing Thresholds Statistics.....	36
Table 15: Receive List Placement NIC BD Coalescing Thresholds Statistics.....	36
Table 16: Send Data Initiator DMA Resources Statistics	37
Table 17: Receive List Placement DMA Resources Statistics	37
Table 18: Send Data Initiator MAC Resources Statistics	37
Table 19: Receive List Placement MAC Resources Statistics	37
Table 20: Send Data Initiator Class of Service Statistics	38
Table 21: Receive List Placement Class of Service Statistics.....	38
Table 22: Interface Statistics in Rx List Placement Engine	38
Table 23: Receive Rules Configuration Register.....	46
Table 24: Receive BD Rules Control Register	46
Table 25: Receive BD Rules Value/Mask Register	47
Table 26: Frame Format with 802.1Q VLAN Tag Inserted	49
Table 27: Addressing Perspectives	63
Table 28: Mac Address Registers	66
Table 29: Multicast Hash Table Registers.....	68
Table 30: Device-Specific Registers.....	77
Table 31: PCI Address Map Standard View	83
Table 32: PCI Address Map Flat View.....	87
Table 33: PCI Registers	94

Table 34: PCI -X Registers	98
Table 35: Endian Example	100
Table 36: Storage of Big-Endian Data	100
Table 37: Storage of Little-Endian Data	100
Table 38: RCB (Big Endian 32-bit format)	102
Table 39: Big-Endian Internal Packet Data Format	104
Table 40: 64-Bit PCI Bus (WSD = 0, BSD = 0)	105
Table 41: 32-Bit PCI Bus (WSD = 0, BSD = 0)	105
Table 42: 64-Bit PCI Bus (WSD = 0, BSD = 1)	105
Table 43: 32-Bit PCI Bus (WSD = 0, BSD = 1)	105
Table 44: 64-Bit PCI Bus (WSD = 1, BSD = 0)	106
Table 45: 32-Bit PCI Bus (WSD = 1, BSD = 0)	106
Table 46: 64-Bit PCI Bus (WSD = 1, BSD = 1)	106
Table 47: 32-Bit PCI Bus (WSD = 1, BSD = 1)	106
Table 48: Send Buffer Descriptor (Big-Endian 64-Bit format)	107
Table 49: Send Buffer Descriptor (Big-Endian 32-Bit format)	107
Table 50: Send Buffer Descriptor (Little-Endian 32-Bit format) with No Swapping	108
Table 51: Send Buffer Descriptor (Little-Endian 32-Bit format) with Word Swapping	108
Table 52: Send Buffer Descriptor (Big-Endian 32-bit format) with Byte Swapping	108
Table 53: Send Buffer Descriptor (Big-Endian 32-bit format) with Word and Byte Swapping	109
Table 54: Required Memory Regions for WOL Pattern	117
Table 55: 10/100 Mbps Mode Frame Patterns Memory	120
Table 56: Frame Control Field for 10/100 Mbps Mode	121
Table 57: Example of Splitting 10/100 Mbps Frame Data in Pattern Data Structure	121
Table 58: Firmware Mailbox Initialization	122
Table 59: Recommended Settings for PHY Auto-Negotiation	122
Table 60: WOL Mode Clock Inputs	123
Table 61: Magic Packet Detection Logic Enable	123
Table 62: Integrated MAC WOL Mode Control Registers	124
Table 63: Transmit MAC Watermark Recommendation	127
Table 64: Pause Quanta	127
Table 65: Keep_Pause Recommended Value	127
Table 66: Statistic Block	128
Table 67: Integrated MAC Flow Control Registers	130
Table 68: Interrupt-Related Registers	134

Table 69: Register Access Legend.....	143
Table 70: Device ID & Vendor ID Register (Offset: 0x00)	143
Table 71: Status & Command Register (Offset: 0x04)	144
Table 72: PCI Classcode & Revision ID Register (Offset: 0x8)	145
Table 73: BIST, Header Type, Latency Timer, Cache Line Size Register (Offset: 0x0C)	145
Table 74: Base Address Register 1 (Offset: 0x10)	146
Table 75: Base Address Register 2 (Offset: 0x14)	147
Table 76: Base Address Register 3 (Offset: 0x18)	147
Table 77: Base Address Register 4 (Offset: 0x1c)	149
Table 78: Cardbus CIS Pointer Register (Offset: 0x28)	149
Table 79: Subsystem ID/Vendor ID Register (Offset: 0x2C)	149
Table 80: Expansion ROM Base Address Register (Offset: 0x30)	149
Table 81: Capabilities Pointer Register (Offset: 0x34)	150
Table 82: Interrupt Register (Offset: 0x3C)	150
Table 83: VPD Capabilities (Offset: 0x40).....	150
Table 84: VPD Data Register (Offset: 0x44)	150
Table 85: Power Management Capability Register (Offset: 0x48)	151
Table 86: Power Management Control/Status Register (Offset: 0x4C)	152
Table 87: MSI Capability Header (Offset: 0x50).....	153
Table 88: MSI Lower Address Register (Offset: 0x54)	153
Table 89: MSI Upper Address Register (Offset: 0x58)	153
Table 90: MSI Data Register (Offset: 0x5c).....	153
Table 91: Broadcom Vendor-Specific Capability Header (Offset: 0x60)	153
Table 92: Reset Counters Initial Values Register (Offset: 0x64)	154
Table 93: Miscellaneous Host Control Register (Offset: 0x68).....	154
Table 94: Spare Register (Offset: 0x6C)	155
Table 95: PCI State Register (Offset: 0x70)	155
Table 96: Clock Control Register (Offset: 0x74).....	156
Table 97: Register Base Register (Offset: 0x78)	157
Table 98: Memory Base Register (Offset: 0x7C).....	158
Table 99: Register Data Register (Offset: 0x80)	158
Table 100: Memory Data Register (Offset: 0x84)	158
Table 101: Expansion ROM BAR Size Register (Offset: 0x88).....	158
Table 102: Expansion ROM Address Register (Offset: 0x8C)	158
Table 103: Expansion ROM Data Register (Offset: 0x90).....	159

Table 104: VPD Interface Register (Offset: 0x94)	159
Table 105: UNDI Receive BD Standard Producer Ring Producer Index Mailbox Register (Offset: 0x98).....	160
Table 106: UNDI Receive Return Ring Consumer Index Register (Offset: 0xA0)	160
Table 107: UNDI Send BD Producer Index Mailbox Register (Offset: 0xA8).....	160
Table 108: INT Mailbox Register (Offset: 0xB0)	160
Table 109: Product ID and ASIC Revision (Offset: 0xBC)	160
Table 110: Function Event Register (Offset: 0xC0)–Change to Spare	161
Table 111: Function Event Mask Register (Offset: 0xC4)–Change to Spare.....	161
Table 112: Function Present Register (Offset: 0xC8)–Change to Spare	161
Table 113: PCIe Capability List Register (Offset: 0xCC)	161
Table 114: PCIe Next Capability Pointer Register (Offset: 0xCD)	162
Table 115: PCIe Capabilities Register (Offset: 0xCE)	162
Table 116: Device Capabilities Register (Offset: 0xD0).....	162
Table 117: Device Control Register (Offset: 0xD4).....	164
Table 118: Device Status Register (Offset: 0xD6)	165
Table 119: Link Capability Register (Offset: 0xD8).....	165
Table 120: Link Control Register (Offset: 0xDC)	166
Table 121: Link Status Command Register (Offset: 0xDE).....	167
Table 122: Device Capabilities 2 (Offset: 0xF0)	167
Table 123: Device Status and Control 2 (Offset: 0xF4)	167
Table 124: Link Capabilities 2 (Offset: 0xF8).....	168
Table 125: Link Status and Control 2 (Offset: 0xFC)	168
Table 126: Advanced Error Reporting Enhanced Capability Header (Offset: 0x100).....	169
Table 127: Uncorrectable Error Status Register (Offset: 0x104)	169
Table 128: Uncorrectable Error Mask Register (Offset: 0x108)	170
Table 129: Uncorrectable Error Severity Register (Offset: 0x10C)	170
Table 130: Correctable Error Status Register (Offset: 0x110)	171
Table 131: Correctable Error Mask Register (Offset: 0x114).....	172
Table 132: Advanced Error Capabilities and Control Register (Offset: 0x118).....	172
Table 133: Header Log Register (Offset: 0x11C)	172
Table 134: Header Log Register (Offset: 0x120)	173
Table 135: Header Log Register (Offset: 0x124)	173
Table 136: Header Log Register (Offset: 0x128)	173
Table 137: Virtual Channel Enhanced Capability Header (Offset: 0x13c)	174
Table 138: Port VC Capability Register (Offset: 0x140)	174

Table 139: Port VC Capability Register 2 (Offset: 0x144)	174
Table 140: Port VC Control Register (Offset: 0x148)	174
Table 141: Port VC Status Register (Offset: 0x14A)	175
Table 142: VC Resource Capability Register (Offset: 0x14C).....	175
Table 143: VC Resource Control Register (Offset: 0x150)	175
Table 144: VC Resource Status Register (Offset: 0x156).....	175
Table 145: Device Serial No Enhanced Capability Header Register (Offset: 0x160).....	176
Table 146: Device Serial No Lower DW Register (Offset: 0x164).....	176
Table 147: Device Serial No Upper DW Register (Offset: 0x168).....	176
Table 148: Power Budgeting Enhanced Capability Header Register (Offset: 0x16C).....	177
Table 149: Power Budgeting Data Select Register (Offset: 0x170)	177
Table 150: Power Budgeting Data Register (Offset: 0x174)	177
Table 151: Power Budgeting Capability Register (Offset: 0x178)	178
Table 152: Firmware Power Budgeting Register 1 (Offset: 0x17C)	178
Table 153: Firmware Power Budgeting Register 2 (Offset: 0x17E).....	179
Table 154: Firmware Power Budgeting Register 3 (Offset: 0x180)	179
Table 155: Firmware Power Budgeting Register 4 (Offset: 0x182)	180
Table 156: Firmware Power Budgeting Register 5 (Offset: 0x184)	180
Table 157: Firmware Power Budgeting Register 6 (Offset: 0x186)	181
Table 158: Firmware Power Budgeting Register 7 (Offset: 0x188)	182
Table 159: Firmware Power Budgeting Register 8 (Offset: 0x18A).....	182
Table 160: PCIe 1.1 Advisory Non-Fatal Error Masking (Offset: 0x18C)	183
Table 161: Transmit Hold Register (Offset: 0x3F8)	185
Table 162: Receive Buffer Register (Offset: 0x3F8).....	185
Table 163: Divisor Latch Low Register (Offset: 0x3F8).....	185
Table 164: Divisor Latch High Register (Offset: 0x3F9)	185
Table 165: Interrupt Enable Register (Offset: 0x3F9).....	186
Table 166: Interrupt Identification Register (Offset: 0x3FA)	186
Table 167: Line Control Register (Offset: 0x3FB)	187
Table 168: Modem Control Register (Offset: 0x3FC)	188
Table 169: Line Status Register (Offset: 0x3FD).....	188
Table 170: Modem Status Register (Offset: 0x3FE).....	189
Table 171: Scratch Register (Offset: 0x3FF)	190
Table 172: EMAC Mode Register (Offset: 0x400)	191
Table 173: EMAC Status Register (Offset: 0x404).....	192

Table 174: EMAC Event Enable Register (Offset: 0x408)	193
Table 175: LED Control Register (Offset: 0x40C)	193
Table 176: EMAC MAC Addresses 0 High Register (Offset: 0x410)	195
Table 177: EMAC MAC Addresses 0 Low Register (Offset: 0x414)	195
Table 178: EMAC MAC Addresses 1 High Register (Offset: 0x418)	195
Table 179: EMAC MAC Addresses 1 Low Register (Offset: 0x41C)	195
Table 180: EMAC MAC Addresses 2 High Register (Offset: 0x420)	195
Table 181: EMAC MAC Addresses 2 Low Register (Offset: 0x424)	195
Table 182: EMAC MAC Addresses 3 High Register (Offset: 0x428)	196
Table 183: EMAC MAC Addresses 3 Low Register (Offset: 0x42C)	196
Table 184: WOL Pattern Pointer Register (Offset: 0x430)	196
Table 185: WOL Pattern Configuration Register (Offset: 0x434)	196
Table 186: Ethernet Transmit Random Backoff Register (Offset: 0x438)	196
Table 187: Receive MTU Size Register (Offset: 0x43C)	197
Table 188: Gigabit PCS Test Register (Offset: 0x440)	197
Table 189: Transmit 1000Base-X Auto-Negotiation Register (Offset: 0x444)	197
Table 190: Receive 1000Base-X Auto-Negotiation Register (Offset: 0x448)	197
Table 191: MII Communication Register (Offset: 0x44C)	198
Table 192: MII Status Register (Offset: 0x450)	198
Table 193: MII Mode Register (Offset: 0x454)	199
Table 194: Autopolling Status Register (Offset: 0x458)	199
Table 195: Transmit MAC Mode Register (Offset: 0x45C)	199
Table 196: Transmit MAC Status Register (Offset: 0x460)	201
Table 197: Transmit MAC Lengths Register (Offset: 0x464)	201
Table 198: Receive MAC Mode Register (Offset: 0x468)	202
Table 199: Receive MAC Status Register (Offset: 0x46C)	203
Table 200: MAC Hash Register 0 (Offset: 0x470)	203
Table 201: MAC Hash Register 1 (Offset: 0x474)	204
Table 202: MAC Hash Register 2 (Offset: 0x478)	204
Table 203: MAC Hash Register 3 (Offset: 0x47C)	204
Table 204: Receive Rules Control Registers (Offset: 0x480 + 8*N)	205
Table 205: Receive Rules Value/Mask Registers (Offset: 0x484 + 8*N)	206
Table 206: Receive Rules Configuration Register (Offset: 0x500)	206
Table 207: Low Watermark Maximum Receive Frame Register (Offset: 0x504)	206
Table 208: IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)	207

Table 209: IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)	209
Table 210: SADB Performance Register (Offset: 0x538)	209
Table 211: Indirection Table Register 0 (Offset: 0x630)	210
Table 212: Indirection Table Register 2 (Offset: 0x634)	210
Table 213: Indirection Table Register 3 (Offset: 0x638)	211
Table 214: Indirection Table Register 4 (Offset: 0x63C)	212
Table 215: Indirection Table Register 5 (Offset: 0x640)	212
Table 216: Indirection Table Register 6 (Offset: 0x644)	213
Table 217: Indirection Table Register 8 (Offset: 0x648)	213
Table 218: Indirection Table Register 8 (Offset: 0x64C)	214
Table 219: Indirection Table Register 9 (Offset: 0x650)	215
Table 220: Indirection Table Register 10 (Offset: 0x654)	215
Table 221: Indirection Table Register 11 (Offset: 0x658)	216
Table 222: Indirection Table Register 12 (Offset: 0x65C)	216
Table 223: Indirection Table Register 12 (Offset: 0x660)	217
Table 224: Indirection Table Register 13 (Offset: 0x664)	218
Table 225: Indirection Table Register 14 (Offset: 0x668)	218
Table 226: Indirection Table Register 15 (Offset: 0x66C)	219
Table 227: Hash Key Register 0 (Offset: 0x670)	219
Table 228: Hash Key Register 9 (Offset: 0x694)	220
Table 229: Receive MAC Programmable IPv6 Extension Header Register (Offset: 0x6A0)	220
Table 230: Send Data Initiator Mode Register (Offset: 0xC00)	224
Table 231: Send Data Initiator Status Register (Offset: 0xC04)	224
Table 232: Send Data Initiator Statistics Control Register (Offset: 0xC08)	224
Table 233: Send Data Initiator Statistics Mask Register (Offset: 0xC0C)	225
Table 234: Send Data Initiator Statistics Increment Mask Register (Offset: 0xC10)	225
Table 235: Local Statistics Register (Offset: 0xC80–0xCDF)	225
Table 236: Lower Host Address Register for TCP Segmentation (Offset: 0xCE0)	226
Table 237: Upper Host Address Register for TCP Segmentation (Offset: 0xCE4)	226
Table 238: Length/Offset Register for TCP Segmentation (Offset: 0xCE8)	226
Table 239: DMA Flag Register for TCP Segmentation (Offset: 0xCEC)	226
Table 240: VLAN Tag Register for TCP Segmentation (Offset: 0xCF0)	227
Table 241: Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0xCF4)	228
Table 242: Send Data Completion Mode Register (Offset: 0x1000)	229
Table 243: Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0x1008)	229

Table 244: Send BD Ring Selector Mode Register (Offset: 0x1400)	230
Table 245: Send BD Ring Selector Status Register (Offset: 0x1404)	230
Table 246: Send BD Ring Selector Hardware Diagnostics Register (Offset: 0x1408)	230
Table 247: Send BD Ring Selector Local NIC Send BD Consumer Index Register (Offset: 0x1440–0x147C)	230
Table 248: Send BD Initiator Mode Register (Offset: 0x1800)	231
Table 249: Send BD Initiator Status Register (Offset: 0x1804)	231
Table 250: Send BD Initiator Mode Register (Offset: 0x1C00)	232
Table 251: Receive List Placement Mode Register (Offset: 0x2000)	233
Table 252: Receive List Placement Status Register (Offset: 0x2004)	233
Table 253: Receive Selector Non-Empty Bits Register (Offset: 0x200C)	233
Table 254: Receive List Placement Configuration Register (Offset: 0x2010)	234
Table 255: Receive List Placement Configuration Register (Offset: 0x2010)	234
Table 256: Receive List Placement Statistics Enable Mask Register (Offset: 0x2018)	235
Table 257: Receive List Placement Statistics Increment Mask Register (Offset: 0x201C)	235
Table 258: Local Statistics Counter Registers (Offset: 0x2200–0x2258)	236
Table 259: Receive Data and Receive BD Initiator Mode Register (Offset: 0x2400)	237
Table 260: Receive Data and Receive BD Initiator Status Register (Offset: 0x2404)	237
Table 261: Receive Producer Ring Host Address High Register (Offset: 0x2450)	237
Table 262: Receive Producer Ring Host Address Low Register (Offset: 0x2454)	238
Table 263: Receive Producer Length/Flags Register (Offset: 0x2458)	238
Table 264: Receive Producer Ring NIC Address Register (Offset: 0x245C)	238
Table 265: Receive Data and Receive BD Initiator Hardware Diagnostic Register (Offset: 0x24C0)	238
Table 266: Receive Data Completion Mode Register (Offset: 0x2800)	239
Table 267: Receive BD Initiator Mode Register (Offset: 0x2C00)	240
Table 268: Receive BD Initiator Status Register (Offset: 0x2C04)	240
Table 269: Standard Receive BD Producer Ring Replenish Threshold Register (Offset: 0x2C18)	241
Table 270: Receive BD Completion Mode Register (Offset: 0x3000)	242
Table 271: Receive BD Completion Status Register (Offset: 0x3004)	242
Table 272: NIC Standard Receive BD Producer Index Register (Offset: 0x300C)	242
Table 273: Host Coalescing Mode Register (Offset: 0x3C00)	243
Table 274: Host Coalescing Status Register (Offset: 0x3C04)	244
Table 275: Flow Attention Register (Offset: 0x3C48)	246
Table 276: NIC Diagnostic Return Ring 0 Producer Index Register (Offset: 0x3C80)	247
Table 277: NIC Diagnostic Return Ring 1 Producer Index Register (Offset: 0x3C84)	247

Table 278: NIC Diagnostic Return Ring 2 Producer Index Register (Offset: 0x3C88)	247
Table 279: NIC Diagnostic Return Ring 3 Producer Index Register (Offset: 0x3C8C)	247
Table 280: NIC Diagnostic Send BD Consumer Index Register (Offset: 0x3CC0)	248
Table 281: Memory Arbiter Mode Register (Offset: 0x4000)	249
Table 282: Memory Arbiter Status Register (Offset: 0x4004)	250
Table 283: Memory Arbiter Trap Address Low Register (Offset: 0x4008)	250
Table 284: Memory Arbiter Trap Address High Register (Offset: 0x400C)	250
Table 285: Buffer Manager Mode Register (Offset: 0x4400)	251
Table 286: Buffer Manager Status Register (Offset: 0x4404)	251
Table 287: MBUF Pool Base Address Register (Offset: 0x4408)	252
Table 288: MBUF Pool Length Register (Offset: 0x440C)	252
Table 289: RX RISC MBUF Cluster Allocation Request Register (Offset: 0x441C)	253
Table 290: BM Hardware Diagnostic 1 Register (Offset: 0x444C)	253
Table 291: BM Hardware Diagnostic 2 Register (Offset: 0x4450)	253
Table 292: BM Hardware Diagnostic 3 Register (Offset: 0x4454)	254
Table 293: Receive Flow Threshold Register (Offset: 0x4458)	254
Table 294: Read DMA Mode Register (Offset: 0x4800)	255
Table 295: Read DMA Status Register (Offset: 0x4804)	256
Table 296: Read DMA Programmable IPv6 Extension Header Register (Offset: 0x4808)	257
Table 297: Write DMA Mode Register (Offset: 0x4C00)	259
Table 298: Write DMA Status Register (Offset: 0x4C04)	260
Table 299: RX RISC Mode Register (Offset: 0x5000)	261
Table 300: RX RISC Status Register (Offset: 0x5004)	262
Table 301: RX RISC Hardware Breakpoint Register (Offset: 0x5034)	263
Table 302: FTQ Reset Register (Offset: 0x5C00)	266
Table 303: MAC TX FIFO Enqueue Register (Offset: 0x5CB8)	267
Table 304: RXMBUF Cluster Free Enqueue Register (Offset: 0x5CC8)	267
Table 305: RDIQ FTQ Write/Peak Register (Offset: 0x5CFC)	268
Table 306: MSI Mode Register (Offset: 0x6000)	269
Table 307: MSI Status Register (Offset: 0x6004)	269
Table 308: Mode Control Register (Offset: 0x6800)	270
Table 309: Miscellaneous Configuration Register (Offset: 0x6804)	271
Table 310: Miscellaneous Local Control Register (Offset: 0x6808)	272
Table 311: Timer Register (Offset: 0x680C)	273
Table 312: RX-CPU Event Register (Offset: 0x6810)	273

Table 313: RX-CPU Timer Reference Register (Offset: 0x6814)	274
Table 314: RX-CPU Semaphore Register (Offset: 0x6818).....	275
Table 315: MDI Control Register (Offset: 0x6844).....	276
Table 316: RX CPU Event Enable Register (Offset: 0x684C)	276
Table 317: Miscellaneous Control Register (Offset: 0x6890).....	278
Table 318: Fast Boot Program Counter Register (Offset: 0x6894)	279
Table 319: CableSense Control Register (Offset: 0x689C)	279
Table 320: Miscellaneous Clock Control Register (Offset: 0x68A0)	279
Table 321: Power Management Debug Register (Offset: 0x68A4).....	280
Table 322: LAN & TPM Programmable DLL Lock Timer Register (Offset: 0x68A8).....	281
Table 323: E-Switch Status Register 1 (Offset: 0x68B4)	282
Table 324: E-Switch Status Register 2 (Offset: 0x68B8)	283
Table 325: E-Switch Control Register (Offset: 0x68BC)	283
Table 326: E-Switch Timer Register 1 (Offset: 0x68C0).....	286
Table 327: E-Switch Timer Register 2 (Offset: 0x68C4).....	287
Table 328: E-Switch Timer Register 3 (Offset: 0x68C8).....	287
Table 329: E-Switch Timer Register 4 (Offset: 0x68CC)	288
Table 330: E-Switch Timer Register 5 (Offset: 0x68D0).....	288
Table 331: E-Switch Arbitration Register (Offset: 0x68D4).....	288
Table 332: Memory TM Control1 (Offset: 0x68E0)	289
Table 333: Memory TM Control2 (Offset: 0x68E4)	290
Table 334: Memory TM Control3 (Offset: 0x68E8)	290
Table 335: Memory TM Control4 (Offset: 0x68EC).....	290
Table 336: ASF Control Register (Offset: 0x6C00).....	291
Table 337: SMBus Input Register (Offset: 0x6C04).....	292
Table 338: SMBus Output Register (Offset: 0x6C08).....	292
Table 339: ASF Watchdog Timer Register (Offset: 0x6C0C)	294
Table 340: ASF Heartbeat Timer Register (Offset: 0x6C10)	294
Table 341: Poll ASF Timer Register (Offset: 0x6C14)	294
Table 342: Poll Legacy Timer Register (Offset: 0x6C18).....	294
Table 343: Retransmission Timer Register (Offset: 0x6C1C).....	295
Table 344: Time Stamp Counter Register (Offset: 0x6C20)	295
Table 345: SM Bus Driver Select Register (Offset: 0x6C24)	295
Table 346: ASF RNG Command Register (Offset: 0x6C30).....	295
Table 347: ASF_RNG Data Register (Offset: 0x6C34).....	296

Table 348: NVM Command Register (Offset: 0x7000h).....	297
Table 349: NVM Status Register (Offset: 0x7004h)	298
Table 350: NVM Write Register (Offset: 0x7008h).....	298
Table 351: NVM Address Register (Offset: 0x700Ch).....	299
Table 352: NVM Read Register (Offset: 0x7010h).....	299
Table 353: NVM Config 1 Register (Offset: 0x7014h)	299
Table 354: NVM Config 2 Register (Offset: 0x7018h)	301
Table 355: NVM Config 3 Register (Offset: 0x701Ch)	301
Table 356: Software Arbitration Register (Offset: 0x7020h).....	302
Table 357: NVM Access Register (Offset: 0x7024h)	303
Table 358: NVM Write1 Register (Offset: 0x7028h)	303
Table 359: Arbitration Watchdog Timer Register (Offset: 0x702Ch)	303
Table 360: Address Lockout Boundary Register (Offset: 0x7030h)	304
Table 361: Address Lockout Address Counter Debug Register (Offset: 0x7034h)	304
Table 362: NVM Auto-Sense Status Register (Offset: 0x7038h)	304
Table 363: UART Register	306
Table 364: Data Register (Offset: 0x7800).....	306
Table 365: Transmit Holding Register (THR) (DLAB=0)	307
Table 366: Divisor Latch (Low) (DLL) (DLAB=1)	307
Table 367: Interrupt Enable Register (IER) (DLAB=0)	307
Table 368: Divisor Latch (High) (DLH) (DLAB=1).....	307
Table 369: Interrupt Identity Register (IIR)	308
Table 370: FIFO Control Register (FCR).....	308
Table 371: UART Control Register (Offset: 0x780C)	308
Table 372: Modem Control Register (Offset: 0x7810).....	309
Table 373: Line Status Register (Offset: 0x7814)	309
Table 374: Modem Status Register (Offset: 0x7818)	310
Table 375: Scratch Register (Offset: 0x781C).....	310
Table 376: CPMU Control Register (Offset: 0x3600)	311
Table 377: Link Speed 10MB/No Link Power Mode Clock Policy Register (Offset: 0x3604)	313
Table 378: Link Speed 100MB Power Mode Clock Policy Register (Offset: 0x3608)	314
Table 379: Link Speed 1000MB Power Mode Clock Policy Register (Offset: 0x360C).....	316
Table 380: Link Aware Power Mode Clock Policy Register (Offset: 0x3610).....	317
Table 381: Airplane Power Mode Clock Policy Register (Offset: 3614)	318
Table 382: Link Idle Power Mode Clock Policy Register (Offset: 0x3618)	320

Table 383: Host Access Clock Policy Register (Offset: 0x361C).....	321
Table 384: APE Sleep State Clock Policy Register (Offset: 0x3620).....	322
Table 385: Clock Speed Override Policy Register (Offset: 0x3624)	323
Table 386: Clock Override Enable Register (Offset: 0x3628)	325
Table 387: Status Register (Offset: 0x362C)	326
Table 388: Clock Status Register (Offset: 0x3630).....	327
Table 389: PCIe Status Register (Offset: 0x3634).....	328
Table 390: GPHY Control/Status Register (Offset: 0x3638)	329
Table 391: RAM Control Register (Offset: 0x363C).....	330
Table 392: IPSEC Idle Detection De-Bounce Control Register (Offset: 0x3640).....	330
Table 393: IPSEC SHA1 Idle Detection De-Bounce Control Register (Offset: 0x3644)	331
Table 394: Core Idle Detection De-Bounce Control Register (Offset: 0x3648).....	331
Table 395: PCIe Idle Detection De-Bounce Control Register (Offset: 0x364C).....	332
Table 396: Energy Detection De-Bounce Timer (Offset: 0x3650).....	332
Table 397: DLL Lock Timer Register (Offset: 0x3654)	334
Table 398: Mutex Request Register (Offset: 0x365C)	335
Table 399: Mutex Grant Register (Offset: 0x3660)	335
Table 400: GPHY Strap Register (Offset: 0x3664)	335
Table 401: Padding Control Register (Offset: 0x3668)	336
Table 402: Host Access Control Register (Offset: 0x366C).....	336
Table 403: Link Idle Control Register (Offset: 0x3670).....	336
Table 404: Link Idle Status Register (Offset: 0x3674)	339
Table 405: CPMU Energy Detect Raw Debounce Control 1 Register (Offset: 0x3678)	341
Table 406: CPMU Energy Detect Raw Debounce Control 2 Register (Offset: 0x367C).....	341
Table 407: CPMU Debug Register (Offset: 0x3680).....	342
Table 408: CPMU Debug Select Register (Offset: 0x3684).....	342
Table 409: Common Debug Mux Control Register (Offset: 0x3900)	343
Table 410: Common Debug Mux Debug Vector Register (Offset: 0x3904)	345
Table 411: TL Control Register (Offset: 0x0–00)	346
Table 412: Transaction Configuration Register (Offset: 0x0–04).....	347
Table 413: Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–08)	349
Table 414: Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–0C).....	349
Table 415: DMA Request Upper Address Diagnostic Register (Offset: 0x0–10).....	349
Table 416: DMA Request Lower Address Diagnostic Register (Offset: 0x0–14).....	350
Table 417: DMA Request Length/Byte Enable Diagnostic Register (Offset: 0x0–18)	350

Table 418: DMA Request Tag/Attribute/Function Diagnostic Register (Offset: 0x0–1C)	350
Table 419: Read DMA Split IDs Diagnostic Register (Offset: 0x0–20).....	350
Table 420: Read DMA Split Length Diagnostic Register (Offset: 0x0–24)	351
Table 421: XMT State Machines and Request Diagnostic Register (Offset: 0x0–3C)	351
Table 422: DMA Completion Misc. Diagnostic Register (Offset: 0x0–58)	351
Table 423: Split Controller Misc 0 Diagnostic Register (Offset: 0x0–5C)	352
Table 424: Split Controller Misc 1 Diagnostic Register (Offset: 0x0–60).....	352
Table 425: Split Controller Misc 2 Diagnostic Register (Offset: 0x0–64).....	352
Table 426: TL Register Bus No, Dev. No., Func. No. Register (Offset: 0x0–68)	352
Table 427: TL Debug Register (Offset: 0x0–6C)	353
Table 428: Data Link Control Register (Offset: 0x1–00).....	353
Table 429: Data Link Status Register (Offset: 0x1–04)	354
Table 430: Data Link Attention Register (Offset: 0x1–08)	355
Table 431: Data Link Attention Mask Register (Offset: 0x1–0C)	355
Table 432: Next Transmit Sequence Number Debug Register (Offset: 0x1–10)	356
Table 433: Ack'ed Transmit Sequence Number Debug Register (Offset: 0x1–14)	356
Table 434: Purged Transmit Sequence Number Debug Register (Offset: 0x1–18)	356
Table 435: Receive Sequence Number Debug Register (Offset: 0x1–1C)	356
Table 436: Data Link Replay Register (Offset: 0x1–20)	356
Table 437: Data Link Ack Timeout Register (Offset: 0x1–24)	357
Table 438: Power Management Threshold Register (Offset: 0x1–28)	357
Table 439: Retry Buffer Write Pointer Debug Register (Offset: 0x1–2C)	357
Table 440: Retry Buffer Read Pointer Debug Register (Offset: 0x1–30).....	357
Table 441: Retry Buffer Purged Pointer Debug Register (Offset: 0x1–34).....	358
Table 442: Retry Buffer Read/Write Debug Port 0x1–38	358
Table 443: Error Count Threshold Register (Offset: 0x1–3C)	358
Table 444: TL Error Counter Register (Offset: 0x1–40)	358
Table 445: DLLP Error Counter (Offset: 0x1–44)	359
Table 446: Nak Received Counter (Offset: 0x1–48).....	359
Table 447: Data Link Test Register (Offset: 0x1–4C).....	359
Table 448: Packet BIST Register (Offset: 0x1–50)	360
Table 449: Link PCIe 1.1 Control Register (Offset: 0x1–54)	360
Table 450: Reserved (Offset: 0x1–58–0x1–FC)	362
Table 451: PHY Mode Register (Offset: 0x2–00)	362
Table 452: PHY/Link Status Register (Offset: 0x2–04)	362

Table 453: PHY/Link LTSSM Control Register (Offset: 0x2–08)	362
Table 454: PHY/Link Training Link Number (Offset: 0x2–0C)	363
Table 455: PHY/Link Training Lane Number (Offset: 0x2–10)	363
Table 456: PHY/Link Training N_FTS (Offset: 0x2–14)	364
Table 457: PHY Attention Register (Offset: 0x2–18)	364
Table 458: PHY Attention Mask Register (Offset: 0x2–1C)	364
Table 459: PHY Receive Error Counter (Offset: 0x2–20)	365
Table 460: PHY Receive Framing Error Counter (Offset: 0x2–24)	365
Table 461: PHY Receive Error Threshold Register (Offset: 0x2–28)	365
Table 462: PHY Test Control Register (Offset: 0x2–2C)	366
Table 463: PHY/SerDes Control Override (Offset: 0x2–30)	366
Table 464: PHY Timing Parameter Override (Offset: 0x2–34)	367
Table 465: PHY Hardware Diagnostic1—TX/RX SM States (Offset: 0x2–38)	367
Table 466: PHY Hardware Diagnostic2—LTSSM States (Offset: 0x2–3C)	368
Table 467: Port Address Map	369
Table 468: MII Map	370
Table 469: PLL Status (Offset: 0x0)	371
Table 470: PLL Control (Offset: 0x1)	371
Table 471: PLL Timer 1 (Offset: 0x2)	372
Table 472: PLL Timer 2 (Offset: 0x3)	372
Table 473: Cap Control (Offset: 0x5)	372
Table 474: Freq Detect Counter (Offset: 0x7)	373
Table 475: PLL Analog Status 1 (Offset: 0x8)	373
Table 476: PLL Analog Control 1 (Offset: 0xA)	373
Table 477: PLL Analog Control 2 (Offset: 0xB)	373
Table 478: PLL Analog Control 3 (Offset: 0xC)	374
Table 479: PLL Analog Control 4 (Offset: 0xD)	375
Table 480: TX Status (Offset: 0x0)	376
Table 481: TX Control (Offset: 0x1)	376
Table 482: TX mdata 0 (Offset: 0x2)	376
Table 483: TX mdata 1 (Offset: 0x3)	377
Table 484: TX Analog Status 1 (Offset: 0x4)	377
Table 485: TX Analog Control 1 (Offset: 0x5)	377
Table 486: TX Analog Control 2 (Offset: 0x6)	377
Table 487: TX Analog Control 3 (Offset: 0x7)	378

Table 488: RX Status 0 (Status Select: "000")	378
Table 489: RX Status 1 (Status Select: "001")	378
Table 490: RX Status 2 (Status Select: "010")	379
Table 491: RX Status 3 (Status Select: "011")	379
Table 492: RX Status 4 (Status Select: "100")	379
Table 493: RX Control (Offset: 0x1)	379
Table 494: RX Timer 1 (Offset: 0x2).....	380
Table 495: RX CDR Phase (Offset: 0x5).....	380
Table 496: RX CDR Freq (Offset: 0x6).....	380
Table 497: RX CDR BW (Offset: 0x7)	381
Table 498: RX Test Control (Offset: 0x9)	381
Table 499: RX Analog Status (Offset: 0xB)	381
Table 500: RX Analog Control 1 (Offset: 0xC)	382
Table 501: RX Analog Control 2 (Offset: 0xD)	382
Table 502: Terminology.....	389

Section 1: About this Document

INTRODUCTION

This document details the BCM5761 NetLink[®] Ethernet controller. This document focuses on the registers, control blocks, and software interfaces necessary for host software programming. This document is intended to complement the data sheet for the appropriate member of the NetXtreme[®]/NetLink Ethernet controller family. The errata documentation (see “[Revision Levels](#)” on page 5) complements this document.

NOTATIONAL CONVENTIONS

REGISTERS AND BITS

Register and bit names are concatenated with underscores:

- Mac_Mode (register)
- Enable_TDE (bit)

Periods separate a register and bit pair:

- Register.Bit
- Mac_Mode.Enable_TDE

This document generally avoids referencing bits by offset; the register definition section provides register and bit offsets.

FUNCTIONAL OVERVIEW

Functional descriptions provide high level overviews of the architectural blocks. The black box inputs/outputs from block diagrams aid software developers with programming the device.

OPERATIONAL CHARACTERISTICS

This section describes how software programs or interfaces with a hardware block.

EXAMPLE CODE

This document uses both C-language coding and C-style pseudocode which is described in [Table 1](#). Pseudocode is an informal syntax intended to explain complex algorithms. The methods used to program the Ethernet controllers and companion silicon may be defined using pseudocode. [Table 1](#) is not meant to restrict algorithmic representations, but help define a structure used throughout the document. This pseudocode is not a formal language and does not have a formal grammar. When appropriate, pseudocode may deviate from these notations.

Table 1: Pseudocode

Definition	Notation	Notes
Register and bit field	register.bit	Bold
Variable	variable	Italics
Pointer	variablePtr	Italics + Ptr
Constant	CONSTANT_DEFINITION	Capitalization
<Conditional>	If <Expression> Then <Block> Else <Block>	
<Block>	Begin or Cstyle { <Pseudo Code> End or Cstyle}	Any valid logic including <Expression>, <Repetition>, <While>, <Conditionals>, <Assignment>, etc.
<While>	While <expression> <Block>	Other variants of while valid (i.e., Do while, and so on)
<Repetition>	For <iterations> do < Block>	
<Expression>	<Expression1> <Operator> <Expression2>	Apply operator to two subexpressions E1 and E2. The result will be interpreted as a boolean value.
<Assignment>	variable/register = CONSTANT variable/register = variable variable/register = <Expression> variable/register = variable/register <Operator>variable/register	Assign constant. Assign to variable. Assign to result of expression (Boolean). Assign to result of operation on variables/registers.
<Operator>	& << >> == != < =< > => And Or	Bitwise And Bitwise Or Bitwise Shift Left Bitwise Shift Right Boolean equality Boolean inequality Less than Less than equal Greater than Greater than equal Boolean And Boolean Or
Procedure/subroutine	Procedure <name>	
Call procedure/subroutine	Call <name>	
Operational comment	// Comments, Comments, Comments	Not part of the logic flow
Deference	*(variable/register/CONSTANT _DEFN)	Contents of an address/location

RELATED DOCUMENTS

Refer to the following Broadcom documents for additional information on the Ethernet controllers:

- *BCM57XX NetXtreme® Programmer's Guide*: Programming details for the BCM5700, BCM5701, BCM5702, BCM5703, BCM5704, BCM5705, BCM5721, BCM5751, BCM5752, BCM5714, and BCM5715 BCM57XX devices
- *Host Programmer Reference Manual*: Provides information on how to write device drivers for the Ethernet controllers.
- *NetXtreme II® Programmer's Guide*: Programming details for the BCM5706C, BCM5706S, and BCM5708 devices
- Data sheets, application notes, and errata documentation of BCM5761 MACs

Section 2: Introduction

INTRODUCTION

The NetXtreme and NetLink family of Media Access Controller (MAC) devices are highly integrated, single-chip Gigabit Ethernet LAN controller solutions for high-performance network applications. The above devices integrate the following major functions to provide a single-chip solution for Gigabit LAN-on-motherboard (LOM) and network interface card (NIC) applications.

- Triple-speed IEEE 802.3-compliant MAC functionality
- Triple-speed IEEE 802.3-compliant Ethernet PHY transceiver
- PCI Express® (PCIe™) bus interface
- On-chip packet buffer memory
- On-chip RISC processor for custom frame processing
- SMBus interface for Alert Standard Format (ASF) version 2.0 support

REVISION LEVELS

See [Table 2](#) for the revision levels of the Ethernet controllers covered by this document. Host software can use the PCI Revision ID and Chip ID information in the PCI configuration registers to determine the revision level of the Ethernet controller on the board, and then load the appropriate workaround described in the errata sheets.

The Broadcom PCI vendor ID is 0x14E4. [Table 2](#) shows the default values of PCI device IDs. These values may be modified by firmware in accordance with the manufacturing information supplied in NVRAM (see ["NVRAM Configuration" on page 21](#) for more details).

Table 2: Family Revision Levels

Family Member	Device ID^a	Revision Level	PCI Revision ID^b	Chip ID^c	PHY core	Errata Sheet^d
BCM5761	0x1681	A0	0x00	0xF000xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761	0x1681	A1	0x01	0xF001xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761	0x1681	A2	0x02	0xF002xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761	0x1681	B0	0x10	0xF100xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761E	0x1680	A0	0x00	0xF000xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761E	0x1680	A1	0x01	0xF001xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761E	0x1680	A2	0x02	0xF002xxxx	BCM54980_gphy_core	5761_5761E-ES101-R
BCM5761E	0x1680	B0	0x10	0xF100xxxx	BCM54980_gphy_core	5761_5761E-ES101-R

Note: For function 1 (UART), device ID = 0x160A.

- a. See ["Device ID & Vendor ID Register \(Offset: 0x00\)" on page 143](#).
- b. See ["PCI Classcode & Revision ID Register \(Offset: 0x8\)" on page 145](#) The hardware default value of this register is 0x00. The bootcode firmware programs this register with the value as given in the table.
- c. See ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#). The lower 16 bits are don't cares for determining chip ID.
- d. See the appropriate errata documentation for the errata information and resolutions.

PROGRAMMING THE ETHERNET CONTROLLERS

See [Table 2 on page 5](#) for the revision levels of the Ethernet controllers. Host software can use the PCI Revision ID and Chip ID information in the PCI configuration registers to determine the revision level of the Ethernet controller on the board, and then load the appropriate workarounds described in the errata sheets.

Choice of host access mode determines the mailboxes:

- Host standard or flat mode uses the high-priority mailboxes (see [“RSS Registers” on page 184](#)).
- Indirect mode uses the low-priority mailboxes (see [“Low Priority Mailboxes” on page 264](#)).

See [Section 12: “Ethernet Controller Register Definitions” on page 143](#) for the step-by-step procedure to initialize the Ethernet controllers.

The reference documents for Ethernet controller software development include this manual and the errata documentation (see [“Revision Levels” on page 5](#)) that provide the necessary information for writing a host-based device driver.

The programming model for the NetXtreme/NetLink Ethernet controllers does not depend on OS or processor instruction sets. Programmers using Motorola® 68000, Intel® x86, or DEC Alpha host instruction sets can leverage this document to aid in device driver development. Concepts provided in this document are also applicable to device drivers native to any operating system (i.e., DOS, UNIX®, Microsoft®, or Novell®).

Section 3: Hardware Architecture

THEORY OF OPERATION

Figure 1 shows the major functional blocks and interfaces of the Ethernet controllers covered in this document. There are two packet flows: MAC-transmit and receive. The device's DMA engine bus-masters packets from host memory to device local storage, and vice-versa. The host bus interface is compliant with PCIe standards. The RX MAC moves packets from the integrated PHY into device internal memory. All incoming packets are checked against a set of QOS rules and then categorized. When a packet is transmitted, the TX MAC moves data from device internal memory to the PHY. Both flows operate independently of each other in full-duplex mode. An on-chip RISC processor is provided for running value-added firmware that can be used for custom frame processing. The on-chip RISC operates independently of all the architectural blocks; essentially, RISC is available for the auxiliary processing of data streams.

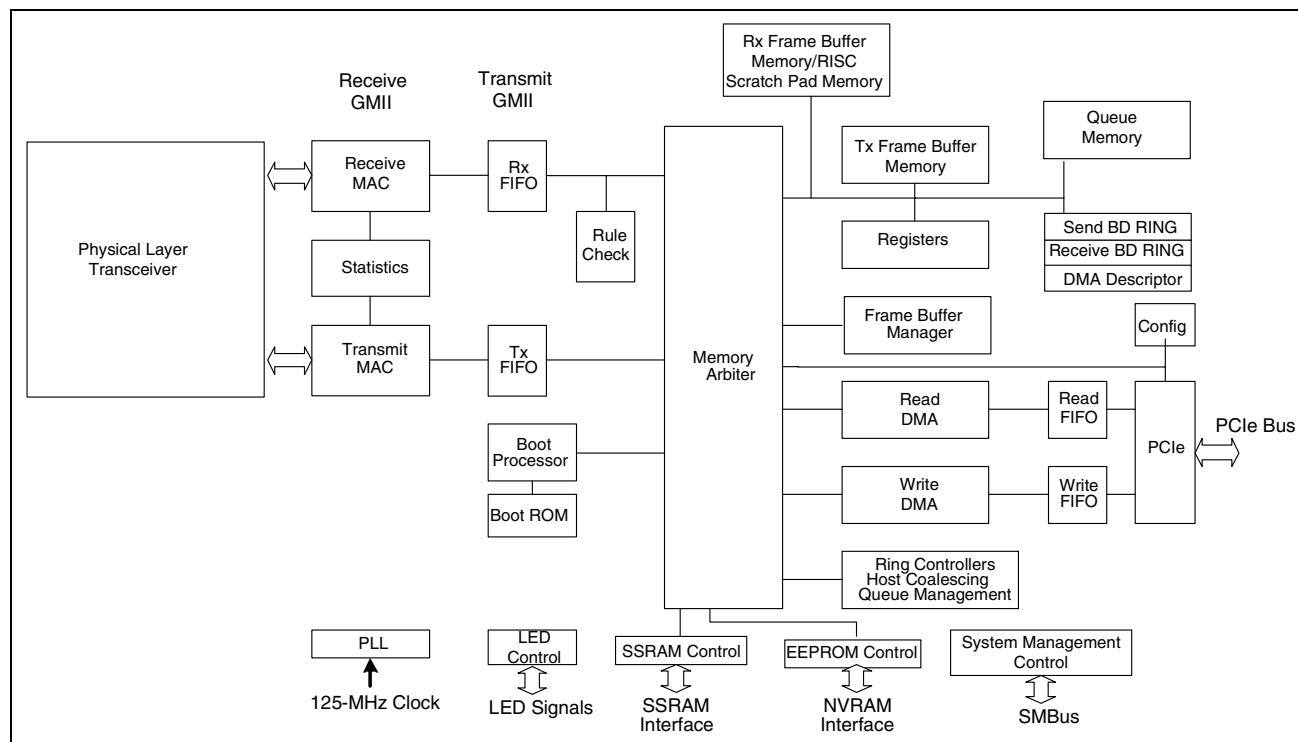
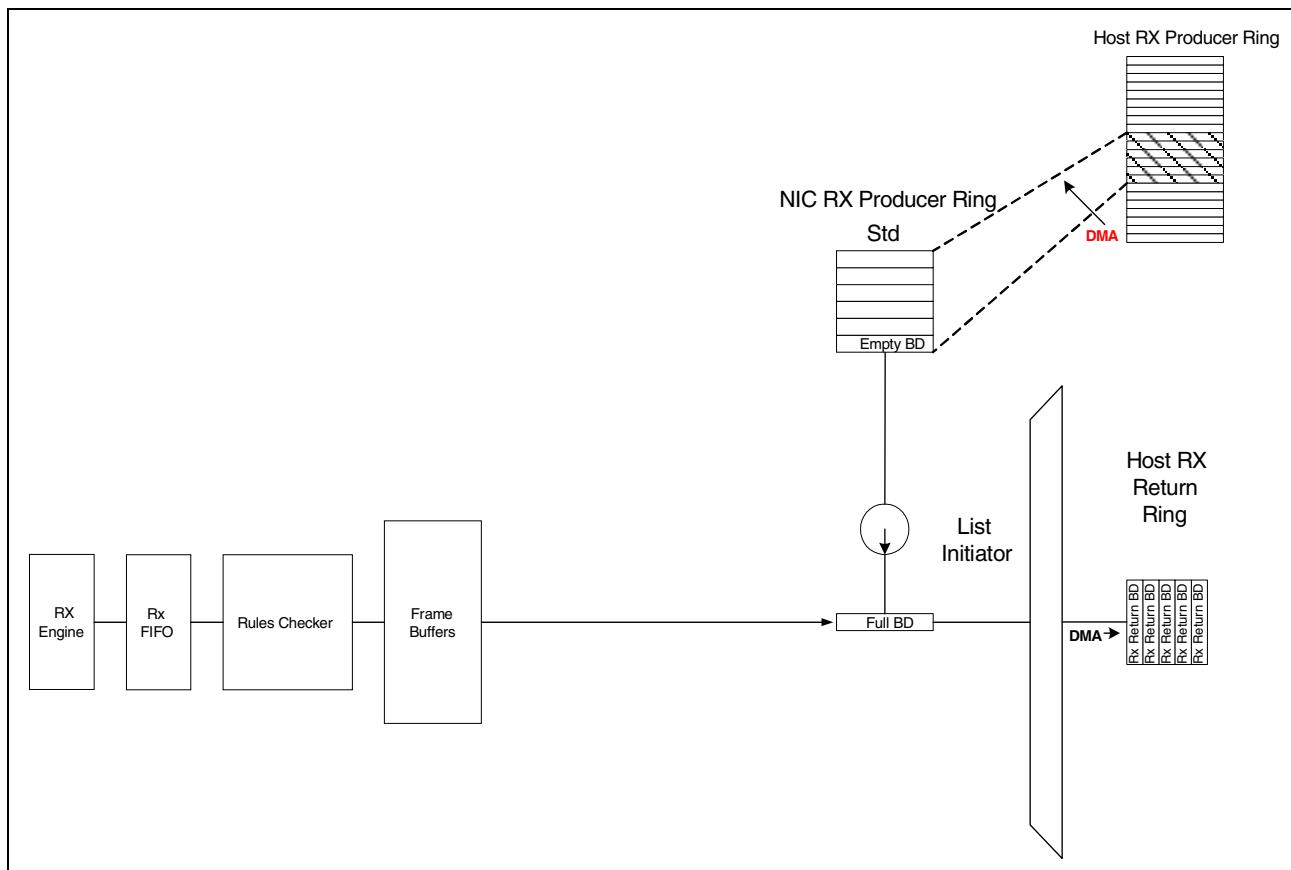



Figure 1: Functional Block Diagram

RECEIVE DATA PATH

RX ENGINE

The receive engine (see [Figure 2](#)) activates whenever a packet arrives from the PHY.

Figure 2: Receive Data Path

The receive engine performs the following four functions:

- Moves the data from the PHY to an internal FIFO
- Moves the data from the FIFO to NIC internal memory
- Classifies the frame and checks it for rules matches
- Performs the offloaded checksum calculations

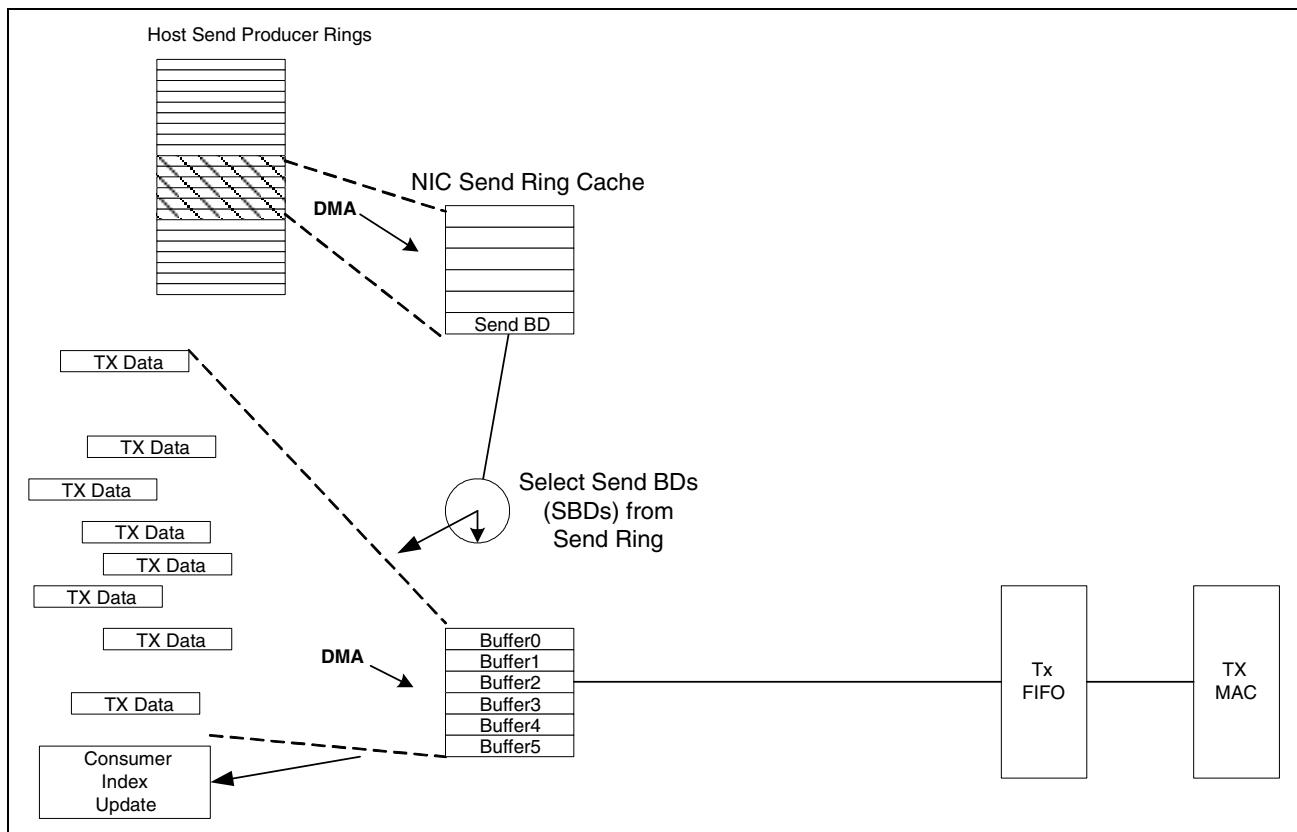
RX FIFO

The RX FIFO provides elasticity while data is read from PHY transceiver and written into internal memory. There are no programmable settings for the RX FIFO. This FIFO's operation is completely transparent to host software.

RULES CHECKER

The rules checker examines frames. After a frame has been examined, the appropriate classification bits are set in the buffer descriptor. The rules checker is part of the RX data path and the frames are classified during data movement to NIC memory. The following frame positions may be established by the rules checker:

- IP Header Start Pointer
- TCP/UDP Header Start Pointer
- Data Start Pointer


RX LIST INITIATOR

The RX List Initiator function activates whenever the receive producer index for any of receive buffer descriptor (BD) rings is written. This value is located in one of the receive BD producer mailboxes. The host software writes to the producer mailbox and causes the RX Initiator function to enqueue an internal data structure/request, which initiates the DMA of one or more new BDs to the NIC. The actual DMAs generated depend on the comparison of the value of the received BD host producer index mailbox, the NIC's copy of the received BD consumer index, and the local copy of the received BD producer index.

TRANSMIT DATA PATH

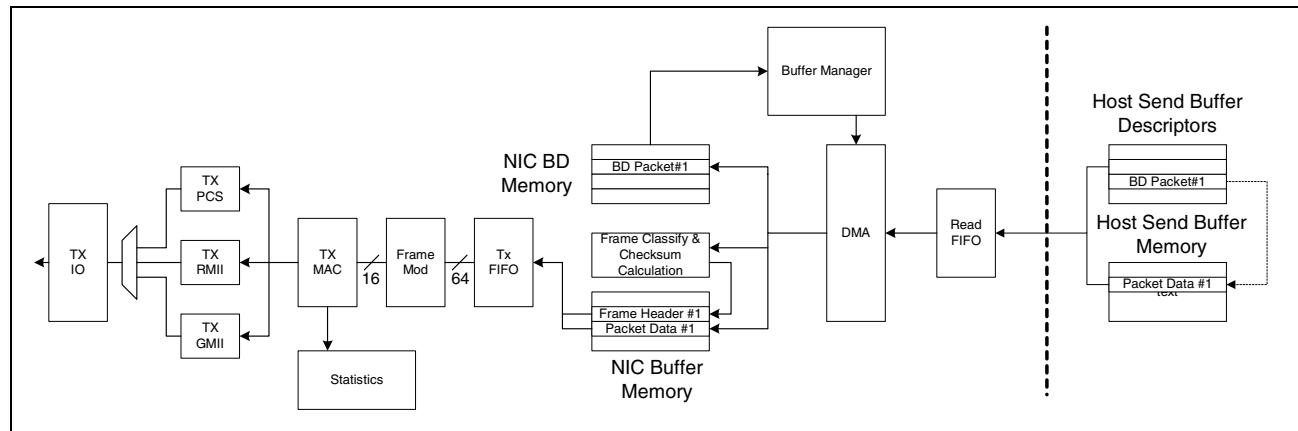
TX MAC

The Read DMA engine moves packets from host memory into internal NIC memory (see [Figure 3](#)). When the entire packet is available, the transmit MAC is activated.

Figure 3: Transmit Data Path

The transmit MAC is responsible for the following functions:

- Moving data from NIC internal memory into TX FIFO
- Moving data from TX FIFO to PHY
- Checksum substitutions (not calculation)
- Updating statistics


TX FIFO

The TX FIFO provides elasticity while data is moved from device internal memory to PHY. There are no programmable settings for the TX FIFO. This FIFO's operation is completely transparent to host software.

DMA READ

READ ENGINE

The DMA read engine (see [Figure 4](#)) activates whenever a host read is initiated by the send or receive data paths.

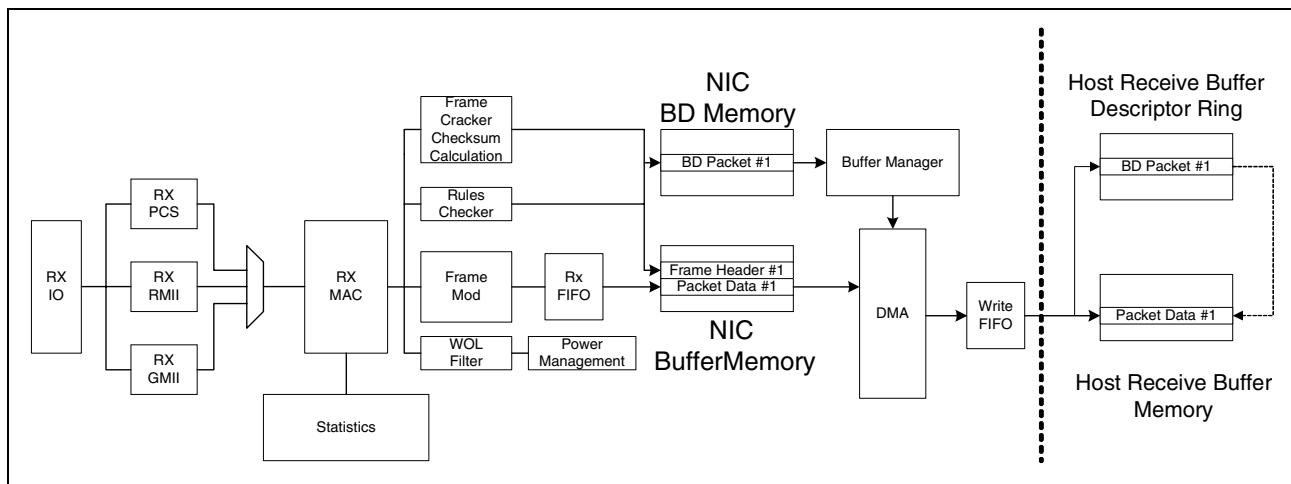
Figure 4: DMA Read Engine

The DMA read engine de-queues an internal data structure/request and performs the following functions:

- DMA's the data from the host memory to an internal Read DMA FIFO
- Moves the data from the Read DMA FIFO to NIC internal memory
- Classifies the frame
- Performs checksum calculations
- Copies the VLAN tag field from the DMA descriptor to the frame header

READ FIFO

The read FIFO provides elasticity during data movement from host memory to device local memory. The memory arbiter is a gatekeeper for multiple internal blocks; several portions of the architecture may simultaneously request internal memory. The PCI read FIFO provides a small buffer for the data read from host memory while the Read DMA engine requests internal memory via the memory arbiter. The data is moved out of the read DMA FIFO into device local memory once a memory data path is available. The FIFO isolates the PCI clock domain from the device clock domain. This reduces latency internally and externally on the PCI bus. The PCIe Read DMA FIFO holds 1024 bytes. The operation of the read DMA FIFO is transparent to host software. The Read DMA engine makes sure there is enough space in internal Tx Packet Buffer Memory before initiating a DMA request for transfer of Tx packet data from host memory to device internal packet memory.


BUFFER MANAGER

The buffer manager maintains pools of internal memory used by transmit and receive engines. The buffer manager has logic blocks for allocation, free, control, and initialization of internal memory pools. The DMA read engine requests internal memory for BDs and frame data. [Figure 4 on page 11](#) shows the transmit data path using the DMA Read Engine. The read DMA engine also fetches Rx BDs for the receive data path.

DMA WRITE

WRITE ENGINE

The DMA write engine, as shown in [Figure 5](#), activates when a host write is initiated by the send or receive data paths.

Figure 5: DMA Write Engine

The DMA write engine de-queues an internal request and performs the following functions:

- Gathers the data from device internal memory into the write DMA FIFO
- DMA's the data to the host memory from the write FIFO
- Performs byte and word swapping
- Interrupts the host using a line or message signaled interrupt

WRITE FIFO

The write FIFO provides elasticity during data movement from device memory to the host memory. The write FIFO absorbs small delays created by PCIe bus arbitration. The NetXtreme family uses the write FIFO to buffer data, so internal memory arbitration is efficient. Additionally, the FIFO isolates the PCI clock domain from the device's clock domain. This reduces latency on the PCI bus during the write operation (wait states are not inserted while data is fetched from internal memory). The operation of the write DMA FIFO is transparent to host software.

BUFFER MANAGER

The buffer manager maintains pools of internal memory used in transmit and receive functions. The buffer manager has logic blocks for allocation, free, control, and initialization of internal memory pools. The receive MAC requests NIC Rx Mbuf memory so inbound frames can be buffered. The read DMA engine requests the device Tx Mbuf memory for buffering the packets from host memory before they are sent out on the wire. The DMA write engine requests a small amount of internal memory for DMA and interrupt operations. The usage of this internal memory is transparent to host software, and does not affect device/system performance.

LED CONTROL

The Ethernet controller supports four LEDs—one for data traffic in either direction and three for 10/100/1000 Mbps links established. The traffic LED blinks during transmit and receive data movement through the device. The blink rate is programmable with a default of approximately 15 Hz. The link LEDs turn either on or off depending on the link established. All LEDs can be controlled directly by software via the override bits in LED_Control register (see ["LED Control" on page 13](#)). When the override bit is off, the link LEDs are automatically set by the hardware as long as link is up:

- 10 Mbps LED—Port mode is set to MII and Mode 10 Mbps in MI Status register is set.
- 100 Mbps LED—Port mode is set to MII and Mode 10 Mbps in MI Status register is not set.
- 1000 Mbps LED—port mode is set to GMII or TBI.

The link status information is obtained either from auto-polling the PHY if bit 4 (Port Polling) of MI Mode register is set, or from the LNKRDY input pin if this bit is not set.

MEMORY ARBITER

The Memory Arbiter (MA) is a gatekeeper for internal memory access. The MA is responsible for decoding the internal memory addresses that correspond to Ethernet controller data structures and control maps. The MA is responsible for accessing both internal and external SSRAM. If a functional block faults or traps during access to internal/external memory, the MA handles the failing condition and reports the error in a status register. In addition to architectural blocks, the MA provides a gateway for the RISC processors to access local memory. Each RISC has an MA interface that pipelines up to three access requests. The MA negotiates local memory access, so all portions of the architecture are provided with fair access to memory resources. The MA prevents starvation and bounds access latency. Host software may enable/disable/reset the MA, and there are no tunable parameters.

HOST COALESCING

HOST COALESCING ENGINE

The Host Coalescing Engine is responsible for pacing the rate at which the NIC updates the send and receive ring indices located in host memory space. The completion of a NIC update is reflected through an interrupt on the Ethernet controller INTA pin or a Message Signalled Interrupt (MSI). Although update criteria are calculated separately, all updates occur at once. This is because all of the ring indices are in one status block, and any host update updates all ring indices simultaneously. The Host Coalescing Engine triggers based on a tick and/or a frame counter.

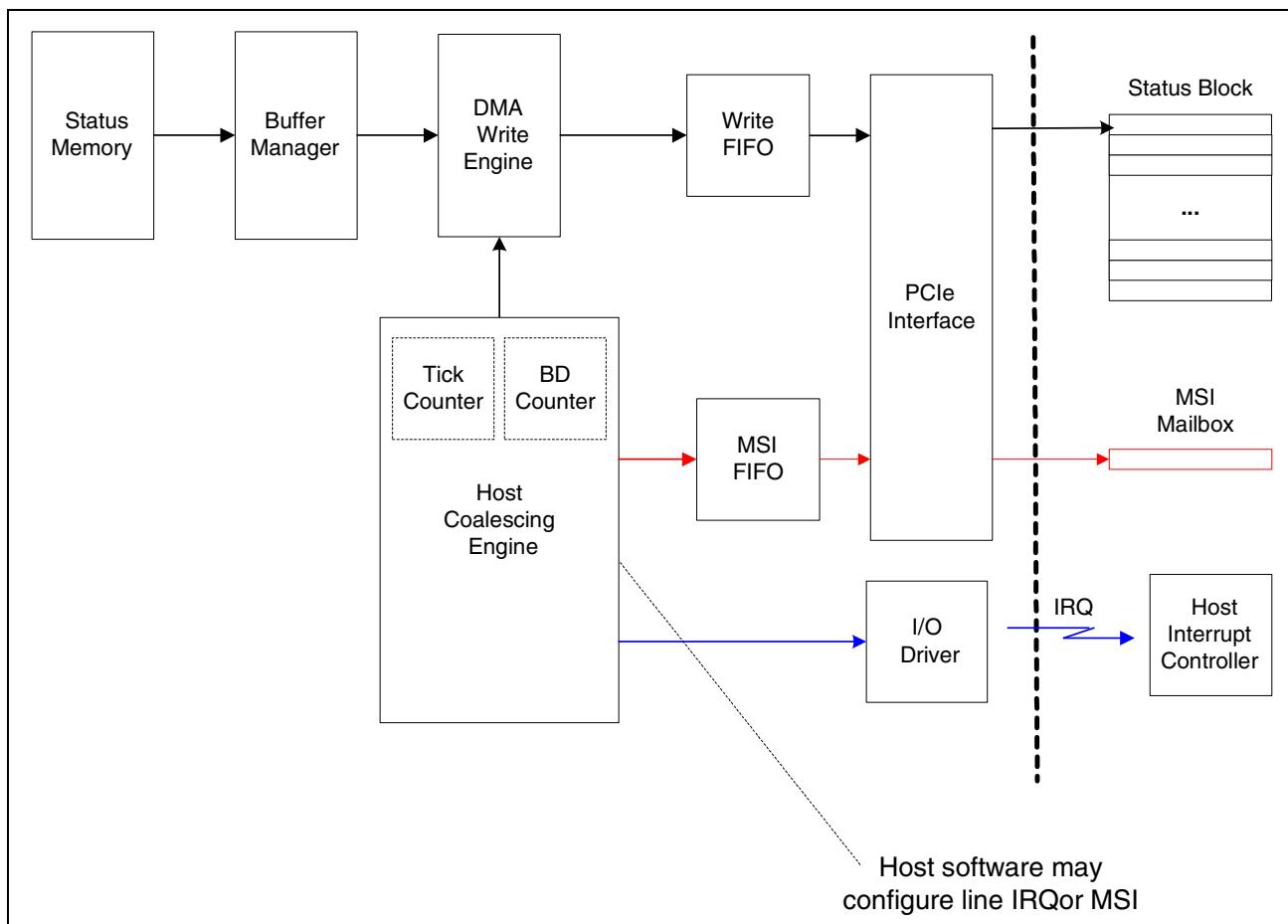


Figure 6: Host Coalescing Engine

A host update occurs whenever one of the following criteria is met:

- The number of BDs consumed for frames received, without updating receive indices on the host, is equal to or has exceeded the threshold set in the Receive_Max_Coalesced_BD register (see ["Receive Max Coalesced BD Count Register \(Offset: 0x3C10\)" on page 245](#)).
- The number of BDs consumed for transmitting frames, without updating the send indices, on the host is equal to or has exceeded the threshold set in the Send_Max_Coalesced_BD register (see ["Send Max Coalesced BD Count Register \(Offset: 0x3C14\)" on page 245](#)). Updates can occur when the number of BDs (not frames) meets the thresholds set in the various coalescing registers (see [Section 10: "Interrupt Processing" on page 133](#) for more information).
- The receive coalescing timer has expired, and new frames have been received on any of the receive rings, and a host update has not occurred. The receive coalescing timer is then reset to the value in the Receive_Coalescing_Ticks register (see ["Send Coalescing Ticks Register \(Offset: 0x3C0C\)" on page 244](#)).
- The send coalescing timer has expired, and new frames have been consumed from any send ring, and a host update has not occurred. The send coalescing timer is then reset to the value in the Send_Coalescing_Ticks register.

MSI FIFO

This FIFO is eight entries deep and four bits wide. This FIFO is used to send MSIs via the PCI interface. The host coalescing engine uses this FIFO to enqueue requests for the generation of MSI. There are no configurable options for this FIFO and this FIFOs operation is completely transparent to host software.

STATUS BLOCK

This data structure contains consumer and producer indices/values. Host software reads this control block, to assess hardware updates in the send and receive rings. Two copies of the status block exist. The local copy is DMAed to host memory by the DMA write engine. Host software does not want to generate PCI transactions to read ring status; rather quicker memory bus transactions are desired. The host coalescing engine enqueues a request to the DMA write engine, so host software gets a refreshed copy of status. The status block is refreshed before a line IRQ or MSI is generated. See ["Status Block Format" on page 33](#) for a complete discussion of the status block.

10BT/100BTx/1000BASE-T TRANSCEIVER

Note: These are 10/100 devices only and use a 10-/100-Mbps speed transceiver.

Refer to the PHY transceiver data sheet for hardware architectural details of the triple-speed Ethernet PHY transceiver integrated in the Ethernet controllers covered by this document.

AUTO-NEGOTIATION

The Ethernet controller devices negotiate their mode of operation over the twisted-pair link using the auto-negotiation mechanism defined in the IEEE 802.3u and IEEE 802.3ab specifications. Auto-negotiation can be enabled or disabled by hardware or software control. When the auto-negotiation function is enabled, the Ethernet controllers automatically choose the mode of operation by advertising its abilities and comparing them with those received from its link partner. The Ethernet controllers can be configured to advertise 1000BASE-T full-duplex and/or half-duplex, 100BASE-TX full-duplex and/or half-duplex, and 10BASE-T full-duplex and/or half-duplex. The transceiver negotiates with its link partner and chooses the highest operating speed and duplex that are common between them. Auto-negotiation can be disabled for testing or for forcing 100BASE-TX or 10BASE-T operation, but is always required for normal 1000BASE-T operation.

AUTOMATIC MDI CROSSOVER

During auto-negotiation, one end of the link must perform an MDI crossover so that each transceiver's transmitter is connected to the other receiver. The Ethernet controllers can perform an automatic MDI crossover when the Disable Automatic MDI Crossover bit in the PHY Extended Control register is disabled, thus eliminating the need for crossover cables or cross-wired (MDIX) ports. During auto-negotiation, the Ethernet controllers normally transmit on $TRD\pm\{0\}$ and receive on $TRD\pm\{1\}$. When connected to another device that does not perform the MDI crossover, the Ethernet controller automatically switches its transmitter to $TRD\pm\{1\}$ and its receiver to $TRD\pm\{0\}$ to communicate with the remote device. If two devices that both have MDI crossover capability are connected, an algorithm determines which end performs the crossover function. During 1000BASE-T operation, the Ethernet controllers swap the transmit symbols on pairs 0 and 1 and pairs 2 and 3 if auto-negotiation completes in the MDI crossover state. The 1000BASE-T receiver automatically detects pair swaps on the receive inputs and aligns the symbols properly within the decoder.

PHY CONTROL

The NetXtreme/NetLink Ethernet controller supports the following physical layer interfaces:

- The MII is used in conjunction with 10-/100-Mbps copper Ethernet transceivers.
- GMII supports 1000 Mbps copper Ethernet transceivers.

MII BLOCK

The MII interconnects the MAC and PHY sublayers (as shown in [Figure 7 on page 17](#)).

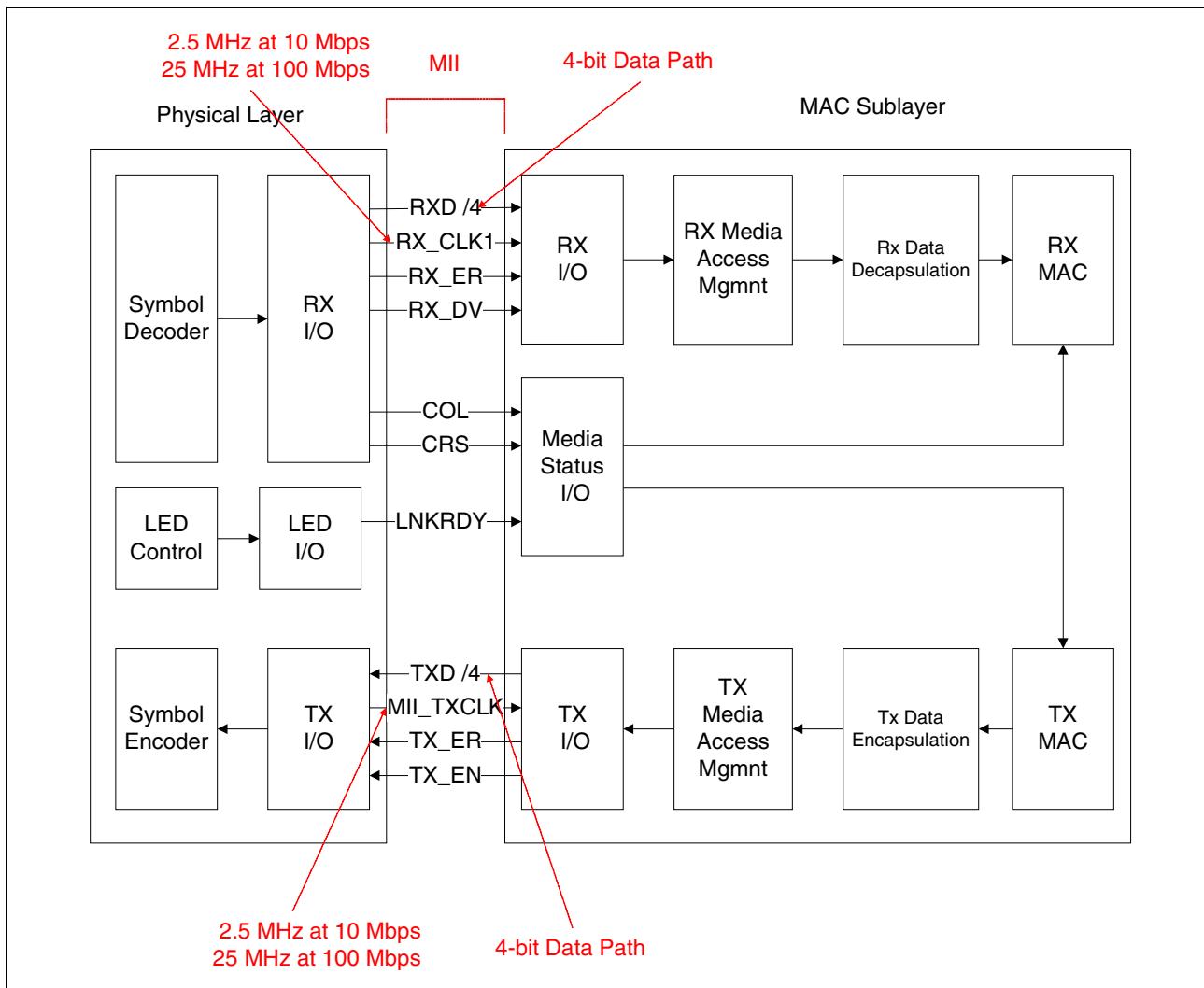


Figure 7: Media Independent Interface

The specifics of MII may be located in section 22 of the IEEE 802.3 specification. RXD[3:0] are the receive data signals; TXD[3:0] are the transmit data signals. MII operates at both 10-Mbps and 100-Mbps wire-speeds. (Gigabit Ethernet uses the GMII standard.) When MAC and PHY are configured for 10 Mbps operation, the RX_CLK1 and MII_TXCLK clocks run at 2.5 MHz. Both RX_CLK1 and MII_TXCLK are sourced by the PHY. 100-Mbps wire speed requires RX_CLK1 and MII_TXCLK to provide a 25-MHz reference clock. Receive Data Valid (RX_DV) is asserted when valid frame data is received; at any point during data reception, the PHY may assert Receive Error (RX_ER) to indicate a receive error. The MAC will record this error in the statistics block. The MAC may discard a bad RX frame—exception being sniffer/promiscuous modes (see Allow_Bad_Frames bit in MAC mode register). The Transmit Enable (TX_EN) signal is asserted when the MAC presents the PHY with a valid frame for transmission. The MAC may assert TX_ER to indicate the remaining portion of frame is bad. The PHY will insert Bad Code symbols into the remaining portion of the frame. A detected collision in half-duplex mode may be such a scenario where TX_ER is asserted. The PHY will assert COL when a collision is detected. The COL signal is routed to both the RX and TX MACs. The transmit MAC will back off transmission and the RX MAC will throw away partial frames.

The 10 Mbps physical layer uses Differential Manchester encoding on the wire. Manchester encoding uses two encoding levels: 0 and 1. 100 Mbps Ethernet requires MLT-3 waveshaping on the transmission media. MLT-3 uses three encoding levels: -1, 0, and 1. Both physical signaling protocols are transparent to the MAC sublayer and are digitized by the PHY. The PHY encodes/decodes analog waveforms at its lower edge while the PHY presents digital data at its upper edge (MII).

GMII BLOCK

The GMII is full-duplex (see [Figure 8 on page 19](#)); the send and receive data paths operate independently.

The transmit signals TXD[7:0] create a eight-bit wide data path. The TXD[7:0] signals are synchronized to the reference clock TX_CLK0. The TX_CLK0 clock runs at 125 MHz and is sourced by the MAC sublayer. Transmit Error (TX_ER) is asserted by the MAC sublayer. The PHY will transmit a bad code until TX_ER is de-asserted by the MAC. TX_ER is driven synchronously with TX_CLK0. The Transmit Enable (TX_EN) indicates that valid data is presented on the TXD lines. The TXD[7:0] data is framed on the rising edge of TX_EN.

The receive data path is also eight bits wide. RXD[7:0] are sourced by the PHY. When valid data is presented to the MAC sublayer, the PHY will also assert Receive Data Valid (RX_DV). The rising edge of RX_DV indicates the beginning of a frame sequence. The PHY drives the reference clock RX_CLK1, so the MAC sublayer can synchronize data sampling on RXD[7:0]. The PHY may assert RX_ER to indicate frame data is invalid; the MAC sublayer must consider frames in progress incomplete.

When the MAC operates in half-duplex mode, a switch or node may transmit a jamming pattern. The PHY will drive the Collision (COL) signal so the MAC may back off transmission and throw away partially received packet(s). The COL signal will also cause the TX MAC to stop the transmission of a packet. The COL signal is not driven for full-duplex operation since collisions are undefined. The PHY will drive Carrier Sense (CRS) as a response to traffic being sent/received. The MAC sublayer can monitor traffic and subsequently drive traffic LEDs.

Pulse Amplitude Modulated Symbol (PAM5) encoding is leveraged for Gigabit Ethernet wire transmissions. PAM5 uses five encoding levels: -2, -1, 0, 1, and 2. Four symbols are transmitted in parallel on the four twisted-wire pairs. The four symbols create a code group (an eight-bit octet). The process of creating the code-group is called 4D-PAM5. Essentially, eight data bits are represented by four symbols. Table 40-1 in the IEEE 802.3ab specification shows the data bit to symbol mapping. The code group representation is also referred to as a quartet of quinary symbols {TA, TB, TC, TD}. The modulation rate on the wire is measured at 125 Mbaud. The resultant bandwidth is calculated by multiplying 125 MHz by eight bits, for 1000-Mbps wire speed.

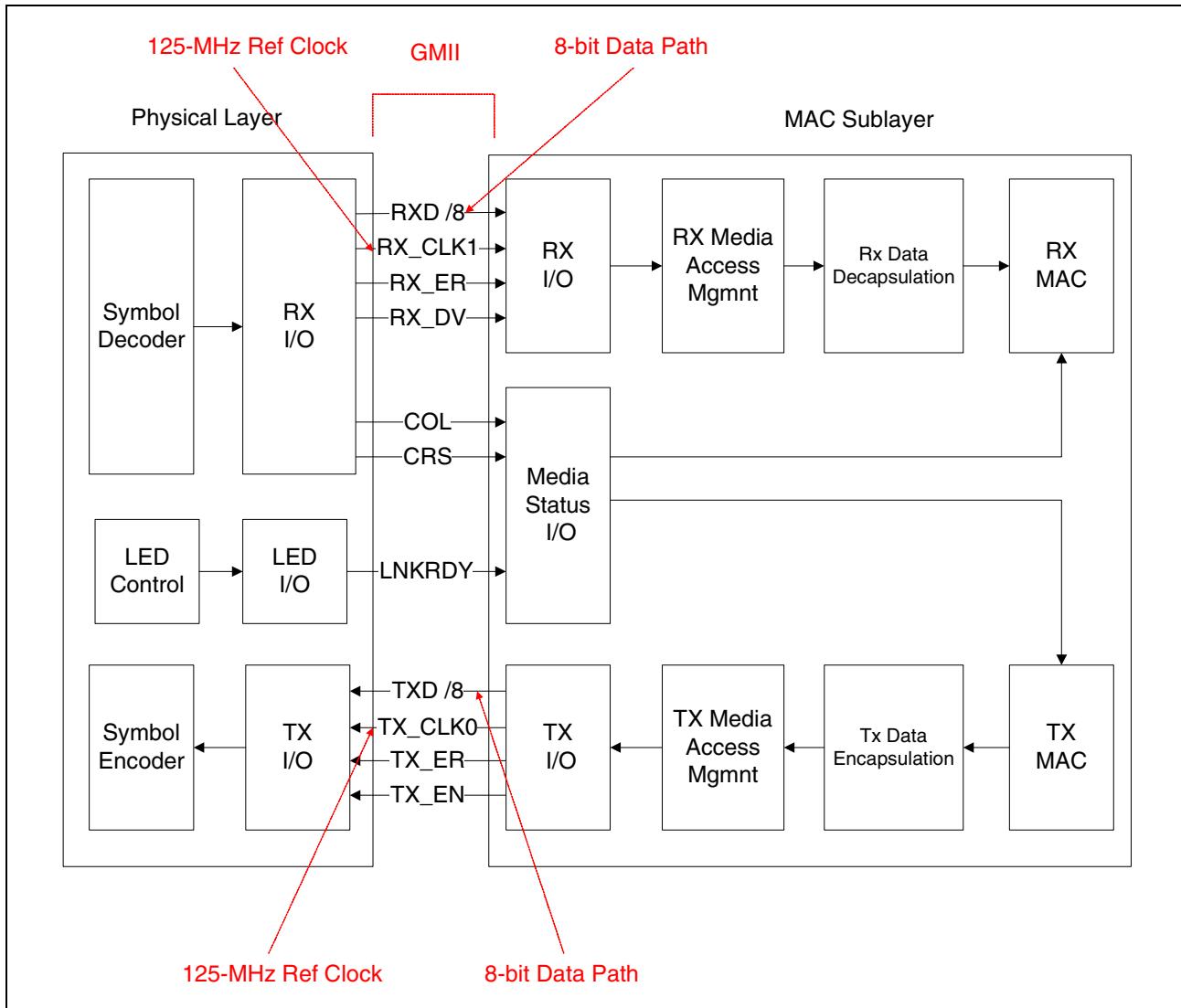


Figure 8: GMII Block

MDIO REGISTER INTERFACE

Figure 9 shows the MDI register interface.

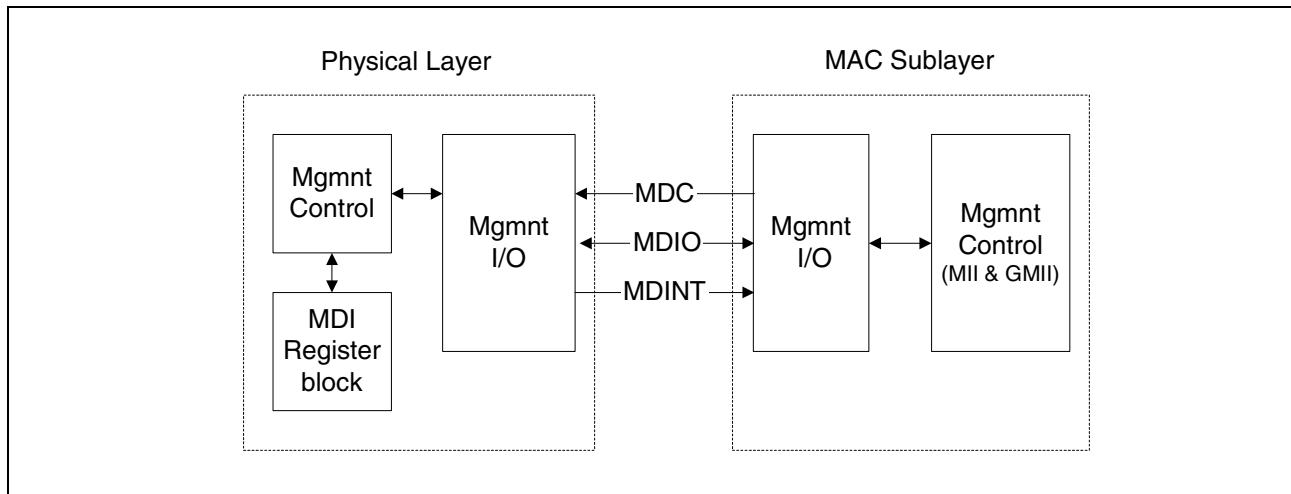


Figure 9: MDI Register Interface

Management Data Clock

The Management Data Clock (MDC) is driven by the MAC sublayer. The PHY will sink this signal to synchronize data transfer on the MDIO signal—MDC is a reference clock. This clock is not functionally associated to either RX_CLK or TX_CLK. The minimum period for this clock is 400 ns with high and low times having 160 ns duration.

Management Data Input/Output

The Management Data Input/Output (MDIO) signal passes control and status data, between the MAC and PHY sublayers. MDIO is a bidirectional signal, meaning both the PHY and MAC may transfer data. The MAC typically transfers control information and polls status; whereas, the PHY transfers status back to the MAC, using MDIO.

Management Data Interrupt

The integrated Broadcom PHY may be programmed to generate interrupts. A PHY status change initiates a Management Data Interrupt (MDINT). A MDI mask register allows host software to selectively enable/disable status types, which cause MDINT notification. The PHY will assert INTR until software clears the interrupt. Reading the status register will clear the interrupt.

Management Register Block

The layout and configuration of MDI register block is device dependent. The MDI register block is the control/status access point, which host software may read/write. The IEEE 802.3 specification defines a basic register block for MII and GMII; the basic register set contains control and status registers. GMII also exposes an extended register set, used in 1000 Mbps configuration/status. The fundamental point is to understand that the MDC and MDIO signals are used to access the MDI register block.

Section 4: NVRAM Configuration

OVERVIEW

Broadcom NetXtreme and NetLink controllers require the use of an external non-volatile memory (NVRAM) device (Flash or EEPROM), which contains a bootcode program that the controller's on-chip CPU core loads and executes upon release from reset. This external NVRAM device also contains many configuration items that direct the behavior of the controller, enable/disable various management and/or value-add firmware components, etc. For the BCM5761, the external NVRAM also contains the DASH firmware image that executes on the Application Processor Engine (APE).

All configuration settings are default-configured in the official release binary image files provided in Broadcom's CD software releases. However, the settings chosen as default by Broadcom may not be what best suits a particular OEM's application, so some settings may need to be changed by the OEM.

Details relating to the NVRAM can be found in *NetXtreme/NetLink NVRAM Access* Broadcom application note (Netxtreme-AN50X-R). Some of the topics addressed by this application note include the following:

- Programming NVRAM (sample C code, x86 assembly)
- NVRAM map
- Configuration settings
- Bootcode
- Multiple boot agent (MBA), PXE, etc.
- Management firmware (DASH, ASF)

Note: NVRAM CRC-32: There are multiple distinct regions contained within the NVRAM map. Each of these regions has its own CRC-32 checksum value associated with it. If any data element contained within a region is modified, then that region's CRC-32 value must also be updated. Details relating to calculating the CRC-32 can be found in *Calculating CRC32 Checksums for Broadcom NetLink, NetXtreme, and NetXtreme II Controllers* Broadcom application note (NetXtreme_NetXtremell-AN20X-R).

Section 5: Common Data Structures

THEORY OF OPERATION

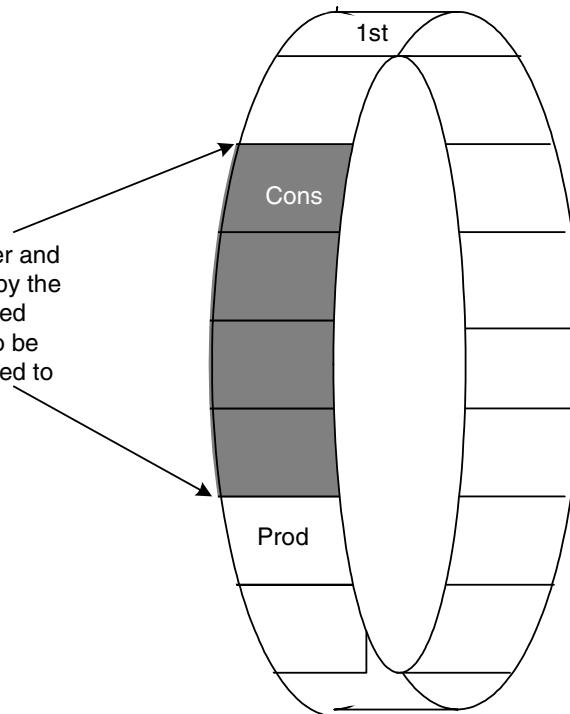
Several device data structures are common to the receive, transmit, and interrupt processing routines. These data structures are hardware-related and are used by device drivers to read and update state information.

_DESCRIPTOR RINGS

In order to send and receive packets, the host and the controller use a series of shared buffer descriptor (BD) rings to communicate information back and forth. Each ring is composed of an array of buffer descriptors that reside in host memory. These buffer descriptors point to either send or receive packet data buffers. The largest amount of data that a single buffer may contain is 65535 (64K-1) bytes (The length field in BD is 16 bits). Multiple descriptors can be used per packet in order to achieve scatter-gather DMA capabilities.

Note: The maximum number of Send BDs for a single packet is $(0.75) * (\text{ring size})$.

There are three main types of descriptor rings:


- Send Rings
- Receive Producer Rings
- Receive Return Rings

PRODUCER AND CONSUMER INDICES

The Producer Index and the Consumer Index control which descriptors are valid for a given ring. Each ring will have its own separate Producer and Consumer Indices. When incremented, the Producer Index can be used to add elements to the ring. Conversely, when incremented, the Consumer Index is used to remove elements from the ring. The difference between the Producer and Consumer Indices mark which descriptors are currently valid in the ring (see [Figure 10](#)). When the Producer and Consumer Index are equal, the ring is empty. When the producer is one behind the consumer, the ring is considered to be full.

The drawing shows a generic host descriptor ring (could be either a send ring or a receive ring), and demonstrates how the consumer and producer indices are used to determine which descriptors in the ring are valid at any given moment in time.

The delta between the producer and consumer indices is indicated by the shaded areas. These shaded descriptors are considered to be valid (non-empty) and thus need to be processed.

Figure 10: Generic Ring Diagram

RING CONTROL BLOCKS

Each ring (send or receive) has a Ring Control Block (RCB) associated with it. Each RCB has the format shown in [Table 3](#).

Table 3: Ring Control Block Format

Offset (bytes)	31	16	15	0
0x00	Host Ring Address			
0x04				
0x08	Max_len			
0x0c	Reserved			

The fields are defined as follows:

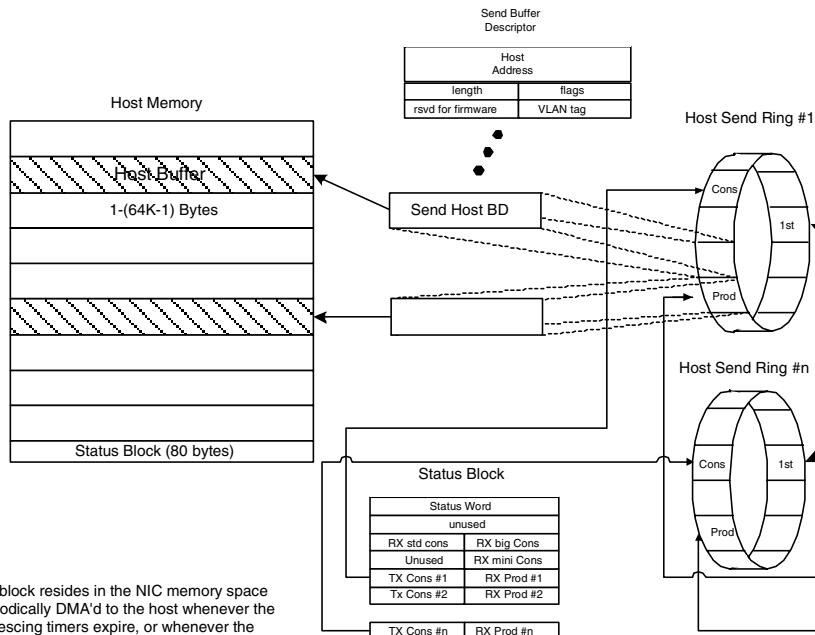
- The Host Ring Address field contains the 64-bit host address of the first element in the ring. Basically, this field tells the controller precisely where in host memory the ring is located. This field only applies to rings that are located in host memory. The Host_Ring_Address field contains the 64-bit address, in big-endian ordering, of the first Send BD in host memory.
- The Flags field contains bits flags that contain control information about a given ring. [Table 4](#) shows the two flags that are defined.

Table 4: Flag Fields for a Ring

Bits	Name	Description
0	RCB_FLAG_USE_EXT_RECV_BD	This bit should be used only for Receive Jumbo Rings. This bit indicates that the ring will use extended receive buffer descriptors (see "Send Buffer Descriptors" on page 26). Note: Jumbo frames are not supported by BCM5761.
1	RCB_FLAG_RING_DISABLED	Indicates that the ring is not in use.
15:2	Reserved	Should be set to 0.

- The Max_len field has a different meaning for different types of rings.
 - This field indicates the number elements in the ring.
 - The valid values for this field are 32, 64, 128, 256, and 512.
- The NIC Ring Address field contains the address where the BD cache is located in the internal NIC address space. This address is only valid for Receive Producer Rings. The Send Rings and Receive Return Rings do not require this field to be populated. The location within the NIC address map for Receive Producer Ring is provided in ["PCI" on page 71](#).

SEND RINGS


The controller devices covered in this document support only one host based Send Ring.

The Send Ring Producer Index is incremented by host software to add descriptors to the Send Ring (see [Figure 11 on page 25](#)). By adding descriptors to the ring, the device is instructed to transmit packets that are composed of the buffers pointed to by the descriptors. A single transmit packet may be composed of multiple buffers that are pointed to by multiple send descriptors. The maximum number of send descriptors for a single packet is $(0.75)^*(\text{ring size})$.

Transmit Ring Data Structure is located in the host (as shown below), and the device will keep a local (not shown) copy of the rings.

Rings and buffer descriptors would be solely located in on-chip memory space.

Data Structures in the host

The Status block resides in the NIC memory space and is periodically DMA'd to the host whenever the TX/RX coalescing timers expire, or whenever the RX/TX max coalesced frames thresholds are met. SW can examine the TX consumer indices in the status block to determine which packets have been sent by the HW.

Data Structures kept on-chip

Ring Control Block

Note: The RCB's host ring address field points to the first element of the Ring in the host (valid only when host send rings are used). For host based send rings, the length of the ring is fixed at 512 entries. The NIC ring address points to the first element of the locally stored ring (this will be a "copy" of the host send ring when host send rings are used).

Note: When external memory is used, 16 rings can be supported. When external memory is not present, only 4 rings are supported.

Mailbox Registers

The mailbox registers reside on-chip starting at offset 0x300. Each mailbox register is 64 bits wide. Writing the lower 32 bits triggers and event in the HW. SW updates the TX Host Ring producer index to indicate that there are buffer descriptors ready for the HW to process.

Figure 11: Transmit Ring Data Structure Architecture Diagram

Send Buffer Descriptors

The format of an individual send buffer descriptor is shown in [Table 5](#).

Table 5: Send Buffer Descriptors Format

Offset (Bytes)	31	16 15	0
0x00	Host Address [63:0]		
0x04			
0x08	Length [15:0]		Flags [15] HdrLen [7:5] Flags [11:0]
0x0c	HdrLen [4:0] MSS [10:0]		VLAN Tag

The fields are defined as follows:

- The Host Address field contains the 64-bit host address of the buffer that the descriptor points to. A length of 0 indicates that the descriptor does not have a buffer associated with it.
- The Flags field contains bits flags that contain control information for the device for transmitting the packets. The defined flags are listed in [Table 6](#).

Table 6: Defined Flags for Send Buffer Descriptors

Bits	Name	Description
0	TCP_UDP_CKSUM ^a	If set to 1, the controller replaces the TCP/UDP checksum field of TCP/UDP packets with the hardware calculated TCP/UDP checksum for the packet associated with this descriptor.
1	IP_CKSUM	If set to 1, the controller replaces the IPv4 checksum field of TCP/UDP packets over IPv4 with the hardware calculated IPv4 checksum for the packet associated with this descriptor. This bit should only be set in the descriptor that points to the buffer that contains the IPv4 header. It is assumed that the IPv4 header is contained in a single buffer.
2	PACKET_END	If set to 1, the packet ends with the data in the buffer pointed to by this descriptor.
5:3	Reserved	Should be set to 0.
6	VLAN_TAG ^a	If set to 1, the device inserts an IEEE 802.1Q VLAN tag into the packet. The 16-bit TCI (Tag Control Information) field of four byte VLAN tag comes from the VLAN Tag field in the descriptor.
7	COAL_NOW	If set to 1, the device immediately updates the Send Consumer Index after the buffer associated with this descriptor has been transferred via DMA to NIC memory from host memory. An interrupt may or may not be generated according to the state of the interrupt avoidance mechanisms. If this bit is set to 0, then the Consumer Index is only updated as soon as one of the host interrupt coalescing conditions has been met.
8	CPU_PRE_DMA	If set to 1, the controller's internal CPU is required to act upon the packet before the packet is given to the internal <i>Send Data Initiator</i> state machine. Normally this bit should be set to 0.
9	CPU_POST_DMA ^a	If set to 1, the controller's internal CPU is required to act upon the packet before the packet is given to the internal <i>Send Data Completion</i> state machine. Normally this bit should be set to 0.
10	Reserved.	—
11	Reserved	Should be set to 0.
14:12	HdrLen[7:5]	Bits-7 to 5 of HdrLen field.
15	DON'T_GEN_CRC ^a	If set to 1, the controller will not append an Ethernet CRC to the end of the frame.

a. Indicates that this bit should be set in all descriptors for a given packet if the desired capability is to be enabled for that packet.

Note: The UDP checksum engine does not span IP fragmented frames.

- The Length field specifies the length of the data buffer. The lengths for the buffers associated with a given packet will add up to the length of the packet.

Note: The Ethernet controller does not validate the value of the Length field and may generate an error on the PCI bus if the Length field has a value of 0. The host driver must ensure that the Length field is nonzero before enqueueing the BD onto the Send Ring.

- The VLAN Tag field is only valid when the VLAN_TAG bit of Flags field is set. This VLAN Tag field contains the 16-bit VLAN tag that is to be inserted into an IEEE 802.1Q (and IEEE 802.3ac)-compliant packet by the controller. If VLAN tag insertion is desired, this field (and the flag) should be set in the first descriptor for that packet (i.e., the descriptor that points to the buffer that contains the Ethernet header).
- Maximum Segment Size (MSS): This field contains the MSS field used for transmitting the TCP packets when LSO is enabled.
- HdrLen (MSS): The combined L3 and L4 Header Length in 4-byte DWORDS for TCP/IPv4 and TCP/IPv6 packets. This field is used only for LSO (Large Send Offload) buffers and includes any option headers for IPv4, any extension headers for IPv6, and any TCP options. For TCP/IPv4 packets without IPv4 options and TCP options, this field should be written with a value of 10 to indicate the combined TCP and IPv4 Header Length of 40 bytes. For TCP/IPv6 packets without IPv6 extension headers and TCP options, this field should be written with a value of 15 to indicate the combined TCP and IPv6 Header Length of 60 bytes.

RECEIVE RINGS

The Ethernet controllers support two types of Receive Descriptor Rings: Producer Rings and Return Rings (see [Figure 12 on page 28](#)). Descriptors in the Producer Rings point to free buffers in the host. When the controller receives a packet and consumes a receive buffer, the controller will modify and write back the descriptor for the consumed buffer into the given Receive Return Ring. Basically the Producer Rings contain descriptors that point to buffers that the controller is free to use, whereas the Return Rings contain descriptors that the device has used and await processing from host software.

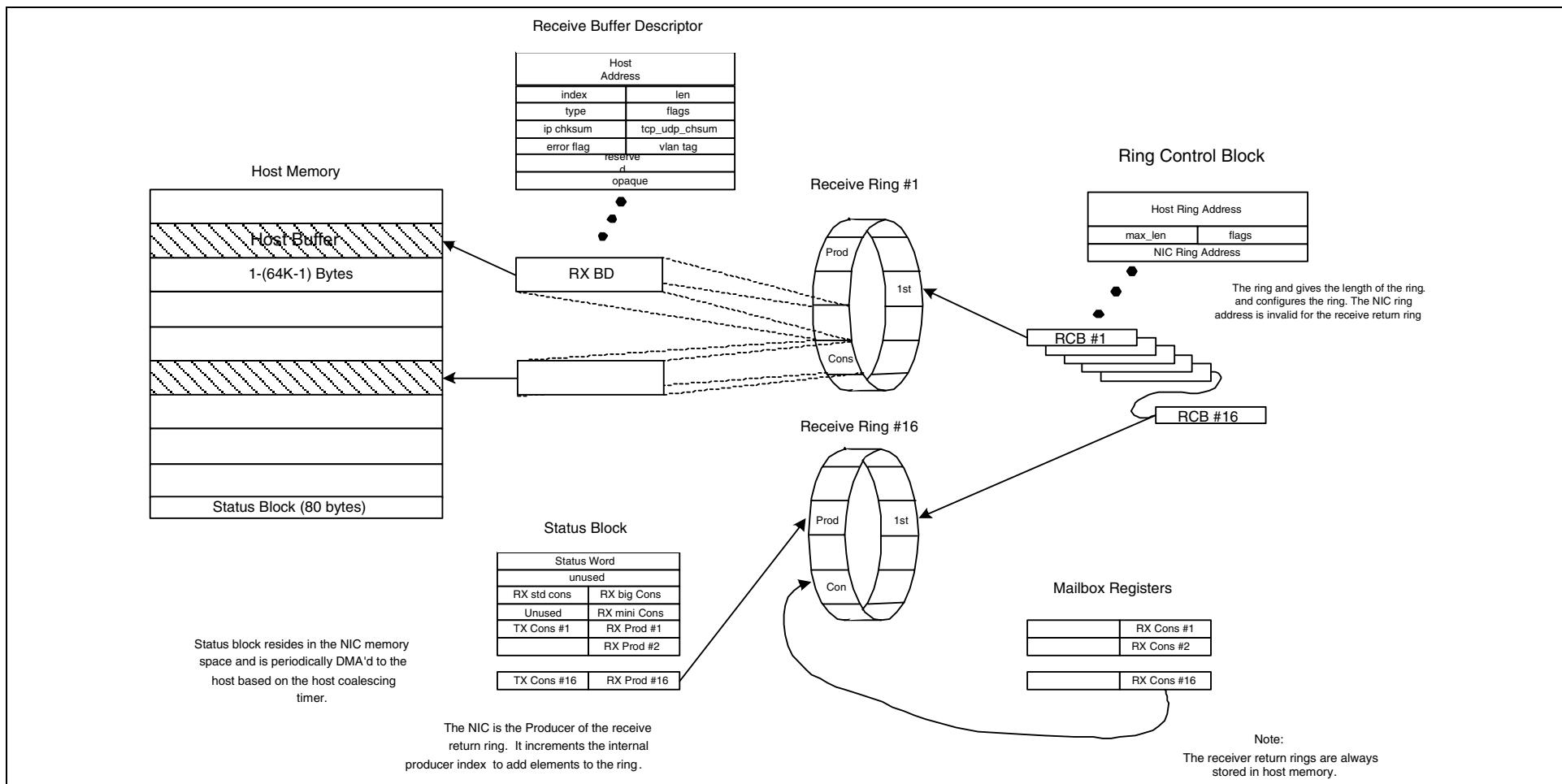



Figure 12: Receive Return Ring Memory Architecture Diagram

Receive Producer Ring

The receive producer ring resides in the host and points to empty host receive buffers that will later be filled with received packet data. The controller will internally cache a copy of the producer ring. When the host software driver has a free host receive packet buffer available for incoming packets, it will fill out a receive buffer descriptor and have that descriptor point to the available buffer. Host software will then update the producer index for that receive producer ring to indicate to the controller that there is a newly available receive buffer. After the controller fetches and caches (e.g., consumes) this receive producer descriptor, the controller will update the consumer index of the receive producer ring.

Receive Return Rings

When the NIC receives a packet, it will DMA that packet to a host receive packet data buffer pointed to by the available receive buffer descriptor (see [Section 6: "Receive Data Flow" on page 39](#)). Earlier the NIC will have received ownership of that data buffer via an update of the producer index of receive producer ring. After the controller does the packet data write DMA, it will DMA a corresponding buffer descriptor into the appropriate receive return ring. The buffer descriptor that is returned in the receive return ring will be slightly modified from the original buffer descriptor that the controller fetched out of the receive producer ring. After the controller has completed the DMA of the receive return ring descriptor, the controller will update its internal copy of the producer index for that particular receive return ring. That new value for that receive return ring producer index will be included in the next status block update that is made to the host. The updated value of receive return ring producer index in status block will be used by host software in determining whether new packets have been received.

Table 7: Receive Return Rings

Description	BCM5761
Number of Rings	1
Buffer Descriptor Size (bytes)	32
Host Ring Size (# of Buffer Descriptors)	Configurable to either 32 or 64 or 128 or 256 or 512
NIC Cache Size (# of Buffer Descriptors)	0

Receive Buffer Descriptors

The format of Standard Receive Buffer Descriptors (in both producer ring and return rings) is shown in [Table 8](#).

Table 8: Receive Descriptors Format

Offset (bytes)	31	16 15	0		
0x00	Host Address				
0x04					
0x08	Index	Length			
0x0c	Type	Flags			
0x10	IP_Cksum	TCP_UDP_Cksum			
0x14	Error_Flags	VLAN tag			
0x18	RSS Hash				
0x1C	Opaque				

The fields are defined as follows:

- The Host Address field contains the 64-bit host address of the buffer that the descriptor points to. A length of 0 indicates that the descriptor does not have a buffer associated with it.
- The Length field specifies the length of the data buffer. For Producer Rings this value is set by the host software to correspond to the size of the buffer that is available for a receive packet. Once a packet has been received, the controller will modify this length field to correspond to the length of the packet received. A value of 0 indicates that there is no valid data in the buffer.
- The Index field is set by host software in the descriptors in the producer rings. When the controller uses a given buffer descriptor, it will opaquely pass the Index field for that buffer descriptor through to the corresponding descriptor in the return ring. This index field of the BD in Return Ring is then used by the host software to associate the BD in Return Ring with the BD in Producer Ring that points to the given receive buffer.
- The Flags field contains bits flags that contain control information about a given descriptor. The defined flags are listed in [Table 9](#).

Table 9: Defined Flags for Receive Buffers

Bits	Name	Description
15	IP Version	Indicates whether the received IP packet is an IPv6 or IPv4 packet. This bit will be 1 for IPv6 packet and 0 for IPv4 packet.
14	TCP_UDP_IS_TCP	In producer rings this bit should be set to 0. In return rings this bit will be set to 1 by the controller if the controller calculated that the incoming packet was a TCP packet. If the packet is UDP or a non IP frame, then this bit should be set to 0.
13	TCP_UDP_CHECKSUM	In producer rings this bit should be set to 0. In return rings this bit will be set to 1 by the controller if the controller calculated that the TCP or UDP checksum in the corresponding incoming packet was correct.
12	IP_CHECKSUM	In producer rings this bit should be set to 0. In return rings this bit will be set to 1 by the controller if the controller calculated that the IP checksum in the corresponding incoming packet was correct.
11	Reserved	
10	FRAME_HAS_ERROR	If set to 1 in a return ring, it indicates that the controller detected an error. The specific type of error is specified in the Error_Flag field of the receive return descriptor.
9:7	RSS Hash Type	Indicates the hash type used in RSS hash calculation for a received packet.

Table 9: Defined Flags for Receive Buffers (Cont.)

Bits	Name	Description
6	VLAN_TAG*	If set to 1 in a return ring, it indicates that the packet associated with this buffer contained a four-byte IEEE 802.1Q VLAN tag. The 16 VLAN ID is stripped from the packet and located in the VLAN tag field in the descriptor.
5	BD_FLAG_JUMBO_RING	Indicates that this packet came from the Jumbo Receive Ring, not the Standard Receive Ring (for receive BDs only). This must be set by the driver; it is just copied through opaquely by the NIC firmware. <i>Note:</i> Jumbo frames are not supported by BCM5761.
4	Reserved	Should be set to 0.
3	RSS_Hash Valid	If set to 1, indicates host that the RSS_Hash in Receive BD of return ring is valid.
2	PACKET_END	If set to 1, the packet ends with the data in the buffer pointed to by this descriptor.
1:0	Reserved	Should be set to 0.

- The Type field is used internally by the controller. In producer rings it should be set to 0, and in return rings it should be ignored by host software.
- The TCP_UDP_Cksm field holds the TCP/UDP checksum that the controller calculated for all data following the IP header given the length defined in the IP header. If the Receive No Pseudo-header Checksum bit is set (see ["Mode Control Register \(Offset: 0x6800\)" on page 270](#)) to 1, then the pseudo-header checksum value is not added to this value. Otherwise, the TCP_UDP_Cksm field includes the pseudo-header in the controller's calculation of the TCP or UDP checksum. If the packet is not a TCP or UDP packet, this field has no meaning. Host software should zero this value in the producer ring descriptors. If the host is capable of TCP or UDP checksum off load, then host software may examine this field in the return rings to determine if the TCP or UDP checksum was correct.
- The IP_Cksm field holds the IPv4 checksum that the controller calculated for the IPv4 header of the received packet. If the packet is not an IPv4 packet, this field has no meaning. Host software should zero this value in the producer ring descriptors. If the host is capable of IPv4 checksum off load, then host software may examine this field in the return rings to determine if the IPv4 checksum was correct. A correct value would be 0 or 0xFFFF.
- The VLAN Tag field is only valid when the VLAN_TAG bit is set. This field contains the 16-bit VLAN ID that was extracted from an incoming packet that had an IEEE 802.1Q (and IEEE 802.3ac) -compliant header.
- The Error_Flags field contains bits flags that contain error information about an incoming packet that the descriptor is associated with. The bits in this field are only valid if the FRAME_HAS_ERROR bit is set in the Flags field in the descriptor. The defined error flags are listed in [Table 10 on page 32](#).

Table 10: Defined Error Flags for Receive Buffers

Bits	Name	Description
31:9	Reserved	Should be set to 0.
8	GIANT_PKT_RCVD	If set to 1, the received packet was longer than the maximum packet length value set in the Receive MTU Size register (see "Receive MTU Size Register (Offset: 0x43C)" on page 197). The data in the received packet was truncated at the length specified in the Receive MTU Size register.
7	TRUNC_NO_RES	If set to 1, the received packet was truncated because the controller did not have the resources to receive a packet of this length.
6	LEN_LESS_64	If set to 1, the received packet was less than the required 64 bytes in length.
5	MAC_ABORT	If set to 1, the MAC aborted due to an unspecified internal error while receiving this packet. The packet could be corrupted.
4	ODD_NIBBLE_RX_MII	If set to 1, the received packet contained an odd number of nibbles. Thus, packet data could be corrupt.
3	PHY_DECODE_ERR	If set to 1, while receiving this packet the device encountered an unspecified frame decoding error. This packet could be corrupted. This bit is set for valid packets that are received with a dribble nibble. True alignment errors will be dropped by that MAC and never show up to the driver.
2	LINK_LOST	If set to 1, link was lost while receiving this frame. Therefore, this packet is incomplete.
1	COLL_DETECT	If set to 1, a collision was encountered while receiving this packet.
0	BAD_CRC	If set to 1, the received packet has a bad Ethernet CRC.

- When the RSS Hash Valid flag bit is 1, the RSS Hash field holds the 32-bit RSS hash value calculated for a packet. This field should be ignored when the RSS Hash Valid flag bit is zero.
- The Opaque field is reserved for the host software driver. Any data placed in this field in a producer ring descriptor will be passed through unchanged to the corresponding return ring descriptor.

STATUS BLOCK

The Status Block is another shared memory data structure that is located in host memory. The Status Block is 20 bytes in length. Host software will need to allocate 20 bytes of non-paged memory space for the Status Block and set the Status Block Host Address register to point to the host memory physical address reserved for this structure.

The controller will update the Status Block to host memory prior to a host coalescing interrupt or MSI. The frequency of these Status Block updates is determined by the host coalescing logic (see ["Host Coalescing Engine" on page 14](#)). Using the software configurable coalescing parameters, the device driver can optimize the frequency of status block updates for a particular application or operating system.

The Status Block contains some of the Producer and Consumer indices for the rings described in ["Descriptor Rings" on page 22](#). These Producer and Consumer indices allow host software to know what the current status of the controller is regarding its processing of the various send and receive rings. From information in the status block a software driver can determine:

- Whether the Status Block has been recently updated (via a bit in the status word).
- Whether the Link State has changed (via a bit in the status word).
- Whether the controller has recently received a packet and deposited that packet into host memory for a given ring (via the Receive Return Ring Producer Indices).
- Which host receive descriptors that controller has fetched, and it will consume when future packets are received (via the Receive Producer Ring Consumer Indices).
- Whether the controller has recently completed a transmit descriptor buffer DMA for a given ring (via the Send Ring Consumer Indices).

STATUS BLOCK FORMAT

Table 11: Status Block Format

Offset	31	16	15	0
0x00			Status Word	
0x04			Status Tag	
0x08	Receive Producer Ring Consumer Index ^a		Unused	
0x0C		Unused		
0x10	Send BD Consumer Index ^b		Receive Return BD Producer Index ^c	

a. The Receive Standard Consumer Index is also accessible at 0x3C54.

b. The Send BD Consumer Index is also accessible at 0x3CC0.

c. The Receive Return BD Producer Index is also accessible at 0x3C80.

The Status word field contains bit flags that contain error information about the status of the controller. The defined flags are listed in [Table 12 on page 34](#).

Table 12: Status Word Flags

Bits	Name	Description
0	Updated	This bit is always set to 1 each time the status block is updated in the host via DMA. It is expected that host software clear this bit in the status block each time it examines the status block. This provides the host driver with a way of knowing whether the status block has been updated since the last time the driver looked at the status block.
1	Link State Changed	Indicates that link status has changed. This method of determining link change status provides a small performance increase over doing a PIO read of the Ethernet MAC Status register (see “ EMAC Status Register (Offset: 0x404) ” on page 192. See “ Wake on LAN Mode/Low-Power ” on page 115 for a description of the PHY setup required when link state changes.
2	Error	When this bit is asserted by the chip, the following conditions may have occurred. Bit 2 of the status word is the OR of: <ul style="list-style-type: none"> • All bits in Flow Attention register (0x3c48) (see “Flow Attention Register (Offset: 0x3C48)” on page 246. • MAC_ATTN—Events from the MAC block (see “EMAC Status Register (Offset: 0x404)” on page 192. • DMA_EVENT—Events from the following blocks: <ul style="list-style-type: none"> - MSI (see “MSI Status Register (Offset: 0x6004)” on page 269. - DMA_RD (see “Read DMA Status Register (Offset: 0x4804)” on page 256. - DMA_WR (see “Write DMA Status Register (Offset: 0x4C04)” on page 260. • RXCP_ATTN—Events from RX RISC (see “RX RISC Status Register (Offset: 0x5004)” on page 262.

The Status Block format for these devices is as follows:

- The Status Tag field contains an unique eight-bit tag value in bits 7:0 when the Status Tagged Status Mode bit of the Miscellaneous Host Control register (see ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#)) is set to 1. This Status Tag can be returned to the Mailbox 0 register at location 31:24 (see ["Interrupt Mailbox 0 Register \(Offset: 0x5800\)" on page 264](#)) by host driver. When the remaining Mailbox 0 register bits 23:0 are written as 0, the tag field of the Mailbox 0 register is compared with the tag field of the last status block to be DMAed to host. If the tag returned is not equivalent to the tag of the last status block DMAed to the host, the interrupt state is entered.
- The Receive Producer Ring Consumer Index field contains the controller's current Consumer Index value for the Receive Producer Ring. This field indicates how many receive descriptors are in the receive producer ring that the controller has consumed. For more information regarding this ring, see ["Receive Producer Ring" on page 29](#).
- The Receive Mini Ring Consumer Index field contains the controller's current Consumer Index value for the Receive Producer Mini Ring. This field indicates how many receive descriptors are in the mini ring that the controller has consumed. For more information regarding this ring, see ["Receive Producer Ring" on page 29](#).
- The Receive Return Rings 1–4 Producer Indices fields contain controller's current Producer Index value for the each of the Receive Return Rings. When the controller receives a packet and writes that packet data into host memory via DMA, it will increment the Producer Index for the corresponding Receive Return ring. When a Producer Index is incremented, it is a signal to software that a newly arrived receive packet is ready to be processed.
- The Send Ring Consumer Index field contains controller's current Consumer Index value for the Send Ring. When the controller completes the read DMA of the host buffer associated with a send BD, the controller will update the Send Ring Consumer Index. This provides the host software with an indication that the controller has buffered this send data and, therefore, the host software may free the buffer that was just consumed by the device.

DEVICE STATISTICS

MAC STATISTICS

See “[Statistics Registers](#)” on page [221](#) for the MAC statistics supported by the devices.

MIB NETWORK INTERFACE CARD STATISTICS

Host Interrupts

The statistics shown in [Table 13](#) are maintained by the send data initiator engine.

Table 13: Send Data Initiator Host Interrupts Statistics

Register Offset	Value Name	Description
0xCCC–0XCCF	nicRingSetSendProdIndex	Number of times the NIC has seen updates to any Send Producer Index.
0xCD0–0xCD3	nicRingStatusUpdate	Number of times the status block was updated.
0xCD4–0xCD7	nicInterrupts	Number of interrupts generated by NIC.
0xCD8–0xCDB	nicAvoidedInterrupts	Number of interrupts avoided by NIC.

NIC BD Coalescing Thresholds

The statistics shown in [Table 14](#) are maintained by the send data initiator engine.

Table 14: Send Data Initiator NIC BD Coalescing Thresholds Statistics

Register Offset	Value Name	Description
0xCDC–0xCDF	nicSendThresholdHit	Number of times Send Max Coalesce Frames Threshold hit.

The statistics shown in [Table 15](#) are maintained by the receive list placement engine.

Table 15: Receive List Placement NIC BD Coalescing Thresholds Statistics

Register Offset	Value Name	Description
0x2258–0x225B	nicRecvThresholdHit	Number of times Recv Max Coalesce Frames Threshold hit.

DMA Resources

These statistics are generated by FTQ for monitoring any state machine which adds DMA descriptors to the either DMA engine. These state machines include the:

- Send BD initiator
- Receive BD initiator
- Send data initiator
- Receive data and receive BD initiator
- Host coalescing state machines

The nicDmaReadQueueFull statistics shown in [Table 16](#) are updated by the Send Data Initiator state machine.

Table 16: Send Data Initiator DMA Resources Statistics

Register Offset	Value Name	Description
0xCC0–0xCC3	nicDmaReadQueueFull	Number of times DMA read queue was full.
0xCC4–0xCC7	nicDmaReadHighPrioQueueFull	Number of times DMA read high priority queue was full.

The nicDmaWriteQueueFull statistics shown in [Table 17](#) are updated by the Receive List Placement state machine periodically.

Table 17: Receive List Placement DMA Resources Statistics

Register Offset	Value Name	Description
0x2244–0x2247	nicDmaWriteQueueFull	Number of times DMA write queue was full.
0x2248–0x224B	nicDmaWriteHighPrioQueueFull	Number of times DMA write high priority queue was full.

MAC Resources

The nicSendDataCompQueueFull statistics shown in [Table 18](#) are updated by the Send Data Initiator state machine.

Table 18: Send Data Initiator MAC Resources Statistics

Register Offset	Value Name	Description
0xCC8–0xCCB	nicSendDataCompQueueFull	Number of times send data completion FTQ was full.

The nicNoMoreRXBDs statistics shown in [Table 19](#) are updated by the Receive List Placement state machine periodically.

Table 19: Receive List Placement MAC Resources Statistics

Register Offset	Value Name	Description
0x224C–0x224F	nicNoMoreRXBDs	Number of times NIC ran out of the Receive Buffer Descriptors.

Class of Service Statistics

The class of service statistics shown in [Table 20](#) are generated by the Send Data Initiator state machine.

Table 20: Send Data Initiator Class of Service Statistics

Value Name	Description
COSIfHCOutPkts (Offset: 0xC80–0xC83)	Number of frames sent from send ring.

The class of service statistics shown in [Table 21](#) are generated by the Receive List Placement state machine.

Table 21: Receive List Placement Class of Service Statistics

Value Name	Description
COSFramesDroppedDueToFilters (0x2240–0x2243)	Number of good frames that are dropped due to receive rules
COSIfHCInPkts[1–4] (Offset: 0x2200–0x220F)	Number of frames received and placed on each of the receive return rings.

Interface Statistics in Receive Placement State Machine

The Interface Statistics shown in [Table 22](#) are generated by the Receive List Placement state machine.

Table 22: Interface Statistics in Rx List Placement Engine

Register Offset	Value Name	Description
0x2250–0x2253	ifInDiscards	The number of inbound packets which were chosen to be discarded even though no error has been detected to prevent their being deliverable to a higher-layer protocol.
0x2254–0x2257	ifInErrors	<p>The number of inbound packets that contained errors prevent them from being deliverable to a higher-layer protocol.</p> <p>The ifInError counter increments if any of the following conditions occur:</p> <ul style="list-style-type: none"> • Packet with FCS error. • Packet with alignment error. • Packet size greater than and equal to 2^{16} bytes long (causing the counter to overflow). • Packet with extension error. • Packet size greater than pre-programmed MTU and keep_Oversize is not enabled in the Receive MAC Mode register (see "Receive MAC Mode Register (Offset: 0x468)" on page 202). • Packet size less than 64 bytes and Accept_Runts is not enabled in the Receive MAC Mode register. • Packet with invalid IEEE 802.3 length field, if length checking is enabled in the Receive MAC Mode register. <p>Note: A packet dropped due to:</p> <ul style="list-style-type: none"> • An EMAC internal error (e.g., FIFO overflow) would not cause ifInError to increment. • Address filtering would not cause ifInError to increment.

Section 6: Receive Data Flow

INTRODUCTION

The RX MAC pulls BDs from RX producer rings. The RX BD specifies the location(s) in host memory where packet data may be moved. [Figure 13 on page 40](#) shows the receive buffer descriptor cycle.

All ingress Ethernet frames are classified by the RX rules engine. A class ID is associated to each frame based on QOS rules setup in the RX MAC (see ["Receive Rules Setup and Frame Classification" on page 46](#)). The Receive List Placement and Receive List Initiator portions of the MAC architecture move BDs to the RX return rings; the class ID associated to the packet is examined to route the BD to a specific RX return ring.

Once the packet is queued to the RX return ring, the device driver will wait for indication of the same through the status block update and interrupt from the host coalescing engine. The host coalescing engine will update the status block and generate a line interrupt or MSI (see ["Host Coalescing" on page 133](#) for further details regarding interrupts) when a specified host coalescence criteria is met. Once the interrupt is generated, the host device driver will service the interrupt. The ISR will determine if new BDs have been completed on the RX Return Rings. Next, the device driver will indicate to the network protocol that the completed RX packets are available. The network protocol will consume the packets and return physical buffers to the network driver at a later point.

The BDs may then be reused for new RX frames. The device driver must return the BD to an RX producer ring. For this purpose, the driver should fill out either the opaque field or index field of the Rx BD when inserting/initializing the BD in an RX Producer ring. When the BD is returned by the device through Return Ring, the opaque or index data field of the BD will be used by the driver to identify the BD in Producer Ring that corresponds to the Returned BD in Return Ring. The device driver will then reinitialize the identified BD in Producer Ring with a new allocated buffer and replenish the Receive Producer Ring with this BD.



Figure 13: Receive Buffer Descriptor Cycle

RECEIVE PRODUCER RING

A Receive Producer Ring is an array containing a series of Receive Buffer Descriptors (BD). The Receive Producer Ring is host-based and 25% of the available buffer descriptors are cached in Ethernet controller internal memory.

A receive producer ring contains a series of buffer descriptors which in turn contain information of host memory locations to where packets are placed by the Ethernet controller at reception. The limit on the number of buffer descriptors in receive producer ring is 512.

SETUP OF PRODUCER RINGS USING RCBs

A Ring Control Block (RCB) is used by the host software to set up the shared rings in host memory. In the context of producer ring, the Receive Producer Ring RCB is a register that is used to define the Receive Producer Ring. The host software must initialize the Receive Producer Ring RCB.

Receive Producer Ring RCB—Register Offset 0x2450–0x245f

Other Considerations Relating to Producer Ring Setup

Other registers that affect the producer rings must be initialized by the host software. These registers include the Receive BD Ring Replenish Threshold register, the Receive MTU register, and the Accept Oversized bit (bit 5) in the Receive MAC Mode register.

- Receive BD Producer Ring Replenish Threshold registers:
 - ["Standard Receive BD Producer Ring Replenish Threshold Register \(Offset: 0x2C18\)" on page 241](#)
 - ["Receive BD Completion Control Registers" on page 242](#).
- These registers are used for setting the number of BDs that the Ethernet controller can use up before requesting that more BDs be DMAed from a producer ring. In other words, the device does not initiate a DMA for fetching the Rx BDs until the number of BDs made available to the device by the host is at least the value programmed in this register.
- Receive MTU register (["Receive MTU Size Register \(Offset: 0x43C\)" on page 197](#)). This 32-bit register is set to a value that is the maximum size of a packet that the Ethernet controller receives. Any packets above this size is labeled as an oversized packet. The value for this register is typically set to 1518, which is the Standard Producer Ring RCB typical setting. If Jumbo frames are supported, the MTU would be set to the maximum Jumbo frame size.
- Receive MAC Mode register (["Receive MAC Mode Register \(Offset: 0x468\)" on page 202](#)). If the Accept Oversized bit (bit 5) of this register is set, the Ethernet controller accepts packets (of size up to 64 KB) larger than the size specified in the MTU.

RCB Setup Pseudo Code

Example: Setting up receive producer ring RCB:

```
Content of Pointer_to_RX_PRODUCER_RING_RCB + 0x00 = Host address of standard receive
producer ring high 32.
Content of Pointer_to_RX_PRODUCER_RING_RCB + 0x04 = Host address of standard receive
producer ring low 32.
Content of Pointer_to_RX_PRODUCER_RING_RCB + 0x0a = No flags.
Content of Pointer_to_RX_PRODUCER_RING_RCB + 0x08 = Max packet size of 1518.
Content of Pointer_to_RX_PRODUCER_RING_RCB + 0x0c = Internal Memory address for device
copy of ring.
```

[Figure 14](#) shows the standard ring RCB for the setup of a host-based standard producer ring.

Receive Buffer Descriptors (BDs) begin on the Receive Producer Ring. The host device driver will populate the receive producer ring with a specified number of BDs supported by the receive producer ring (see ["Receive Producer Ring" on page 41](#)). When a packet is received, the RX MAC moves the packet data into internal memory. The Receive MTU Size register (see ["Receive MTU Size Register \(Offset: 0x43C\)" on page 197](#)) specifies the largest packet accepted by the RX MAC; packets larger than the Receive MTU are marked oversized and are discarded.

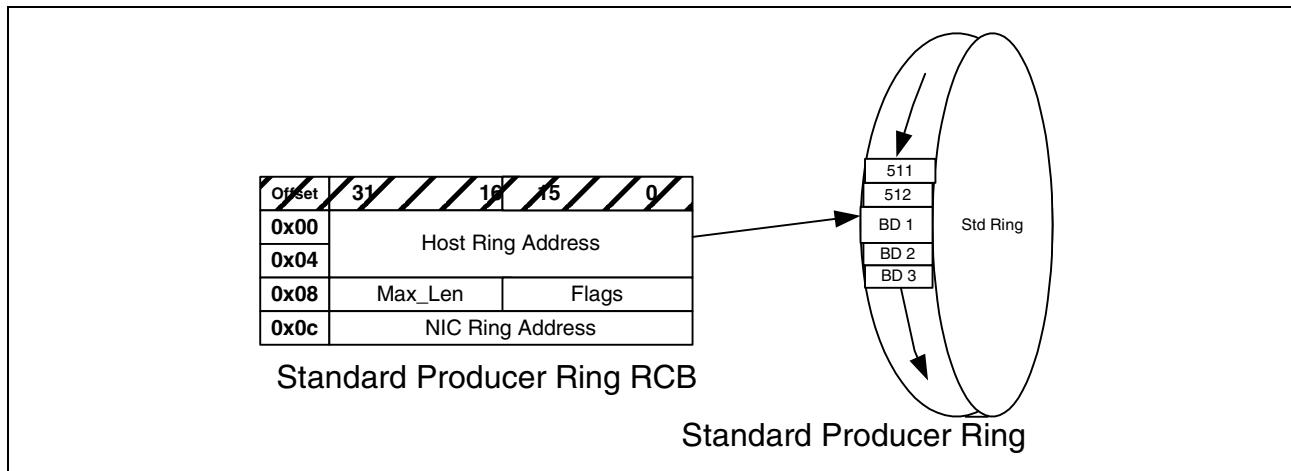


Figure 14: Receive Producer Ring RCB Setup

RECEIVE BUFFER DESCRIPTORS

The Receive Buffer Descriptor is a data structure in host memory. It is the basic element that constitutes each receive producer and receive return ring. The format of receive buffer descriptors can be seen in [Table 8 on page 30](#). A receive buffer descriptor has a 64-bit memory address and may be in any memory alignment and may point to any byte boundary. For performance and CPU efficiency reasons, it is recommended that memory be cache-aligned. The Ethernet controller supports cache line sizes of 8, 16, 32, 64, 128, 256, and 512 bytes. The cache line size value is important for the controller to determine when to use the PCI memory write and invalidate command. There are no requirements for memory alignment or cache line integrity for the Ethernet controller.

Unlike send buffer descriptors, the receive buffer descriptors cannot be chained to support multiple fragments.

MANAGEMENT OF RX PRODUCER RINGS WITH MAILBOX REGISTERS AND STATUS BLOCK

Status Block

The host software manages the producer rings through the Mailbox registers and by using the status block. It does this by writing to the Mail Box registers when a BD is available to DMA to the Ethernet controller and reading the status block to see how many BDs have been consumed by the Ethernet controller. The status block can be seen in ["Status Block" on page 33](#).

The status block is controlled and updated by the Ethernet controller. The status block in host memory is constantly updated through a DMA copy by the Ethernet controller from an internal status block. The updates occur at specific intervals and host coalescence conditions that are specified by host software during initialization of the Ethernet controller. The registers for setting the intervals and conditions are in the Host Coalescing Control registers (see ["Host Coalescing" on page 133](#)) starting at memory offset 0x3c00. The Ethernet controller DMAs an updated status block to the 32-bit address that is set by the host software in the Host Coalescing Control registers, 0x3c38.

Among other status, the status block displays the last 16-bit value, BD index that was DMAed to the Ethernet controller from receive producer ring. The Ethernet controller updates these indices as the recipient or consumer of the BD from the producer rings.

Mailbox

The host software is responsible for writing to the Mailbox registers (see [Figure 15 on page 44](#)) when a BD is available from the producer rings for use by the Ethernet controller. Host software should use the high-priority mailbox region from 0x200–0x3FF for host standard and flat modes and the low-priority mailbox region from 0x5800–0x59FF for indirect register access mode.

The Mailbox registers (starting at memory offset 0x200 for host standard and flat modes and offset 0x5800 for indirect mode) contain the following receive producer index register.

Receive BD Producer Ring Producer Index

- Host standard and flat modes: memory offset 0x268–0x26F
- Indirect mode: memory offset 0x5868–0x586F

Offset (High-Priority Mailboxes for Host Standard and Flat Modes)	Offset (Low-Priority Mailboxes for Indirect Mode)	Register	Access
0x200 - 0x207	0x5800 - 0x5807	Interrupt Mailbox 0	RW
0x208 - 0x20F	0x5808 - 0x580F	Interrupt Mailbox 1	RW
0x268 - 0x26F	0x5868 - 0x586F	Receive BD Standard Producer Ring Producer Index	RW
0x270 - 0x277	0x5870 - 0x5877	Receive BD Jumbo Producer Ring Producer Index	RW
0x278 - 0x27F	0x5878 - 0x587F	Receive BD Mini Producer Ring Producer Index	RW
0x280 - 0x287	0x5880 - 0x5887	Receive BD Return Ring 1 Consumer Index	RW
0x288 - 0x28F	0x5888 - 0x588F	Receive BD Return Ring 2 Consumer Index	RW
0x290 - 0x297	0x5890 - 0x5897	Receive BD Return Ring Consumer Index	RW

Figure 15: Mailbox Registers

The Receive Producer Ring Producer Index register contains the index value of the next buffer descriptor from the producer ring that is available for DMA to the Ethernet controller from the host. When the host software updates the Receive Producer Ring Producer Index, the Ethernet controller is automatically signaled that a new BD is waiting for DMA. At initialization time, these values must be initialized to zero. These indices are 64-bit wide; however, the highest index value is only 512 for the receive Producer Ring.

RECEIVE RETURN RINGS

Receive Return Rings (RR) are host-based memory blocks that are used by host software to keep track of the where the Ethernet controller is putting the received packets related receive buffer descriptors. Unlike the producer rings, the return rings reside only in host memory. The Ethernet controller uses the BDs in the NIC's memory that are previously copied from the producer rings to use when packets are received from the LAN. It places the BDs that correspond to received packets in the return rings.

Return rings are the exact opposite of producer rings, except that they are not categorized by the maximum length receive packets supported. They are actually categorized by priority or class of received packet. The highest priority return ring is ring 1, and the lowest priority is the last ring (Return Ring 2–Return Ring 4 depending on how many rings are set up by the host software). The Receive Return Ring is configurable to a value of either 32, 64, 128, 256, or 512.

The Receive Return Ring RCBs are used to set up return rings in much the same way the Receive Producer Ring RCB is used to set up the receive producer ring. These RCBs for the return rings are set in the Miscellaneous memory region (SSRAM) at offset 0x200 (this region should not be confused with the register space in the chip). The RCB max_len field is used to indicate the number of buffer descriptor entries in a return ring. If an invalid value is set, the Ethernet controller indicates an attention error in the Flow Attention register. [Figure 12 on page 28](#) shows receive return rings.

MANAGEMENT OF RETURN RINGS WITH MAILBOX REGISTERS AND STATUS BLOCK

The return rings are managed by the host using the Mailbox registers and status block.

When a packet is received from the LAN, the Ethernet controller DMAs the packet to a location in the host, and then DMAs the related BD to a return ring. As the producer of this packet to the host, the Ethernet controller updates the status block producer indices for the related return ring (i.e., return ring 1 to return ring 4 that was DMAed the BD received packet). These return ring indices can then be read by the host software to determine the last BD index value of a particular ring that has information of the last received packet.

As the consumer of the received packet, the host software must update the return ring consumer indices in Mailbox registers Receive BD Return Ring 1 Consumer Index (memory offset 0x280–0x287 for host standard and flat modes and 0x5880–0x5887 for indirect mode) through Receive BD Return Ring 4 Consumer Index.

HOST BUFFER ALLOCATION

The allocation of memory in the host is dependent on the operating system in which the controller is being used. There are two crucial items:

- The use of non-cached and physically contiguous memory is best for adapter performance.
- Physical memory mapping is required for the controller's internal copies of logical host memory.

RECEIVE RULES SETUP AND FRAME CLASSIFICATION

The Ethernet controller has a feature that allows for the classification of receive packets based on a set of rules. The rules are determined by the host software and then input into the Ethernet controller.

A packet can be accepted or rejected based on the rules initialized into two rules register areas. The packets can also be classified into groups of packets of higher to lower priority using the rules registers. This occurs when the packet is directed to a specific return ring. Return rings 1–4 have an inherent priority associated with them. The priority is from lowest ring number to highest ring number; return ring 1 being the highest priority ring and return ring 4 being the lowest. The implementation of priority class is based on how many rings the host software has initialized and made available to the Ethernet controller. As packets arrive, the Ethernet controller may classify each packet based on the rules. When the host services the receive packet, it can service the lower numbered rings first.

A rule can be changed by first disabling it by setting 0 into Enable bit (bit 31) in Receive BD Rules Control register (see [Table 24](#)). Wait about 20 receive clocks (rx_clock) and then re-enable it when it is programmed with a new rule. Otherwise, changing the rules dynamically during runtime may cause the rule checker to output erroneous results because the rule checker is a pipelined design and uses the various fields of the rules at different clock cycles.

Receive Rules Configuration Register

The Receive Rules Configuration register (memory offset 0x500–0x503, see [Table 23](#)) uses bits 3:7 to specify the ring where a received packet should be placed into if no rules are met, or if the rules have not been set up. A value of 0 means the received packet will be discarded. A value of 1–16 specifies a corresponding ring. This ring should be initialized to at least a value of 1 if the rules are not being used to ensure that all received packets will be DMAed to return ring 1.

Table 23: Receive Rules Configuration Register

Bits	Field	Access
31:8	Reserved	RO
7:3	Specifies the default class (ring) if no rules are matched	R/W
2:0	Reserved	RO

Receive List Placement Rules Array

The Receive List Placement Rules Array (memory offset 0x480–0x4ff) is made up of 16 combined element registers. The combined element is actually two 32-bit registers called the Receive BD Rules Control register (see [Table 24](#)) and the Receive BD Rules Value/Mask register (see [Table 25](#)). The element can be looked at as a single 64-bit entity with a Control part and Value/Mask part since they use a single element. Bit 26 of the control part determines how the value/mask part is used. The Receive BD Rules Value/Mask register can be used as either a 32-bit left-justified Value or a 16-bit Mask followed by a 16-bit Value.

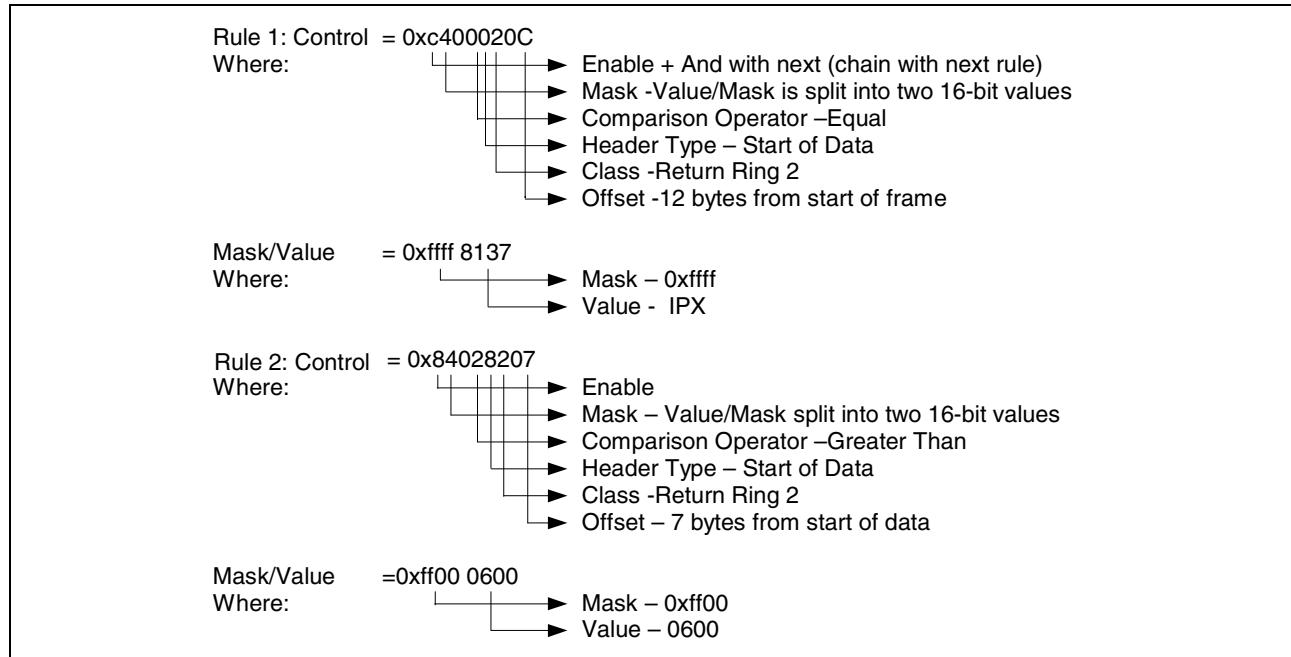
Note: Receive rules cannot be used to match VLAN headers because the VLAN tag is stripped from the Ethernet frame before the rule checker runs.

Table 24: Receive BD Rules Control Register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
E	&	P1	P2	P3	M	D	Map	Reserved				Op			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Header		Class						Offset							

Bit	Name	R/W	Description	Default
31	E	R/W	Enable. Enabled if set to 1	—
30	&	R/W	And With Next. This rule and next must both be true to match. The class fields must be the same. A disabled next rule is considered true. Processor activation bits are specified in the first rule in a series.	—
29	P1	R/W	If the rule matches, the processor is activated in the queue descriptor for the Receive List Placement state machine.	—
28	P2	R/W	If the rule matches, the processor is activated in the queue descriptor for the Receive Data and Receive BD Initiator state machine.	—
27	P3	R/W	If the rule matches, the processor is activated in the queue descriptor for the Receive Data Completion state machine.	—
26	M	R/W	Mask If set, specifies that the value/mask field is split into a 16-bit value and 16-bit mask instead of a 32-bit value.	—
25	D	R/W	Discard Frame if it matches the rule.	—
24	Map	R/W	Map Use the masked value and map it to the class.	—
23:18	Reserved	R/W	Must be set to zero.	0
17:16	Op	R/W	Comparison Operator specifies how to determine the match: <ul style="list-style-type: none"> • 00 = Equal • 01 = Not Equal • 10 = Greater than • 11 = Less Than 	—
15:13	Header	R/W	Header Type specifies which header the offset is for: <ul style="list-style-type: none"> • 000: Start of Frame (always valid) • 001: Start of IP Header (if present) • 010: Start of TCP Header (if present) • 011: Start of UDP Header (if present) • 100: Start of Data (always valid, context sensitive) • 101–111: Reserved 	—
12:8	Class	R/W	The class this frame is placed into if the rule matches. 0:4, where 0 means discard. — The number of valid classes is the Number of Active Queues divided by the Number of Interrupt Distribution Groups. Ring 1 has the highest priority and Ring 4 has the lowest priority.	—
7:0	Offset	R/W	Number of bytes offset specified by the header type.	—

Table 25: Receive BD Rules Value/Mask Register


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Mask															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value															

Bit	Name	R/W	Description	Default
31:16	Mask	—	—	—
15:0	Value	—	—	—

Class of Service Example

If either Start of IP Header, Start of TCP Header, or Start of UDP Header is specified, and the frame has no IP, TCP, or UDP header, respectively, there is no frame match. The full set of rules provides a fairly rich selection and filtering criteria.

Example: If you wanted to set a Class of Service (CoS) of 2 based on the eighth byte in the data portion of an encapsulated IPX frame using Ethernet Type 2 having a value greater than 6, you could set up the rules shown in [Figure 16](#).

Figure 16: Class of Service Example

CHECKSUM CALCULATION

Whether the host software NOS supports checksum offload or not, the Ethernet controller automatically calculates the IP, TCP, and UDP of received packets as described in RFC 791, RFC 793, and RFC 768, respectively.

Which protocol checksum value is produced can be determined by reading the status flag field in the Receive Return Ring. The valid flag values in the status flag field are IP_CHECKSUM and TCP_UDP_CHECKSUM. When a valid checksum is produced, the values of the checksums are found in the corresponding receive buffer descriptor register. These values should be 0xFFFF for a valid checksum or any other value if the checksum was incorrectly calculated. Assert the Receive No Pseudo-header Checksum bit of the Mode Control register (see [“Mode Control Register \(Offset: 0x6800\)”](#) on page 270) to not to include Pseudo-header in TCP/UDP checksums.

VLAN TAG STRIP

Receiving VLAN-tagged (IEEE 802.1q-compliant) packets are automatically supported by the Ethernet controller. There is no register or setting required to receive packets that are VLAN-tagged. The VLAN tag is automatically stripped from the IEEE 802.1q-compliant packet at reception and then placed in a receive buffer descriptor's two byte VLAN tag field. The flag field has the BD_FLAGS_VLAN_TAG bit set when a valid VLAN packet is received. After the packet has been serviced by the host software, these fields should be zeroed out.

In the Receive MAC Mode register (offset: 0x468–0x46b), the Keep VLAN Tag Diag Mode bit (bit 10) can be set to force the Ethernet controller to not strip the VLAN tag from the packet. This is only for diagnostic purposes.

Table 26 shows the frame format with IEEE 802.1Q VLAN tag inserted.

Table 26: Frame Format with 802.1Q VLAN Tag Inserted

Offset	Description
0:5	MAC destination address
6:11	MAC source address
12:13	Tag Protocol ID (TPID)—0x8100
14:15	Tag Control Information (TCI): <ul style="list-style-type: none">Bit 15:13—IEEE 802.1P priorityBit 12—CFI bitBit 11:0—VLAN ID
16:17	The original EtherType
18:1517	Payload

RX DATA FLOW DIAGRAM

The receive data flow can be summarized in [Figure 17](#). The Receive Producer Ring, Receive Buffer Descriptors, Receive Return Rings, Mailbox registers, and status block registers are the main areas of the receive data flow.

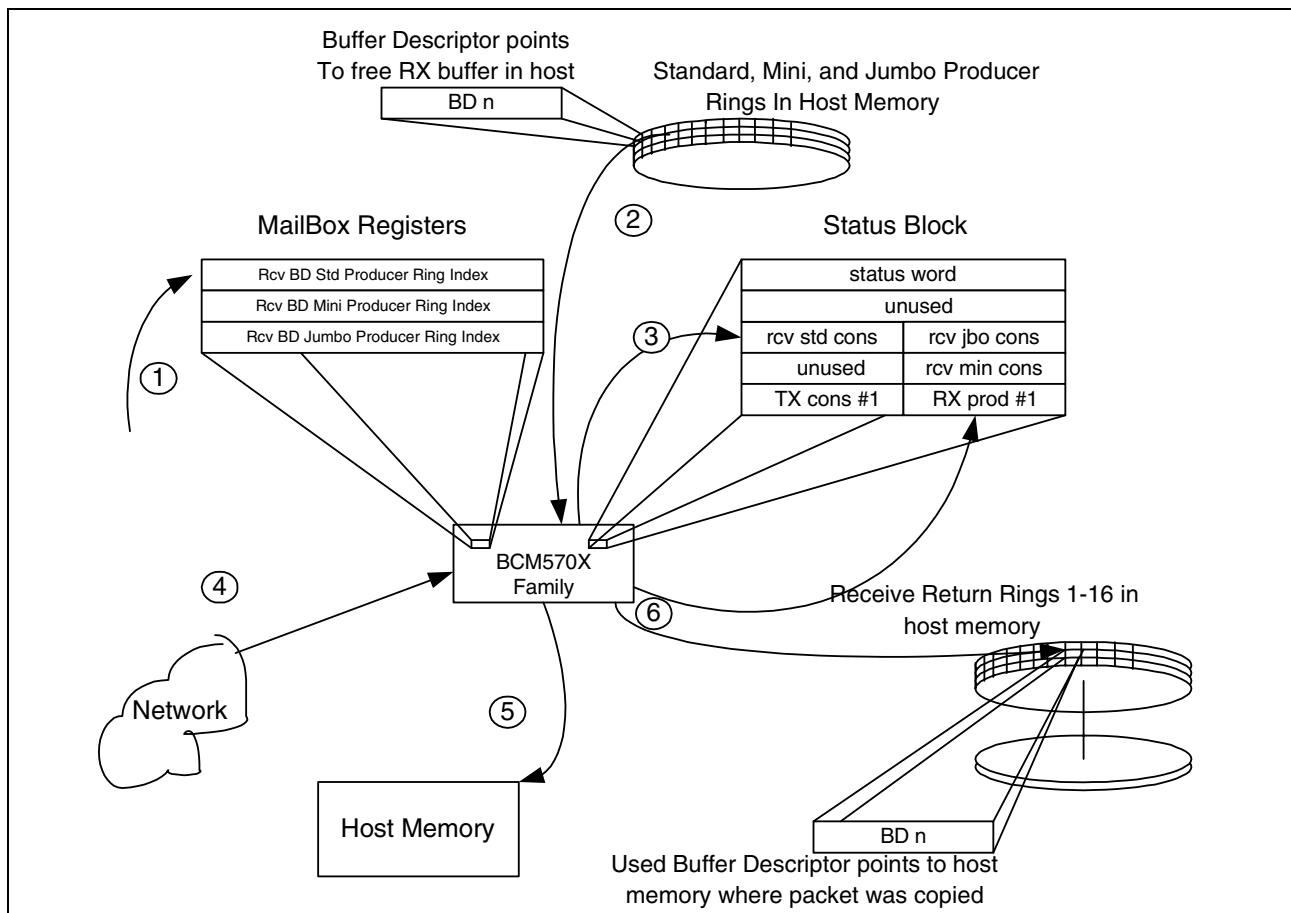


Figure 17: Overview Diagram of RX Flow

The RX flow sequence is as follows:

1. The host software updates a Receive Producer Ring Index in the Mailbox registers.
2. A receive BD or series of BDs with the corresponding index is DMAed to the Ethernet controller from the host-based Receive Producer Ring.
3. The Ethernet controller updates the Receive Consumer Index in the Host Block register and stores copy of the BD.
4. A valid Ethernet packet is received from the network into the device.
5. The Ethernet packet is DMAed to host memory using a BD previously DMAed from a Receive Producer Ring.
6. The BD used for the received packet is DMAed from the Ethernet controller to one of the receive return rings, and the Receive Return Ring Producer Index register in the host status block is updated by the Ethernet controller.

The host software must create an array of BD structures in host memory, referred to as a receive producer ring. Each receive buffer descriptor within a producer ring describes, among other things, the location of a host memory buffer that is used to store the packets received from the network. When the host software (as the producer) updates the mailbox register's producer ring index that corresponds to the receive producer ring, the Ethernet controller automatically DMAs the BD to itself from the host. When the DMA is completed, the Ethernet controller (as the consumer) updates the status block's receive consumer ring index to signal it successfully consumed the BD. The Ethernet controller keeps this BD in internal memory to know where to put a packet that is received from the network.

When a packet is received from the network, a BD gets updated with information regarding the received packet and the packet is DMAed to a location in host memory described by the BD. The Ethernet controller (as the producer) then updates the receive return ring producer index in the Status Block register corresponding to one of host memory's receive return rings, and DMAs the BD to that receive return ring.

It is the responsibility of the host software to setup, initialize, and manage the data structures in host memory, namely, the receive producer rings and the receive return rings. The producer/consumer indices in the mailbox and status block are read and updated by the host and Ethernet controller for this purpose.

RECEIVE SIDE SCALING

OVERVIEW

RSS is a scalable networking technology that enables receive packet processing to be balanced across multiple processors in the system while maintaining in-order delivery of the data. The RSS enables packets from a single network adapter to be processed in parallel on multiple CPUs/cores while preserving in-order delivery to TCP connections.

FUNCTIONAL DESCRIPTION

The figure below shows the processing of received packets when RSS is enabled. The RSS algorithm is based on a load-sharing algorithm and performs the following steps.

- Computes a hash on the incoming packet to produce a 32-bit Hash result.
- Performs a lookup in the load balancing table (also called indirection table) using the one to seven least significant bits of the Hash result to determine which of the n CPUs are processing the packet, where n is the number of CPUs assigned to process received packets.
- Adds a Base CPU Number to determine the exact CPU that will process the packet.

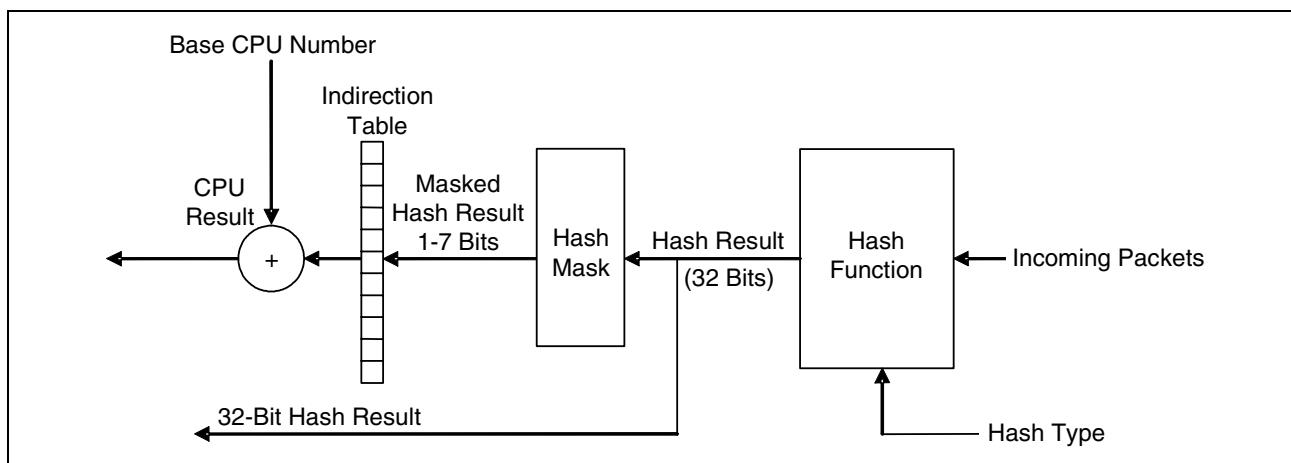


Figure 18: RSS Receive Processing Sequence

The devices implement the above RSS algorithm in hardware except for the step of adding the Base CPU Number to the value from Indirection Table. If required, the step of adding the Base CPU Number to the CPU Result can be done in the main Interrupt Service Routine to determine which CPU will process the packet.

RSS PARAMETERS

Hash Function

The default hash function is the Toeplitz hash. No other hash functions are currently supported, so there is no configurable parameter.

Hash Type

The fields that are used to hash across the incoming packet. The 5 devices support all the four hash types given below and the configuration bits for enabling/disabling these hash types are provided in Receive MAC Mode register at offset 0x468. Any combination of these hash types can be enabled:

- Four-tuple of source TCP Port, source IP version 4 (IPv4) address, destination TCP port, and destination IPv4 address.
- Four-tuple of source TCP Port, source IP version 6 (IPv6) address, destination TCP port, and destination IPv6 address.
- Two-tuple of source IPv4 address and destination IPv4 address.
- Two-tuple of source IPv6 address and destination IPv6 address.

Hash Mask

The RSS Hash Mask bits (bits 22:20 of the Receive MAC Mode register at offset 0x468) allow the configuration of number of hash-result bits that are used to index into the indirection table.

Indirection Table

The table of CPU numbers used for balancing the receive traffic across multiple processors. The Indirection Table registers 0–15 at offset 0x630–0x66F are implemented for the required 128 entries of the Indirection Table. The devices support only four Receive Return Rings so each entry of Indirection Table is implemented as 2 bits.

Secret Hash Key

The hash key that will be used for RSS hash. For the Toeplitz hash, the hash key size is 40 bytes for IPv6 and 16 bytes for IPv4. The host software should program the hash key in hash key registers at offset 0x670 to 0x697.

RSS INITIALIZATION

The host protocol stack should configure the above RSS parameters before enabling the RSS engine. The RSS can be enabled by setting the bit-23 of the Receive MAC Mode register at offset 0x468. Normally the RSS parameters except the Indirection Table are static and will be initialized only during device driver initialization. Though extremely rare, the protocol stack may change the RSS parameters any time. The devices require a reset to change any of the hash type, hash mask, and hash key parameters.

If the hash type flags in Receive MAC Mode register (offset: 0x468) enable only one type of hash, then any received packet that does not match the enabled hash type is not hashed. If multiple flags are set, such as If the TCP/IPv4 and IPv4 hash types (bits 17 and 16 of Receive MAC Mode register at offset 0x468) are enabled, then if the packet is not a TCP/IPv4 packet but is an IPv4 packet, the hash is performed on just the IPv4 2-tuple. Further, for this setting of the hash type flags, if the incoming packet is not an IPv4 packet, then no hash is performed. Because a variety of hash types can be applied on a per-packet basis (including no hash), the hash type is indicated to the host protocol stack on a per-packet basis. If no hash was performed, then none of the hash type flags in the receive BD will be set.

Once RSS is initialized and enabled, data transfer can begin. Over a period of time, the host protocol stack may modify the indirection table to rebalance the processing load. When the indirection table is changed, it is possible for a short period of time (while the current receive descriptor queues are being processed) for packets to be processed on the wrong CPU. This is a normal transient condition and should not be a problem.

RSS Rx PACKET FLOW

Each CPU or CPU core in multi processor systems is assigned one receive return ring. Only a single interrupt is initiated at a time.

1. As packets arrive, the device parses each packet, calculates the RSS Hash, and derives the CPU number (i.e., receive return ring number) from Indirection Table using the Masked Hash Result as the Indirection Table Index.
2. The packet data is DMAed to the host memory at the location specified by the receive buffer descriptor (RBD) of the receive producer ring.
3. Based on the derived CPU number, the device DMAs the used RBDs into appropriate receive return rings in host memory.
4. The device fires the interrupt via MSI, which causes the device driver ISR to run.
5. The ISR disables further interrupts from the device, determines which CPUs have receive packets to be handled and uses inter processor communication mechanisms to start packet receive handlers on CPUs whose return rings have new RBDs.
6. Each CPU processes the new RBDs in it's receive return ring when its packet handler routine is started by main ISR.
7. Once the main ISR determines that all new RBDs have been processed by the CPUs, it enables the interrupts from the device and exits.

Section 7: Transmit Data Flow

INTRODUCTION

Send Buffer Descriptors (BDs) begin on the Send Producer rings. The device driver updates the Mailbox to reflect available Send BDs.

- The MAC moves the available Send BDs to device local memory—a cache.
- Next, the MAC selects a BD from the internal cache using priority scheduling.

The physical address, programmed in the Send BD by the host device driver prior to the Mailbox update, contains the host memory location of the TX packet buffer. The MAC reads the address from Send BD and schedules a bus master DMA for reading the packet data from host buffer. The packet data will be moved into device internal buffers from host buffers by Read DMA engine, and all the read buffers of 1 packet are chained together into a cluster. This cluster is then sent to the transmit MAC which sends the packet data to the integrated PHY for transmission on Ethernet media.

The write DMA engine will subsequently update the status block to indicate that the Send BD was consumed. The host driver normally returns the packet buffers to the NOS/protocol so the next packet can reuse that host physical memory. The send BD is now available for the next TX packet.

SEND RINGS

The send rings are shared data structures that are used to describe a series of data buffers that will be transferred onto the network. The shared data structure is called the Ring Control Block (RCB), and the entries within a ring for describing the data buffers are called the Send Buffer Descriptors (Send BDs).

Note: The maximum number of Send BDs (buffer descriptors) for a single packet is $(0.75)^*(\text{ring size})$.

Associated with each ring are two indices that control its operation. These indices are the producer index and the consumer index, which are not shared between the host software and the Ethernet controller. In the case of send rings, the host software controls the producer index by adding elements (initializing a Send BD) to the ring. Similarly, the Ethernet controller controls the consumer index by removing elements (processing a Send BD) from the ring.

The host software is responsible for maintaining its producer index and updating it by writing to the send ring producer index mailbox register. The mailbox registers are described in ["Mailbox" on page 43](#), ["RSS Registers" on page 184](#) (for offsets 0x200 through 0x3FF), and ["Low Priority Mailboxes" on page 264](#) (for offsets 0x5800 through 0x59FF). The update actually triggers the Ethernet controller to process the send descriptors starting at its consumer index. As a descriptor is processed, the consumer index is incremented, and the new index is reflected in a new status block update. Status block is described in ["Status Block" on page 33](#).

When the producer and consumer indices are equal, the ring is empty. When the producer index is one behind the consumer, the ring is full. Because of this configuration, the producer index always points to an empty slot. Thus, there will always be at least one empty slot in a ring.

Figure 19 illustrates the relationships between all the components of a send ring.

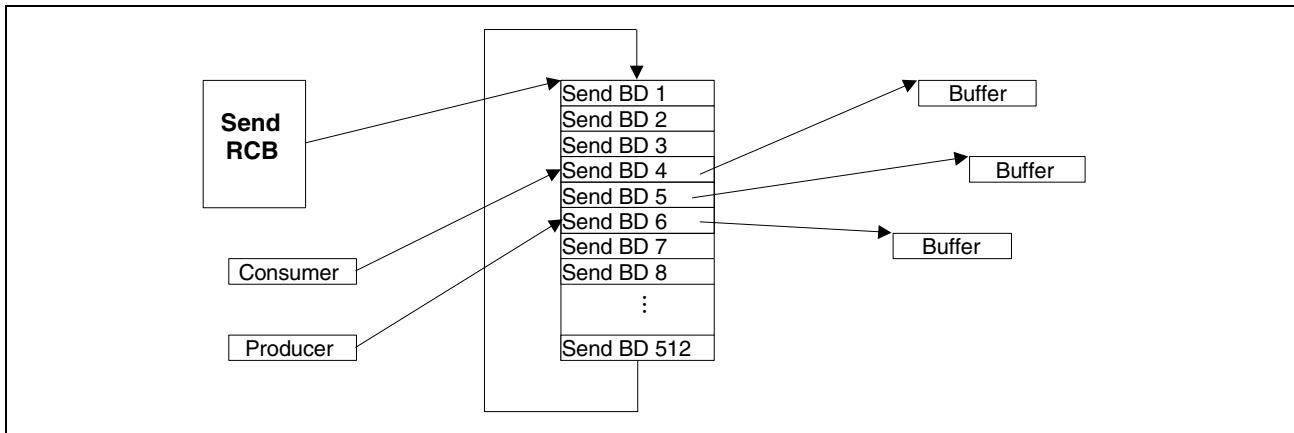
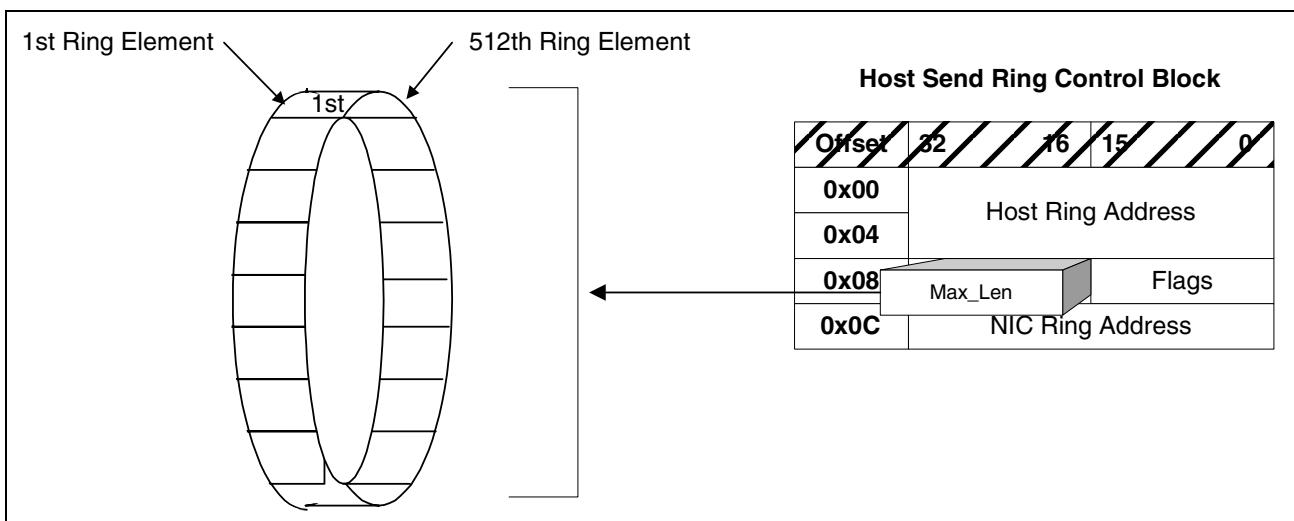


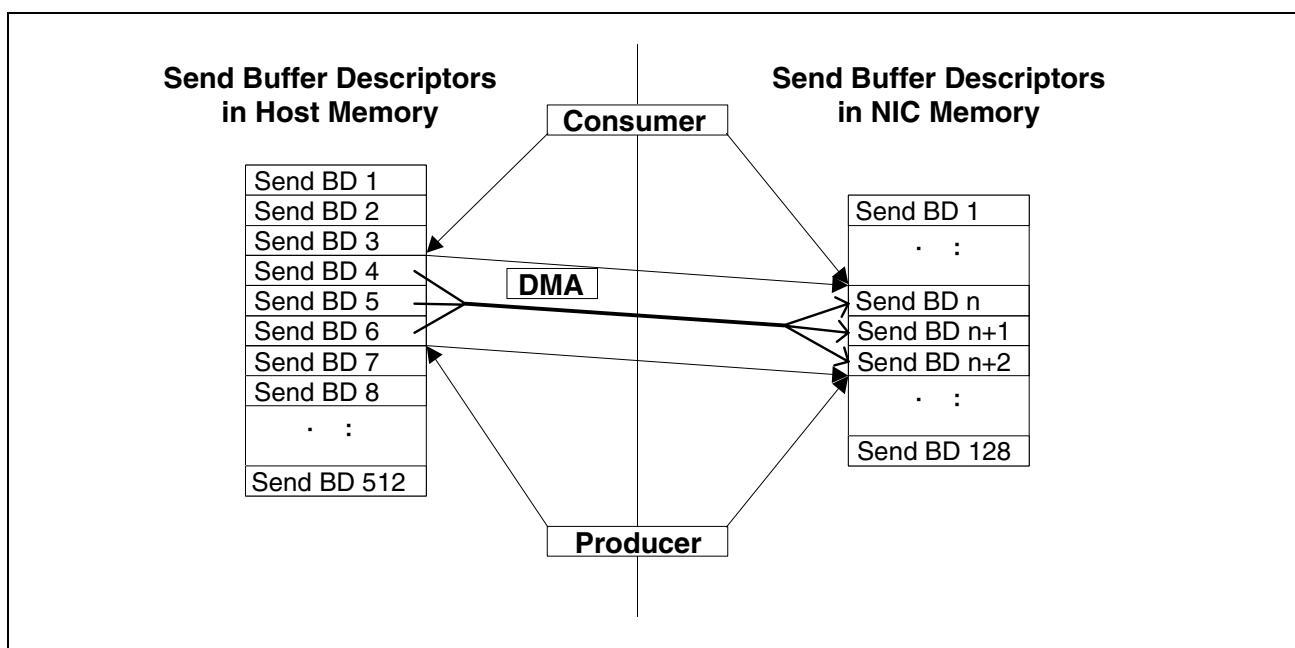
Figure 19: Relationships Between All Components of a Send Ring

RING CONTROL BLOCK

The Send Ring RCB contains a pointer to the first Send BD in the device and host memory, number of send BDs in the ring, and control flags (see ["Send Rings" on page 54](#) for a full discussion of the send RCB). All the fields are in big-endian ordering as required by the Ethernet controller. The RCBs of the send rings are located in the device Miscellaneous Memory Region at offset 0x0100.

The devices support a host based send ring. The Send BDs of the host based Send Ring will be bus-mastered from host memory into device local memory. The device driver will program the BDs directly in its memory space and avoid programmed I/O to the MAC. The Max_Len field in the RCB (see [Figure 20](#)) indicates the maximum number of BDs in the Send Ring. This field can be programmed to either 32, 64, 128, 256, or 512.




Figure 20: Max_Len Field in Ring Control Block

HOST-BASED SEND RING

The send buffer descriptors of host based send ring reside in host memory.

The host-based send ring will have up to 512 buffer descriptors, which are periodically and transparently DMAed to a staging area inside the NIC's internal memory where they are waiting to be consumed. The staging area can hold up to 128 entries per-ring, and Ethernet controller tries to keep the staging area full at all times by constantly monitoring the consumer and producer index (the algorithm for accomplishing this is beyond the scope of this manual). The staging areas are located at a starting offset 0x4000 of NIC memory. [Figure 21](#) illustrates the relationship between the send buffer descriptors in host memory and the staging area in NIC memory.

Whenever the host software initializes new buffer descriptors, its send ring producer index is incremented by the number of descriptors. The new index is then written to the corresponding send ring host producer index mailbox register (starting at offset 0x300 for host standard and flat modes and offset 0x5900 for indirect mode, which may trigger the Ethernet controller to DMA the descriptors to its staging area. Eventually, the buffer descriptors are processed, and the data associated with these descriptors is transferred onto the network.

Figure 21: Relationship Between Send Buffer Descriptors

The Ethernet controller maintains the send ring consumer index, which is incremented as it processes the descriptors. The Ethernet controller informs the host software of its progress by updating the send ring consumer index in the status block. The host software uses the send ring consumer index and its producer index to determine the empty slots in the ring. The Ethernet controller implements an algorithm that periodically DMAs the status block to host memory in an efficient manner.

CHECKSUM OFFLOAD

As network speed increases, offloading is becoming an important feature, and the ability to offload tasks from the host

processor aids in the efficiency of the host and in overall system performance. To achieve a significant performance boost, most operating systems now a days offer a mechanism for the TCP/IP protocol stack to offload checksum calculations to the device.

The host software can configure the Ethernet controller to calculate IP, TCP, and UDP checksum as described in RFC 791, RFC 793, and RFC 768 respectively. The first step in checksum calculation is determining the start of an IP and UDP datagram and TCP segment within a frame, which could vary depending on whether the frame is tagged (VLAN) or encapsulated with LLC/SNAP header. Then the checksum is computed from the start to the end of the datagram and inserted into the appropriate location in protocol header. Ethernet controller is designed to support checksum calculation on all frame types and also on IP datagram and TCP segments containing options.

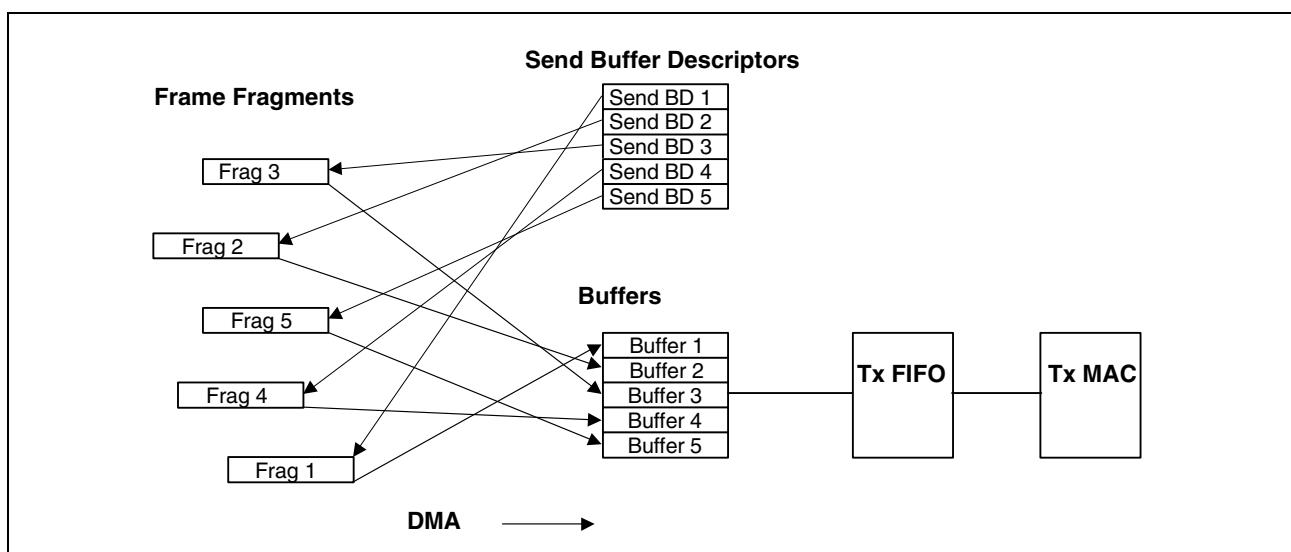
For the Ethernet controller to compute the checksum and insert it into the outgoing frame, the host software must set the appropriate control bits in the send buffer descriptors associated with the frame and seed the checksum field with zero or with the pseudo header checksum.

The host software enables IP checksum calculation by setting the IP_CHKSUM bits in all the send buffer descriptors associated with the frame. The Ethernet controller inserts the checksum into the checksum field of the IP header.

To enable TCP or UDP checksum calculation, the host software must set the TCP_UDP_CKSUM bit in all the send buffer descriptors associated with the frame containing the entire UDP datagram or TCP segment. The TCP and UDP checksum engines do not span IP fragmented frames.

The host software can configure the Ethernet controller to disable TCP or UDP pseudo-header checksum calculation by setting the Mode_Control.Send_No_Pseudo_Header_Checksum bit. When set, the host software must seed the checksum field in the TCP or UDP header with the pseudo-header checksum. If the Mode_Control.Send_No_Pseudo_Header_Checksum is cleared, the Ethernet controller computes the checksum including the pseudo header and inserts it into the checksum field.

SCATTER/GATHER


Most often, the host software requests the NIC to transmit a frame that spans several physical fragments that are arbitrary in size and buffer alignment. This requires the Ethernet controller to gather all these fragments during a DMA process into a continuous data stream for transmission.

The ability to scatter/gather a frame lessens the restriction on the host software and increases overall system performance.

Example: A TCP/IP protocol stack could preconstruct the MAC and IP headers in separate buffers that are combined with the payload to form a complete frame. Since the header data are fairly constant during a TCP or UDP session, the stack could use the same header buffers for the next frame.

The Ethernet controller uses a buffer descriptor for describing a physical fragment. There are two types of buffer descriptors; the Receive MAC processes receive buffer descriptors (Receive BD) and the Transmit MAC processes send buffer descriptors (Send BD).

[Figure 22](#) illustrates the relationship between a frame consisting of multiple fragments and their corresponding send buffer descriptors.

Figure 22: Scatter Gather of Frame Fragments

To transmit a frame, the host software sets up consecutive buffer descriptors in a send ring. Each buffer descriptor describes a physical fragment of a frame.

Example: [Figure 22](#) illustrates a frame consisting of five fragments that are scattered throughout host memory. Frag1, the first fragment, is at the start of the frame, and Frag5, the last fragment, is at the end of a frame. For each fragment, there is a corresponding buffer descriptor, SendBd1 through SendBd5. These buffer descriptors must be initialized in the send ring in a consecutive order, SendBd1 to SendBd5. The last send buffer descriptor of a frame must have the PACKET_END bit of Send BD Flags field set to indicate the end of a frame.

VLAN TAG INSERTION

The Ethernet controller is capable of inserting 802.1Q-compliant VLAN tags into transmitted frames and extracting the VLAN tags from received frames. A frame containing the 802.1Q VLAN tag has the value TPID (Tag Protocol Identifier) value in the Ethertype field followed by a 16-bit TCI (Tag Control Information) field, which is made up of one CFI bit, 3 802.1P priority bits, and a 12-bit VLAN ID. The original 16-bit Ethertype/Length field follows the TCI field.

[Table 26 on page 49](#) shows the frame format with 802.1Q VLAN tag inserted.

The Ethernet controller allows the host software to enable or disable tag insertion on a per-packet basis. To send a frame with a VLAN tag, the host software must initialize the first send buffer descriptor of a packet with the VLAN tag value and set the VLAN_TAG bit of Send BD Flags field (see ["Send Rings" on page 54](#)).

TX DATA FLOW DIAGRAM

[Figure 23 on page 60](#) illustrates how a frame, consisting of several fragments, is sent from the host to the NIC and onto the network. For simplicity, the diagram depicts the operation of a single ring.

1. The host software calls a system API to retrieve the three physical fragments of the frame. It initializes the next three send buffer descriptors to point to each fragment. The send buffer descriptors reside in host memory. Internally, the host software maintains the ring's producer index. In this case, the producer index is incremented by three because there are three fragments.
2. The host software updates the send ring producer index by writing the producer index value to Send Ring Producer Index Mailbox at offset 0x300 for host standard and flat modes and offset 0x5900 for indirect mode. The mailbox update triggers the Ethernet controller to process the send buffer descriptors.
3. The send buffer descriptors are DMAed to the ring's staging area in device memory as indicated in the RCB.
4. The Ethernet controller DMAs the frame (as described in the descriptors) to its internal memory for transmission.
5. Internally, the Ethernet controller maintains the send ring's consumer index, which is incremented as it processes the descriptors.
6. The new consumer index is written to the status block in NIC memory (see ["Status Block" on page 33](#)).
7. The status block is DMAed to host memory. This DMA is subject to host coalescing, and the NIC may generate an interrupt at this point.

Figure 23 and Figure 24 on page 61 show the basic driver flow to send a packet.

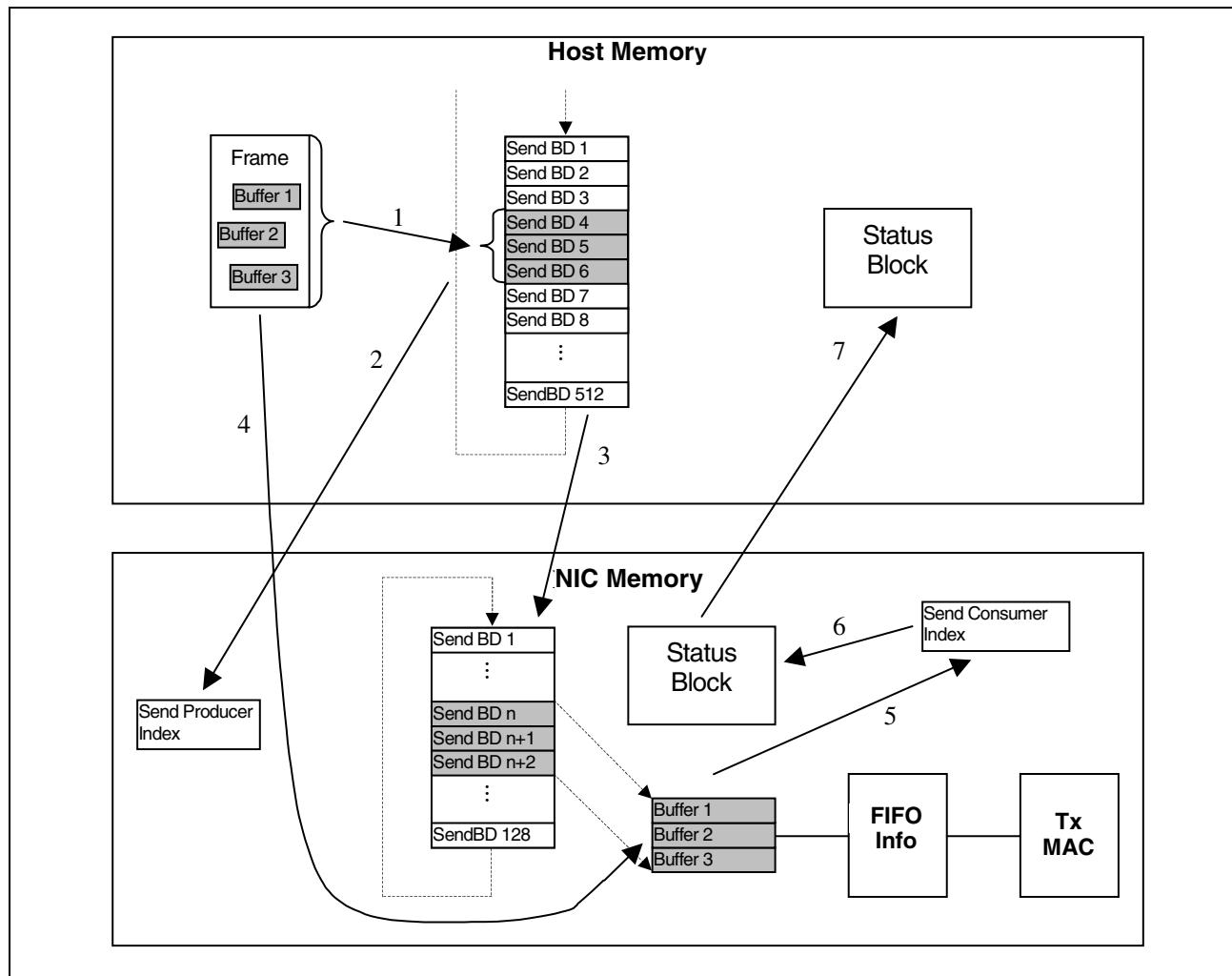


Figure 23: Transmit Data Flow

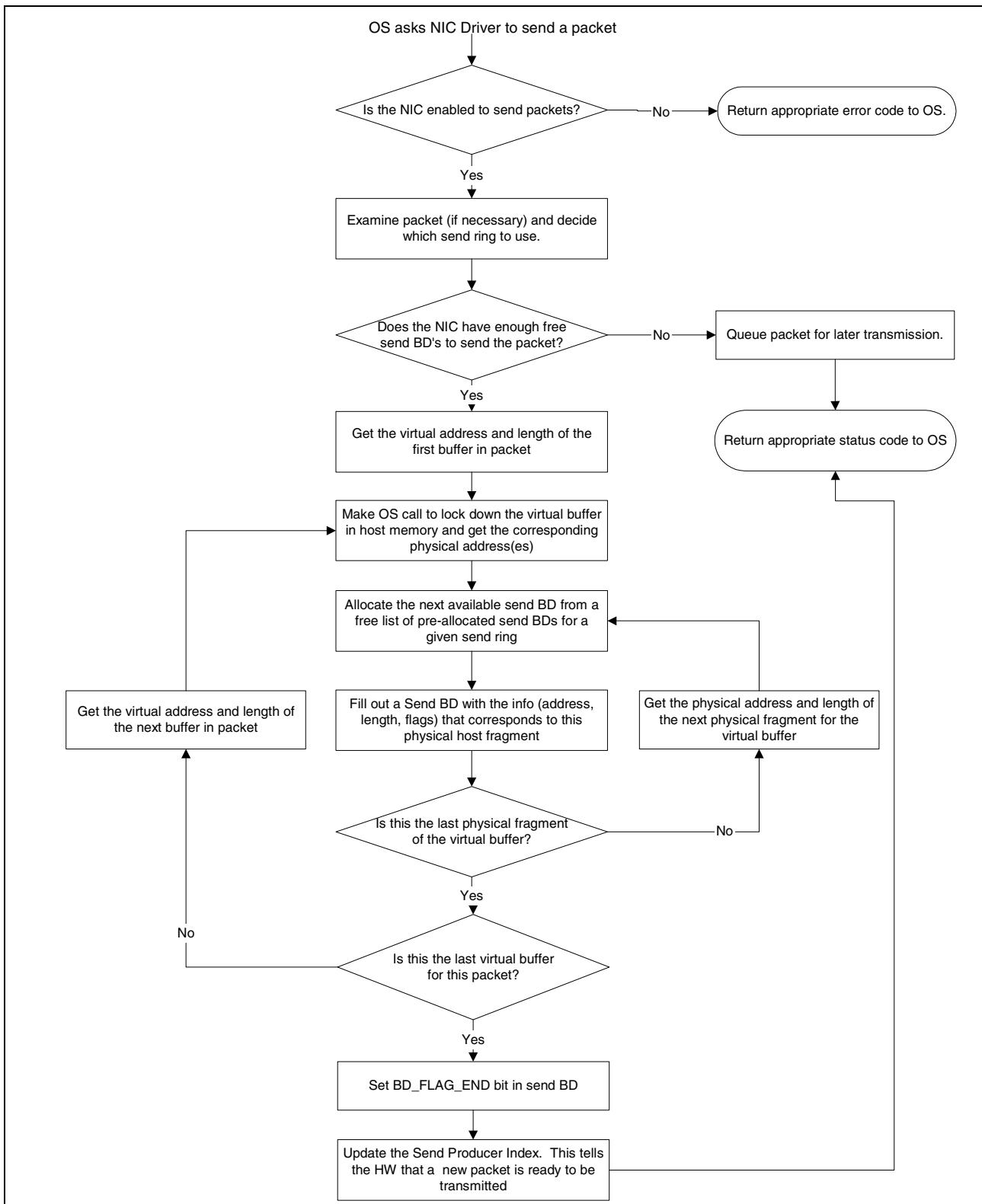


Figure 24: Basic Driver Flow to Send a Packet

RESET

A hardware reset initiated by the PCI reset signal will initialize all the PCI configuration registers and device MAC registers to their default values. The driver reset via the Core Clock Blocks Reset bit (see ["Miscellaneous Configuration Register \(Offset: 0x6804\)" on page 271](#)) will also initialize all non-sticky registers to their default values. The content of the device internal memory remains unchanged after warm reset (any reset with the power supplied to the device).

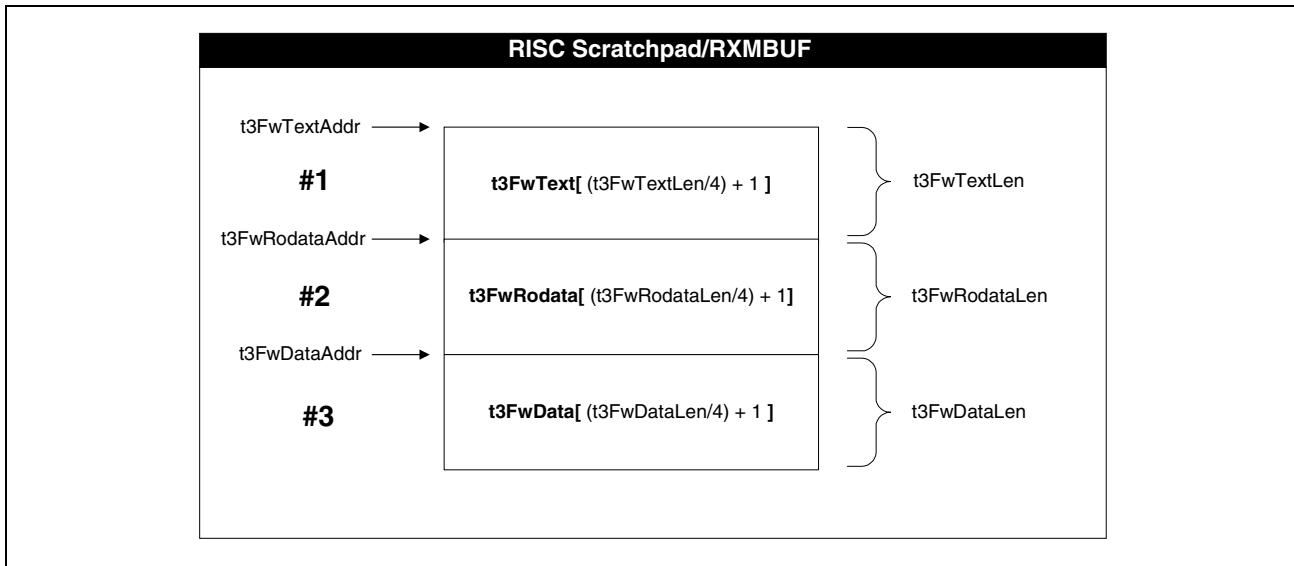
At the end of the reset, the on-chip RX RISC executes a small on chip ROM code. This code loads an executable image contained in an attached NVRAM and referred to as the bootcode. This bootcode allows at least the following fields to be initialized to different values to support product variations (for additional details, see [Section 4: "NVRAM Configuration" on page 21](#)).

- Vendor ID
- Device ID
- Subsystem Vendor ID
- Subsystem Device ID
- Possible PHY initialization

The bootcode may have additional functionality such as PXE that must be acquiesced while the host software is running.

Example: An NDIS driver issues a device reset via the Core Clock Blocks Reset bit. After the reset is completed, the RX RISC begins executing the bootcode as if the power was first applied to the device. However, the NDIS driver must have a mechanism to prevent the PXE driver from running and the bootcode must be able to distinguish between a power-on reset and a reset initiated by the host software. The host software and the bootcode could implement a reset handshake by using shared memory at offset 0x0b50 as a software mailbox (see ["Firmware Mailbox" on page 122](#)).

FIRMWARE DOWNLOAD


FIRMWARE BINARY IMAGE

The RISC cores in the Ethernet controller chips execute the MIPS-2 instruction set. Broadcom uses a GNU tool kit to create the firmware binary code. The output from the GNU build is a C language header file, which contains the machine code for the embedded RISC cores. This manual does not cover the technology necessary to program the RISC cores. However, programmers may need to download value-added firmware provided by Broadcom. One example of value-added firmware is TCP segmentation firmware that can be loaded from the host driver. This section provides the necessary understanding of the header file, created by the Broadcom GNU tools. The programmer must understand the layout of the header file, to accomplish a firmware download.

The following sections are located in the header file provided by Broadcom:

- t3FwText[]—Array of 32-bit words. This section contains the machine code (opcodes/operands) executed by the RISC cores. This is the text section in the binary file, output by the GNU build process.
- t3FwRodata[]—Array of 32-bit words. This section contains the read-only data available to the code section of the firmware.
- t3FwData[]—Array of 32-bit words. This section contains the local variables available to the code section of the firmware.

The programmer needs to move these sections to the scratch pad that is reserved out of RXMBUF memory. This is the binary image that the RISC core executes. [Figure 25](#) shows a conceptual layout of the scratch pad/RXMBUF and how the header file sections are moved to the scratch pads/RXMBUF. Three sections are moved.

Figure 25: Firmware Image Moved to Scratch Pad/RXMBUF

The programmer should be careful when moving the header file data to the scratch pad/RXMBUF. The variables t3FwDataAddr, t3FwRodataAddr, and t2FwTextAddr are all RISC Core relative addresses; the host must translate each address to a Ethernet controller's register space region. In summary, the address offsets in the header file are relative to the local memory address ranges specified in [Table 27](#) for the RX and TX RISC, respectively. The following formula may be used to convert address data:

```
RX Register Address = 0x30000 + (fwHeaderFileAddress & 0xFFFF)
RXMBUF Address = 0x10000 + (fwHeaderFileAddress & 0xFFFF)
```

Table 27: Addressing Perspectives

Memory Type	Host Perspective	RX RISC Perspective
RX RISC scratchpad	0x30000–0x33FFF	0x08000000–0x08003FFF
RXMBUF	0x10000–0x1DFFF	0x10000–0x1DFFF
Internal Memory	0x0000000–0x01FFFF	0x00000000–0x0001FFFF

RESET RISC PROCESSOR

The RX processor can be reset by setting the Reset RX RISC Bit of the RX RISC Mode register (see “[RX RISC Mode Register \(Offset: 0x5000\)](#)” on page 261). This bit is self-clearing bit; it will be cleared once internal reset of processor is completed.

Example: To reset RX RISC, do the following:

```
WR 5004, 0xffffffff /* Clear all CPU state */  
WR 0x5000, 0x1  
Wait until Bit 0 of register at 0x5000 is cleared.
```

HALT RISC PROCEDURE

1. Clear the RX RISC state register. Write 0xFFFFFFFF to the RX_RISC_State register (see “[RX RISC Status Register \(Offset: 0x5004\)](#)” on page 262).
2. Issue RX RISC halt. Write the RISC_MODE_HALT bit to the RX_RISC_Mode register (see “[RX RISC Mode Register \(Offset: 0x5000\)](#)” on page 261).
3. Read/verify that the RISC_MODE_HALT bit is set. Read the Rx RISC_MODE_HALT bit back from the RX_RISC_Mode register. Break from procedure if bit is set.
4. Delay 10 µs and jump to [Step 1](#). Repeat the procedure up to 10,000 times.

START RISC PROCEDURE

This procedure first stops the RX RISC and modifies the program counter. The RISC processor is then started to begin executing firmware at new address given by program counter.

1. Clear the RX RISC state register. Write 0xFFFFFFFF to the RX_RISC_State register (see “[RX RISC Status Register \(Offset: 0x5004\)](#)” on page 262).
2. Set the RX RISC program counter. Write t3FwTextAddr to the RX_RISC_PC register (see “[RX RISC Program Counter \(Offset: 0x501C\)](#)” on page 263).

Note: The t3FwTextAddr should not be converted to a register relative address. The RISCs execute from a local memory space. The conversion is only necessary for writing t3FwText [] to the scratch pad using register space—the host view of the scratch pad region is different from the RISC view. See [Table 27](#) on page 63.

3. Read back the PC register. Read the RX_RISC_PC register and verify that t3FwTextAddr is set. If properly set, then jump to [Step 7](#).
4. Clear the RX RISC state register. Write 0xFFFFFFFF to the RX_RISC_State register.
5. Halt the RX RISC. Write the RISC_MODE_HALT bit to the RX_RISC_Mode register.
6. Delay one millisecond. Jump to [Step 2](#). Repeat procedure.
7. Clear the RX RISC state register. Write 0xFFFFFFFF to the RX_RISC_State register.
8. Clear the RX RISC mode register. Write 0x00 to the RX_RISC_Mode register (see “[RX RISC Program Counter \(Offset: 0x501C\)](#)” on page 263).

FIRMWARE DOWNLOAD PROCEDURE

The host driver should use register indirect access to modify both the scratch pad and RISC register space. See “[Pseudocode](#)” on page 95 in [Section 8: “PCI”](#).

1. Halt the RX RSIC Core (see “[Halt RISC Procedure](#)” on page 64).
2. Clear the RX RISC Scratch pad. Use register indirect access and write zero(s) starting at register address 0x30000 (see [Table 27 on page 63](#)). The last address to clear is 0x33FFF. The total length of the scratch pad is 0x4000 and the host driver should increment the target address by four (4), since each MIPS word is 32 bits (4 bytes).
3. Convert variable t3FwRodataAddr to a register relative address for the RX RISC. The register address is calculated as follows:

```
regNormalized = 0x10000 + (t3FwTextAddr & 0xFFFF)
```

For systems using RXMBUF memory for firmware, ensure that the downloaded firmware does not overlap the MBUF Pool Address (see “[MBUF Pool Base Address Register \(Offset: 0x4408\)](#)” on page 252).

4. Write the array t3FwText [] to the RX scratched/RXMBUF (see [Table 27 on page 63](#)). Use register indirect access and increment by four bytes for every 32-bit write. The last/limit address to write is calculated as follows:

```
regNormalized + t3FwTextLen
```

5. Convert variable t3FwRodataAddr to a register relative address for the RX RISC. The register address is calculated as follows:

```
regNormalized = 0x10000 + (t3FwRoDataAddr & 0xFFFF)
```

6. Write the array t3FwRodata [] to the RX scratch pad/RXMBUF (see [Table 27 on page 63](#)). Use register indirect access and increment by four bytes for every 32-bit write. The last/limit address to write is calculated as follows:

```
regNormalized (from Step 5.) + t3FwRodataLen
```

7. Convert variable t3FwDataAddr to a register relative address for the RX RISC. The register address is calculated as follows:

```
regNormalized = 0x10000 + (t3FwDataAddr & 0xFFFF)
```

8. Write the array t3FwData [] to the RX scratch pad/RXMBUF (see [Table 27 on page 63](#)). Use register indirect access and increment by four bytes for every 32-bit write. The last/limit address to write is calculated as follows:

```
regNormalized (from Step 7.) + t3FwDataLen
```

9. Start the RX RISC (see “[Start RISC Procedure](#)” on page 64).

Note: When enabled, the ASF/IPMI FW is required to run even in the absence of OS. The IPMI/ASF FW is normally programmed into NVRAM and the bootcode will load this FW into scratch pad/RxMbuf memory if the IPMI/ASF feature is enabled. The bootcode reserves enough memory out of RxMbuf as RISC scratch pad for IPMI/ASF firmware.

When freeing received RxMbufs (e.g., received ASF RMCP packets) from the MIPS CPU (running ASF firmware or any other optional FW) while simultaneously receiving/freeing TCP traffic for the host device driver, a race condition can occur which causes subsequent receives to fail (no more RxMbufs get enqueued). To avoid this race condition, before freeing the RxMbuf chain (by writing to the MbufClustFreeFtqFifoEnqueueDequeue register, 0x5cc8), the FW should poll the buffer manager hardware diagnostic 3 register (0x4454) until the descriptor in bits 25:16 matches the MBUF cluster at the beginning of the chain about to free. The hardware diagnostic register uses a cluster based on the offset from the top of the RxMbuf pool (e.g., 0x16000) and the firmware uses a cluster based on the offset from 0x10000, so some calculations must be performed to compare the proper pointer values.

Example Code Snippet (from ASF Firmware)

```
/* Poll buffer manager hardware diag register 3 (0x4454) for our mbuf pointer value */
while(trp->BufMgr.MbufPoolAddr + (((trp->BufMgr.Hwdiag[2]>>16) & 0x1ff) << 7) != (u32)pmbuf);
```

MAC ADDRESS SETUP/CONFIGURATION

The MAC address registers, starting at offset 0x0410, contain the MAC addresses of the NIC. These registers are usually initialized with a default MAC address extracted from the NIC's NVRAM when it is first powered up. The host software may overwrite the default MAC address by writing to the MAC registers with a new MAC address. [Table 28](#) illustrates the MAC register format.

The BCM5761 Ethernet controller allows a NIC to have up to four MAC addresses (offset: 0x410–0x42F) that are used for hardware packet reception filtering. However, most host software will initialize the registers of the four MAC addresses to the same MAC address since a NIC usually has only one MAC address.

When flow control is enabled on the Ethernet controller, the MAC Address 0 is used as the source address for sending PAUSE frames (see [“Pause Control Frame” on page 387](#)).

Table 28: Mac Address Registers

Register Name	Offset	31	24	23	16	15	8	7	0
Mac_Address_0	0x0410	Unused			Octet 0		Octet 1		
	0x0414	Octet 2	Octet 3		Octet 4		Octet 5		
Mac_Address_1	0x0418	Unused			Octet 0		Octet 1		
	0x041c	Octet 2	Octet 3		Octet 4		Octet 5		
Mac_Address_2	0x0420	Unused			Octet 0		Octet 1		
	0x0424	Octet 2	Octet 3		Octet 4		Octet 5		
Mac_Address_3	0x0428	Unused			Octet 0		Octet 1		
	0x042c	Octet 2	Octet 3		Octet 4		Octet 5		

PACKET FILTERING

MULTICAST HASH TABLE SETUP/CONFIGURATION

The MAC hash registers are used to help discard unwanted multicast packets as they are received from the external media. The destination address is fed into the normal CRC algorithm in order to generate a hash function. The most significant bits of the CRC are then used without any inversion in reverse order to index into a hash table, which is comprised of these MAC hash registers. If the CRC is calculated by shifting right, then the right-most bits of the CRC can be directly used with no additional inversion or bit swapping required. See ["Ethernet CRC Calculation"](#) for more details on the CRC algorithm.

All four MAC hash registers are used so that register 1 bit-32 is the most significant hash table entry and register 4 bit-0 is the least significant hash table entry. This follows the normal big-endian ordering used throughout the Ethernet controller. Since there are 128 hash table entries, 7 bits are used from the CRC. When hash table is extended to 256 entries, 8 bits from the CRC will be used as hash index.

The MAC hash registers are ignored if the receive MAC is in promiscuous mode.

ETHERNET CRC CALCULATION

The Ethernet controller uses the standard 32-bit CRC required by the Ethernet specification as its FCS in all packets. The checksum is the 32-bit remainder of the polynomial division of the data taken as a bit stream of polynomial coefficients and a predefined constant, which also represents binary polynomial coefficients. The checksum is optionally appended most-significant bit first to a packet, which is to be sent down the wire. At the receiving side, the division is repeated on the entire packet including the CRC checksum. The remainder is compared to a known constant. For details on the mathematical basis for CRC checksums, see Tanenbaum's Computer Networks, Third Edition, c1996.

The 32-bit CRC polynomial divisor is shown below:

$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

GENERATING CRC

The following steps describe a method to calculate the CRC with the resulting 32-bit quantity having reversed bit order (i.e., most significant bit x^{31} of the remainder is right-most bit). The data should be treated as a stream of bytes. Set remainder to 0xFFFFFFFF. For each bit of data starting with least-significant bit of each byte:

1. If right-most bit (bit-0) of the current remainder XORed with the data bit equal 1, then remainder = (remainder shifted right one bit) XOR 0xEDB88320, else remainder = (remainder shifted right one bit).
2. Invert remainder such that remainder = \sim remainder.
Remainder is CRC checksum.
Right-most byte is the most significant and is to be sent first.
Swap bytes of CRC if big-endian byte ordering is desired.

CHECKING CRC

The following steps describe a method to check a stream of bytes, which has a CRC appended.

1. Set remainder to 0xFFFFFFFF.
2. For each bit of data starting with least-significant bit of each byte:
If right-most bit (bit-0) of the current remainder XORed with the data bit equal 1,
then remainder = (remainder shifted right one bit) XOR 0xEDB88320,
else remainder = (remainder shifted right one bit).
3. Remainder should equal magic value 0xDEBB20E3 if CRC is correct.

INITIALIZING THE MAC HASH REGISTERS

The 128-bit multicast hash table is treated as a single object occupying four Ethernet controller registers starting at offset 0x0470 (see [Table 29](#)). The 128-bit value follows the big-endian ordering required by Ethernet controller. Thus, the most significant 32-bit of the 128-bit value resides in Mac_Hash_Register_0 at offset 0x0470 and the least significant 32-bit resides in Mac_Hash_Register_3 at offset 0x047c.

Host software can enable the reception of all multicast frames including broadcast frames by setting all four multicast hash registers to 0xFFFFFFFF.

Table 29: Multicast Hash Table Registers

Register Name	Offset	Description
Mac_Hash_Register_0	0x0470	Most significant 32-bit of the 128-bit hash table
Mac_Hash_Register_1	0x0474	Bits 64:93 of the 128-bit hash table
Mac_Hash_Register_2	0x0478	Bits 32:63 of the 128-bit hash table
Mac_Hash_Register_3	0x047c	Least significant 32-bit of the 128-bit hash table

The following C code fragment illustrates how to initialize the multicast hash table registers. The code fragment computes the indices into hash table from a given list of multicast addresses and initializes the multicast hash registers.

```

Unsigned long HashReg[4];
Unsigned long j, McEntryCnt;
Unsigned char McTable[32][6];// List of multicast addresses to accept.

// Initialize the McTable here.
McEntryCnt = 32;

// Initialize the multicast table registers.
HashReg[0] = 0;           // Mac_Hash_Regsiter_0 at offset 0x0470.
HashReg[1] = 0;           // Mac_Hash_Register_1 at offset 0x0474.
HashReg[2] = 0;           // Mac_Hash_Register_2 at offset 0x0478.
HashReg[3] = 0;           // Mac_Hash_Register_3 at offset 0x047c.

for(j = 0; j < McEntryCnt; j++)
{
    unsigned long RegIndex;
    unsigned long Bitpos;
    unsigned long Crc32;

    Crc32 = ComputeCrc32(McTable[j], 6);

```

```
// The most significant 7 bits of the CRC32 (no inversion),  
// are used to index into one of the possible 128 bit positions.  
Bitpos = ~Crc32 & 0x7f;  
  
// Hash register index.  
RegIndex = (Bitpos & 0x60) >> 5;  
  
// Bit to turn on within a hash register.  
Bitpos &= 0x1f;  
  
// Enable the multicast bit.  
HashReg[RegIndex] |= (1 << Bitpos);  
}
```

The following C routine computes the Ethernet CRC32 value from a given byte stream. The routine is called from the above code fragment.

```
// Routine for generating CRC32.  
unsigned long  
ComputeCrc32(  
    unsigned char *pBuffer, // Buffer containing the byte stream.  
    unsigned long BufferSize) // Size of the buffer.  
{  
    unsigned long Reg;  
    unsigned long Tmp;  
    unsigned long j, k;  
  
    Reg = 0xffffffff;  
  
    for(j = 0; j < BufferSize; j++)  
    {  
        Reg ^= pBuffer[j];  
  
        for(k = 0; k < 8; k++)  
        {  
            Tmp = Reg & 0x01;  
            Reg >>= 1;  
            if(Tmp)  
            {  
                Reg ^= 0xedb88320;  
            }  
        }  
    }  
  
    return ~Reg;  
}
```

PROMISCUOUS MODE SETUP/CONFIGURATION

The host software may enable promiscuous mode by setting the Promiscous_Mode bit (bit 8) of the Receive_MAC_Mode register (offset: 0x468). The Promiscous_Mode bit defaults to disabled after reset, and host software must explicitly set this bit for promiscuous mode. In promiscuous mode of operation, the Ethernet controller accepts all incoming frames that are not filtered by the active receive rules regardless of the destination MAC address. In other words, the Ethernet controller operating in promiscuous mode ignores multicast and MAC address filtering (["Multicast Hash Table Setup/Configuration" on page 67](#) and ["MAC Address Setup/Configuration" on page 66](#)), but applies Receive Rules.

BROADCAST SETUP/CONFIGURATION

The host software may configure the Ethernet controller to discard the received broadcast frames by using two receive rules as defined below. The Ethernet controller parses all incoming frames according to these receive rules and discards those frames that have a broadcast destination address (see ["Receive Rules Setup and Frame Classification" on page 46](#) for more details on setting up the receive rules).

The following is a sample of the two receive rules for discarding broadcast frames.

Rule1 Control: 0xc2000000	Rule1 Mask/Value: 0xffffffff
Rule2 Control: 0x86000004	Rule2 Mask/Value: 0xffffffff

Section 8: PCI

CONFIGURATION SPACE

DESCRIPTION

PCI, PCI-X, and PCIe devices must implement sixteen 32-bit PCI registers. These registers are required for a device to have PCI compliance. The format and layout of these registers is defined in the PCI 2.2 specification. Capability registers provide system BIOS and Operating Systems visibility into a set of optional features, which devices may implement. Although the capability registers are not required, the structure and mechanism for chaining auxiliary capabilities is defined in the PCI specification. Both software and BIOS must implement algorithms to fetch and program capabilities fields accordingly. Refer to section 6.7 of the PCI SIIG 2.2 specification. Additional PCI configuration space may be used for device-specific registers. However, device-specific registers are not exposed to system software, according to a specification/standard. System software cannot probe device specific registers without a predetermined understanding of the device and its functionality. In summary, three types of PCI configuration space registers may be exposed by any particular device:

- Required
- Optional capabilities
- Device specific

Network devices implement large quantities of registers, and these registers could consume huge amounts of PCI configuration space. PCI configuration access is not very efficient, on a performance basis.

Example: Intel x86 architectures use two I/O mapped I/O addresses 0xCF8 and 0xCFC for host-based access to PCI configuration space. Should a host device driver access these I/O addresses on every device read/write, CPU overhead would grow greatly. Generally, host device drivers should not use PCI configuration space for standard I/O and control programming. There is one special case—Universal Network Device Interface (UNDI) drivers. UNDI drivers may not have access to host memory mapped registers when operating in real-mode; thus, an indirect mode of access is necessary. The Ethernet controller implements a PCI indirect mode for memory, registers, and mailboxes access. A specific example of a device driver, which uses indirect mode, is the Preboot Execution (PXE) driver. PXE drivers may be stored in either option ROMs or directly in the system BIOS.

Most host device drivers use register blocks, which are mapped into host memory. Memory Mapped I/O is an efficient mechanism for PCI devices to use system resources. The type and extent of this memory mapping depends upon the MAC's configuration (see the operational characteristics subsection). A typical PCI device will decode a range of physical (bus) addresses, which do not conflict with physical memory or other PCI devices. Each device on the PCI bus will request a range of physical memory, and the PnP BIOS will assign mutually exclusive resources to that device. The size and range of resource is based upon each device's hardwired programming of the BAR. The Ethernet controller implements two modes of memory mapped I/O—Standard and Flat. I/O mapped I/O is not supported by the Ethernet controller, and there are no I/O space registers.

Note: The PCI BAR 0 register is only reset to 0 after a hard reset, otherwise it maintains its value over GRC and PCI resets.

Two programmable blocks expose Ethernet controller functionality to host software. The first is a register block. The second is a memory block. The register and memory blocks map into address spaces based on processor context.

Example: The Ethernet controller has an on-chip RISC processor. This RISC processor will have an internal view of the register and memory blocks. This view is one large contiguous and addressable range, where the register block maps starting at offset 0xC0000000. Conversely, host processors have two entirely different views. When the Ethernet controller is configured in standard mode, the register block is mapped into a 64K host memory range. The host processor must use a memory window or indirect mode to access the memory block. A Flat mode configuration maps both the memory and register blocks into 32 MB of address space. Flat mode ties up a much larger range of host memory addresses. It is fundamental to understand that the register and memory blocks are not necessarily tied together. The PCI mode and processor context all affect how software views both blocks (see [Figure 26](#)).

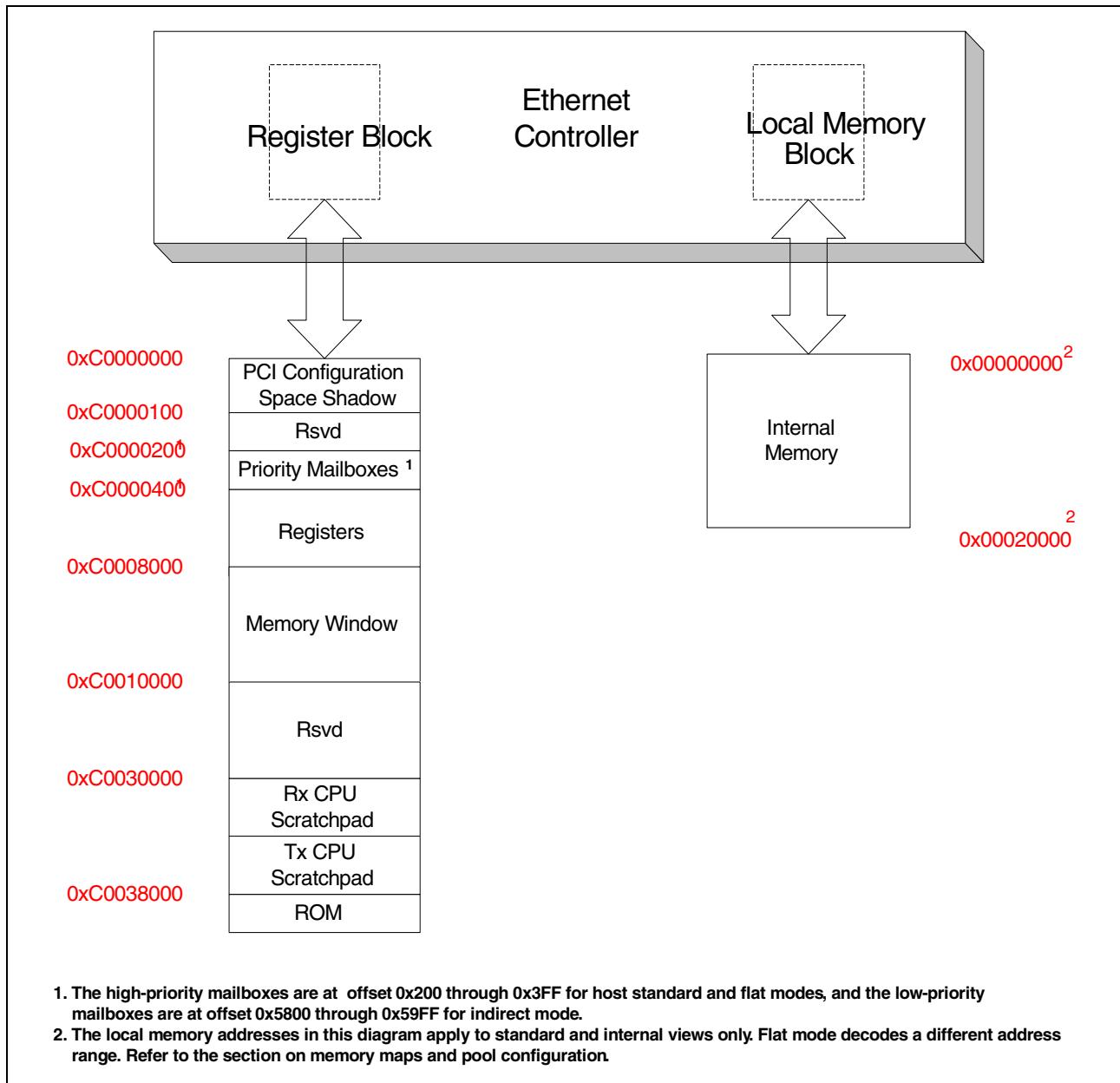


Figure 26: Local Contexts

The following components are involved in Ethernet controller configuration space mapping:

- Base Address registers
- Standard mode map mode
- Flat memory map mode
- Indirect access mode
- Configuration space header
- Host memory
- MAC registers
- MAC local memory

FUNCTIONAL OVERVIEW

PCI Configuration Space Registers

The Ethernet controller configuration space can be broken into two regions: Header and Device Specific. [Figure 27](#) shows the registers implemented to support PCI/PCI-X/PCIe functionality in the Ethernet controller. Reserved fields in PCI configuration registers will always return zero.

PCI Required Header Region

The bit-7 of the Header Type register (offset: 0x0E) in the PCI Required Header Region is used to identify whether the device is a single function device or multifunction device.

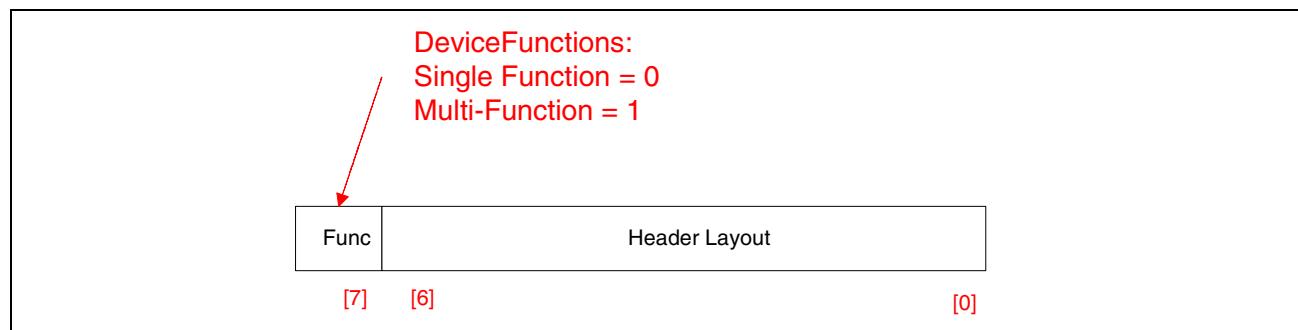
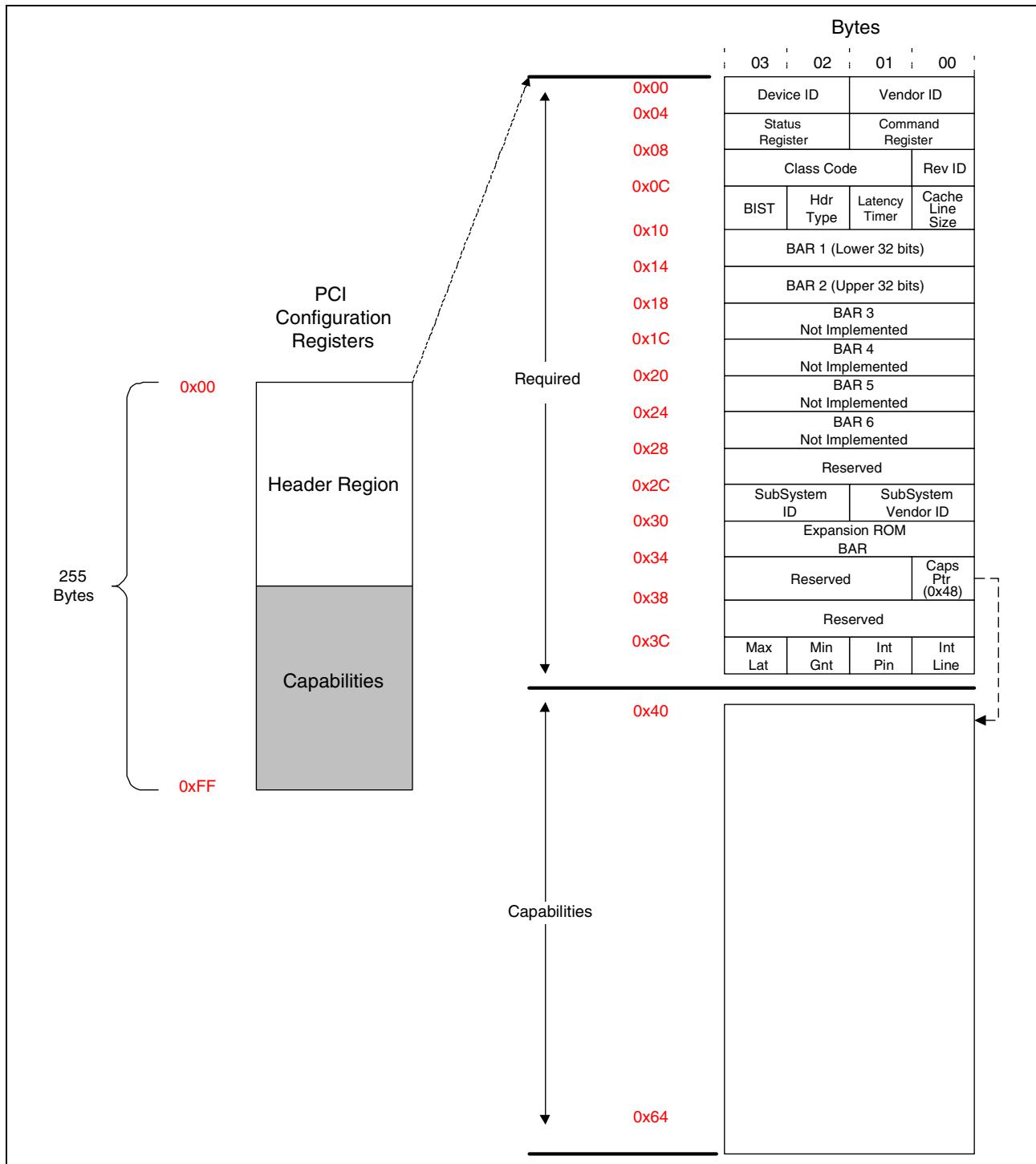


Figure 27: Header Type Register 0xE


Note: BIOS programmers should take special care to read bit_7 in PCI Header Type register (offset: 0x0E) before scanning the Ethernet controller PCI configuration space.

Single function PCI devices may decode access to non-implemented device functions in two ways, per Section 3.2.2.3.4 of the PCI 2.2 specification:

- A single function device may optionally respond to all function numbers as the same.
- May decode the function number field and respond only to function 0.

The Ethernet controller single function chips follow the stated technique #1—BIOS code scanning multifunctions get a target response from function(s) 1–7, but these functions are essentially shadows of function 0. Software that programs to function(s) 1–7 is re-mapped to function 0.

The header region (see [Figure 28](#)) is required by the PCI 2.2 specification. These registers must be implemented. The capabilities registers are optional; however, they must adhere to section 6.7 of the PCI SIIG 2.2 specification. Each capability has a unique ID, which is well-defined. The capabilities are chained using the Next Caps field, in the capability register. The last capability will have a Next Caps field, which is zeroed.

Figure 28: Header Region Registers

See the PCI configuration registers in [Section 12: “Ethernet Controller Register Definitions”](#) on page 143.

PCI Device-Specific Region

Device-specific registers are not defined in the PCI 2.2 specification and are exactly as the name implies—specific to the Ethernet controller. These registers may be used by host software to configure or change the operational state of the MAC. The most notable feature exposed via the Device-Specific registers is Indirect Mode. Host or system software may use Indirect Mode to access Ethernet controller local memory and register space; no memory mapped I/O is necessary in indirect mode. The device-specific registers are implemented as Broadcom Vendor-Specific Capabilities registers.

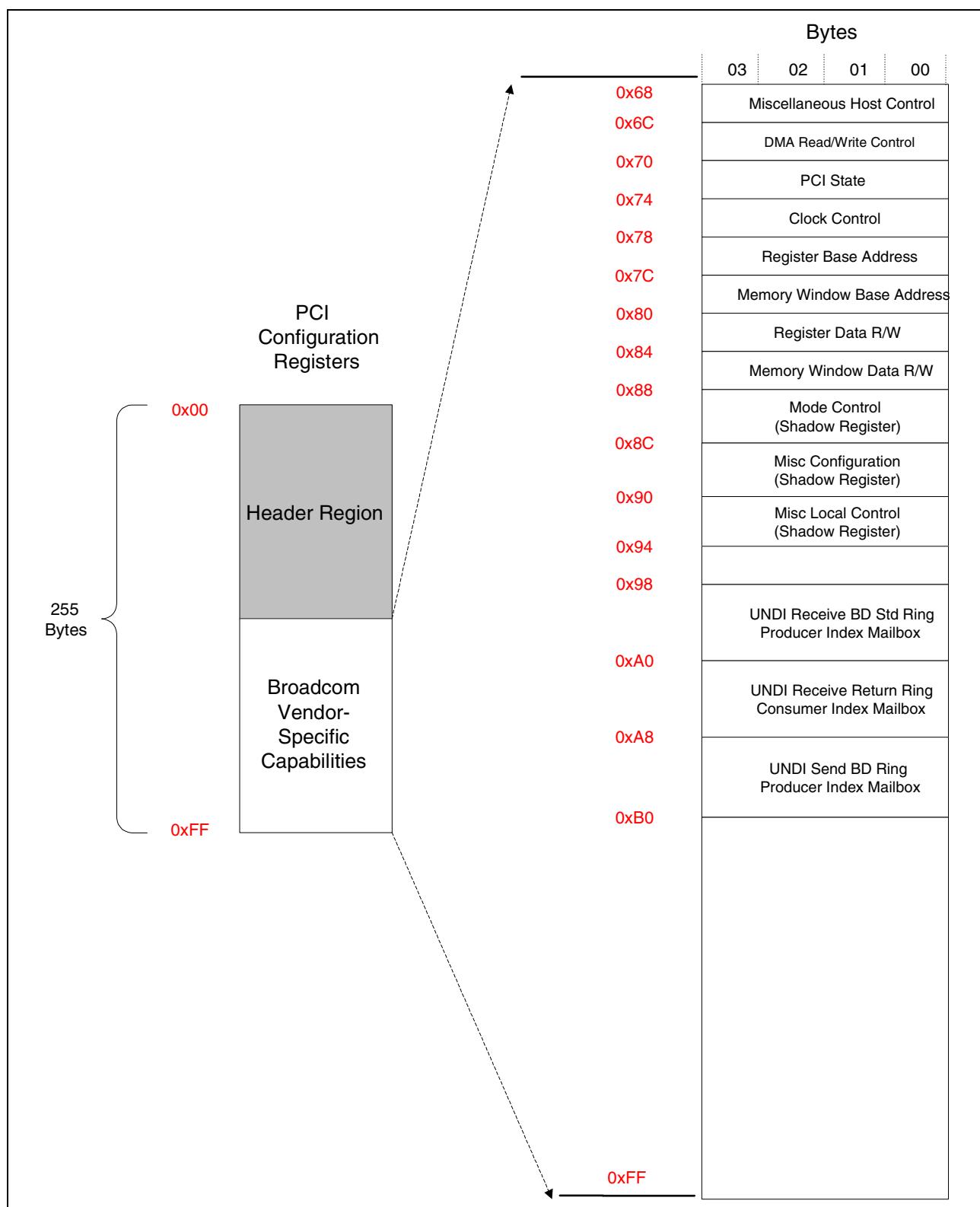


Figure 29: Device-Specific Registers

The Device-Specific registers are shown in [Table 30](#)

Table 30: Device-Specific Registers

Register	Cross Reference
Miscellaneous Host Control	"Miscellaneous Host Control Register (Offset: 0x68)" on page 154.
PCI State	"PCI State Register (Offset: 0x70)" on page 155.
Register Base Address	"Register Base Register (Offset: 0x78)" on page 157.
Memory Base Address	"Memory Base Register (Offset: 0x7C)" on page 158.
Register Data	"Register Data Register (Offset: 0x80)" on page 158.
Memory Window Data	"Memory Data Register (Offset: 0x84)" on page 158.
UNDI Receive BD Standard Producer Ring Producer Index Mailbox	"UNDI Receive BD Standard Producer Ring Producer Index Mailbox Register (Offset: 0x98)" on page 160.
UNDI Receive Return Ring Consumer Index Mailbox	"UNDI Receive Return Ring Consumer Index Register (Offset: 0xA0)" on page 160.
UNDI Send BD Producer Index Mailbox	"UNDI Send BD Producer Index Mailbox Register (Offset: 0xA8)" on page 160.

Indirect Mode

Host software may use indirect mode to access the Ethernet controller resources, without using Memory Mapped I/O. Indirect mode shadows MAC resources to PCI configuration space registers. These shadow registers can be read/written by system software through PCI configuration space registers. The Ethernet controller indirect mode registers expose the following MAC resources:

- Registers
- Local Memory
- Mailboxes

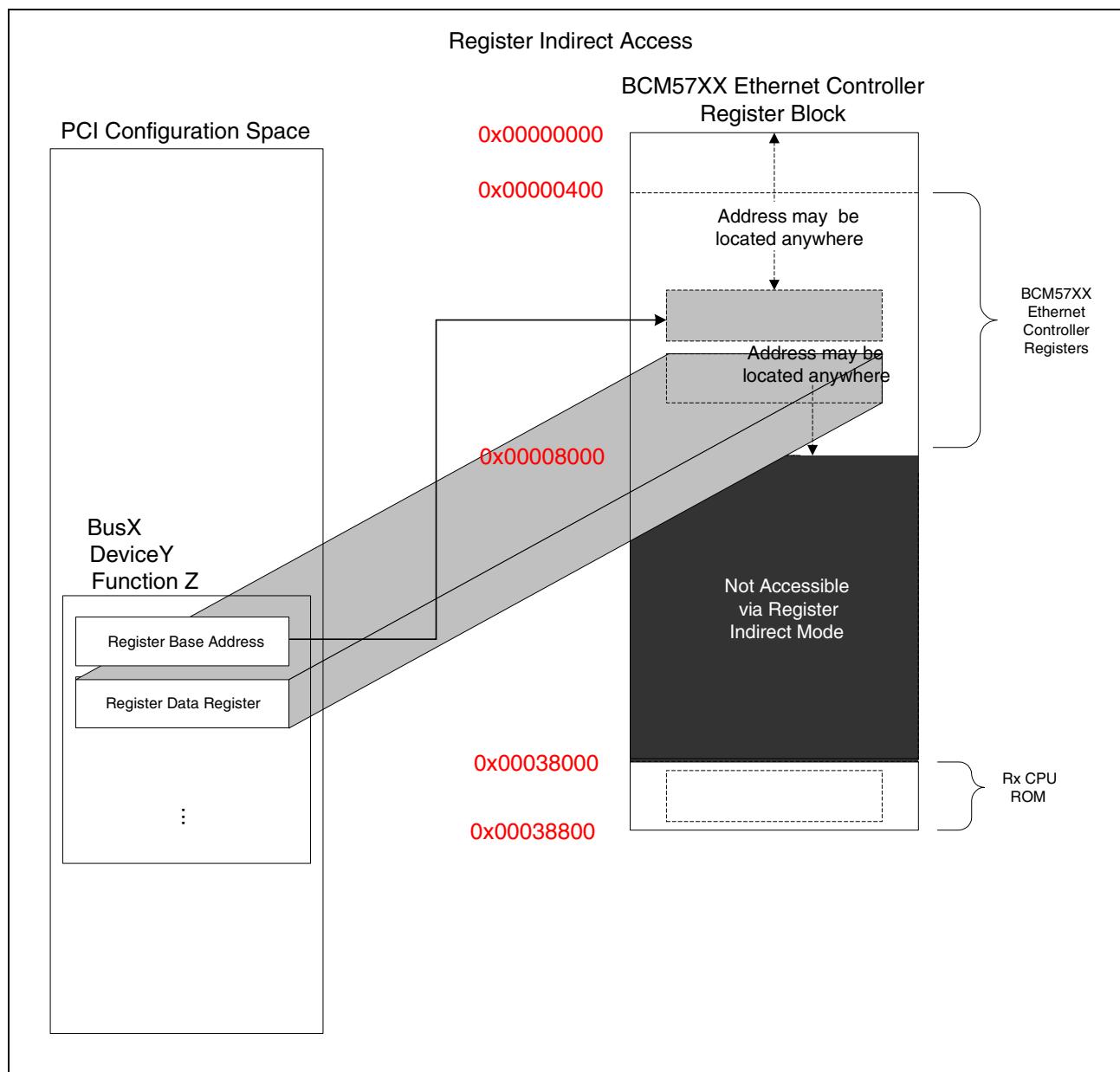
Indirect mode access can be used in conjunction with Standard or Flat Mode PCI access. Indirect mode has no interdependency on other PCI access modes and is a mode in itself.

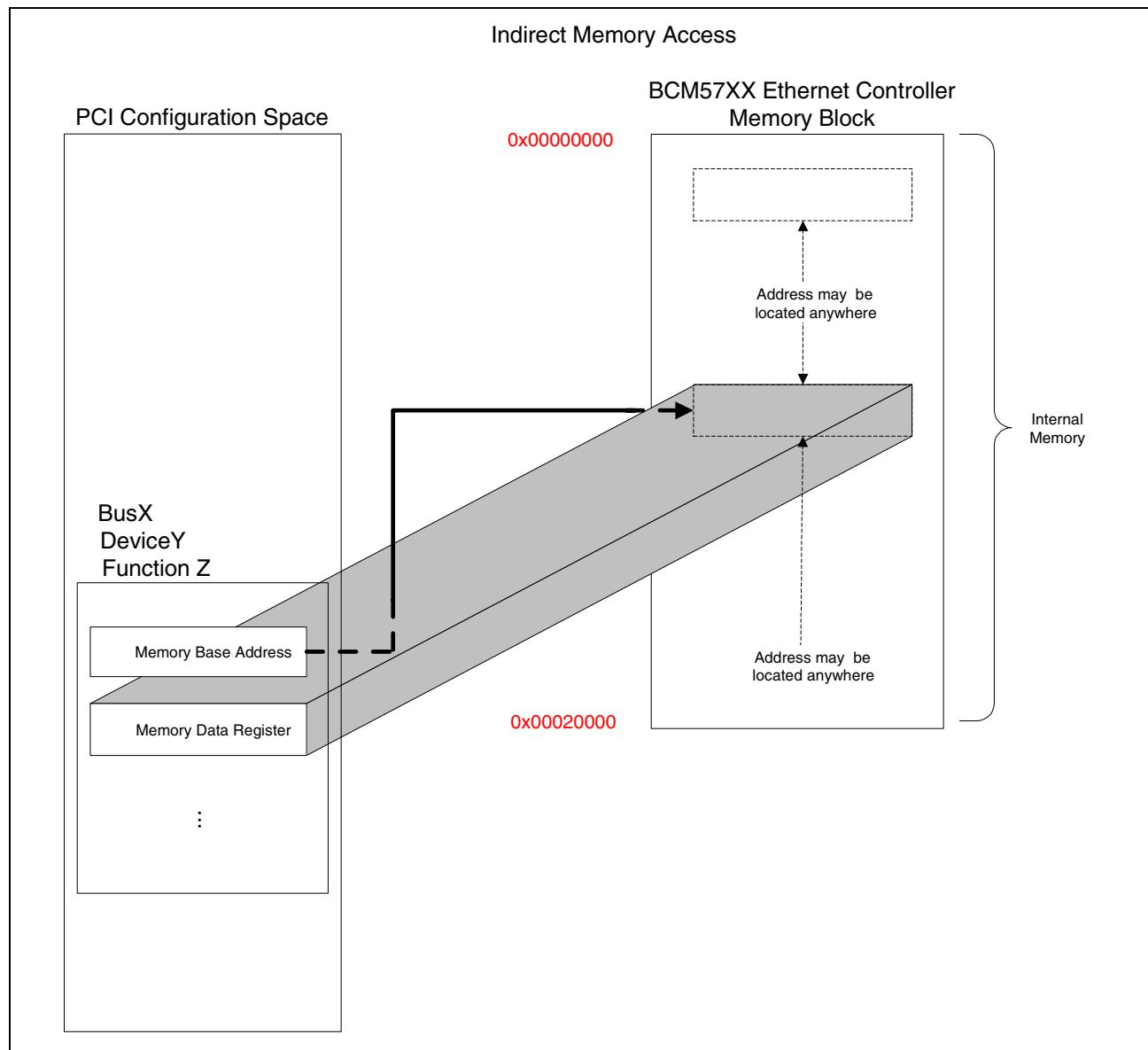
Note: Host software must assert the `Indirect_Mode_Access` bit in the Miscellaneous Host Control register (see ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#)) to enable indirect mode.

Indirect Register Access

Two PCI configuration space register pairs give host software access to the Ethernet controller register block. The `Register_Base_Address` register creates a position in the MAC register block. Valid positions range from 0x0000–0x8000 and 0x30000–0x38800 ranges. Access to the register block from 0x8000–0x30000, should be avoided and is not necessary. The Flat and Standard Modes do map a memory window into the 0x8000–0xFFFF ranges; however, the Memory Indirection register pair provides a more efficient mechanism to access the Ethernet controller memory block. The `Register_Data` register allows host software to read/write, from the indirection position. The `Register_Base_Address` register can be perceived as creating a cursor/pointer into the register block. The `Register_Data` register allows host software to read/write to the location, specified by the `Register_Base_Address`. This register pair accesses the Ethernet controller register block (see [Figure 30 on page 78](#)).

Note: If indirect register access is performed using memory write cycles (i.e., by accessing the `Register_Base_Address` and `Register_Data` registers through memory mapped by the PCI BAR register), as opposed to PCI configuration write cycles, the host software must insert a read command to the `Register_Base_Address` register between two consecutive writes to the `Register_Base_Address` and `Register_Data` registers.




Figure 30: Register Indirect Access

Indirect Memory Access

Memory indirect mode operates in the same fashion to register indirect mode. There is a PCI configuration space register pair, which is used to access the Ethernet controller memory block. The Memory_Window_Base_Address register positions a pointer/cursor in the local memory block. Unlike the Register_Base_Address register, the Memory_Window_Base_Address register may position at any valid offset. Access to ranges 0x00000–0x1FFFF is allowable. The Memory_Window_Data register is the read/write porthole for host software, using the previously positioned pointer/cursor. This register pair accesses the Ethernet controller local memory block (see [Figure 31 on page 79](#)).

Note: If Indirect Memory Access is performed using memory write cycles (i.e., by accessing the Memory_Window_Base_Address and Memory_Window_Data registers through memory mapped by the PCI BAR register), as opposed to PCI configuration write cycles, the host software must insert a read command to the Memory_Window_Base_Address register between two consecutive writes to the Memory_Window_Base_Address and Memory_Window_Data registers.

Figure 31: Indirect Memory Access

UNDI Mailbox Access

The UNDI mailboxes are shadows of Ethernet controller mailbox registers. All mailboxes reside in the Ethernet controller register block, not memory block. Unlike register and memory indirect access, the UNDI Mailboxes shadows are mapped 1:1 to a Ethernet controller register; these shadow registers do not have an address register.

- The UNDI_RX_BD_Standard_Ring_Producer_Index_Mailbox register shadows a mailbox located at offset 0x5868 (see ["Receive BD Standard Producer Ring Index Register \(Offset: 0x5868\)" on page 264](#)), in the Ethernet controller register block. Any index update (write) to the UNDI_RX_BD_Standard_Ring_Producer_Index_Mailbox will advance the standard producer ring index; software signals hardware that an RX buffer descriptor is available.
- The UNDI_RX_BD_Return_Ring_Consumer_Index_Mailbox register corresponds to a mailbox located at offset 0x5880 (see ["Receive BD Return Ring 0 Consumer Index \(Low Priority Mailbox\) Register \(Offset: 0x5880–0x5887\)" on page 264](#)). A update (write) to this register indicates that host software has consumed a RX buffer descriptor(s); return rings contain filled Enet frames, from the receive MAC.
- Finally, the UNDI_TX_BD_Host_Producer_Mailbox register maps to register offset 0x5900 (["Send BD Ring Consumer Index \(Low Priority Mailbox\) Register \(Offset: 0x5900\)" on page 265](#)) in the Ethernet controller register block. Host software writes to this register when Ethernet frame(s) are ready to be transmitted. Host software writes the index of buffer descriptor, which is ready for transmission.

All UNDI shadows are the first or primary ring and not all the rings are shadowed into PCI configuration space.

Receive Return rings 2–16 do not have shadow registers. UNDI drivers only require a minimal set of registers to provide basic network connectivity. Functionality is the most important consideration. Fifteen additional receive return rings would extend the size of the Device Specific portion of the PCI Configuration Space registers.

The UNDI shadow registers alias three registers in the Ethernet controller register block (see [Figure 32 on page 81](#)).

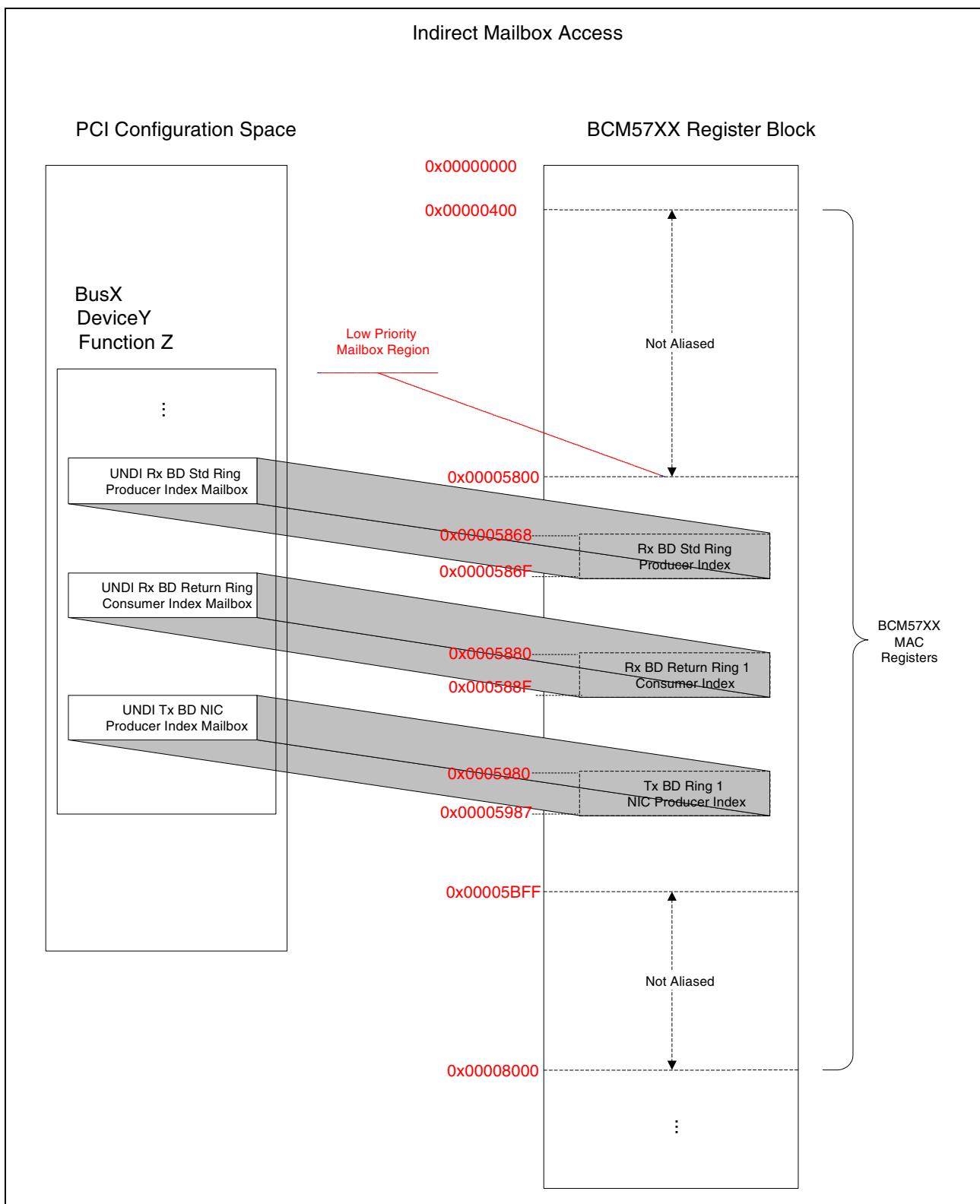
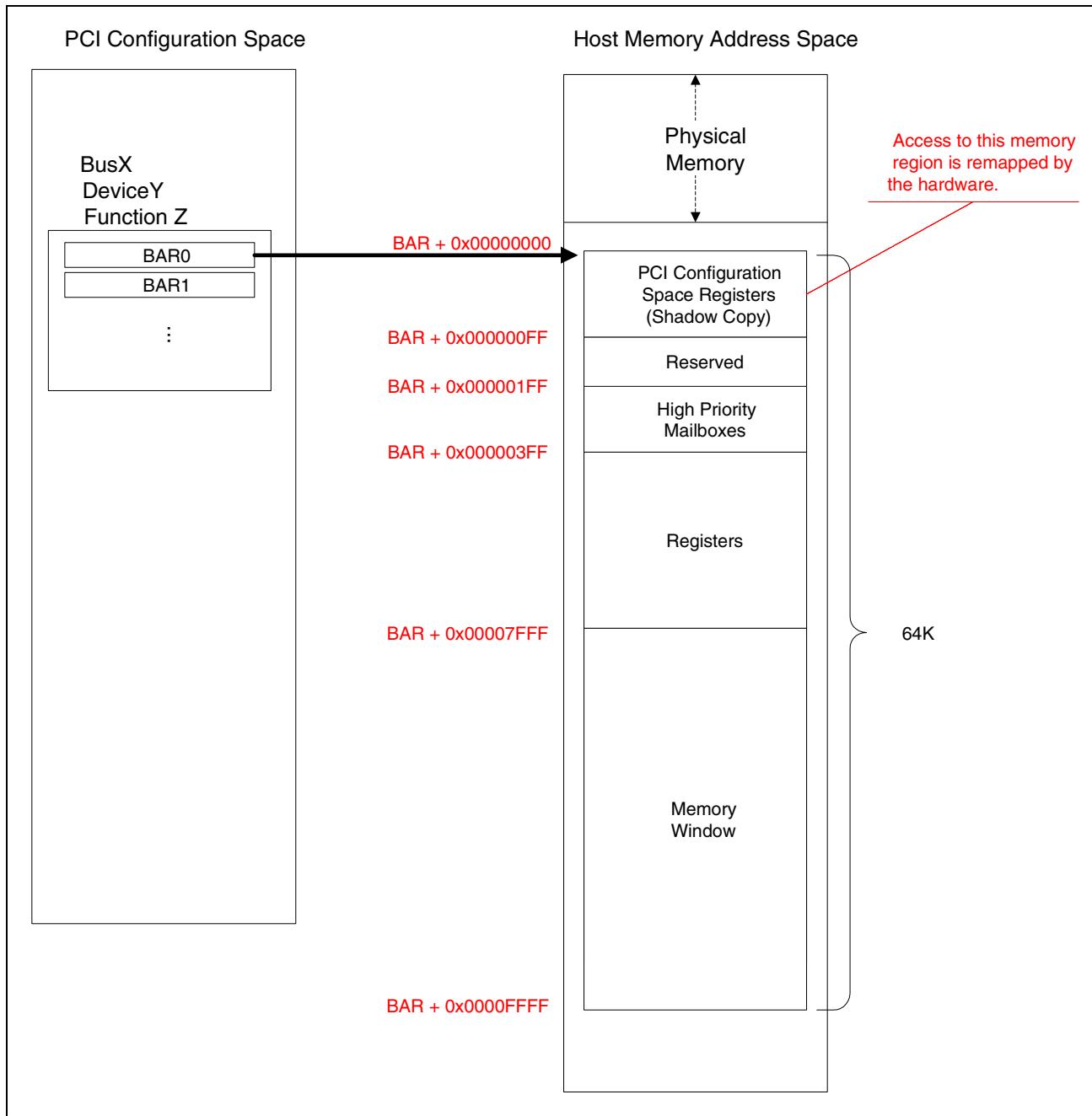
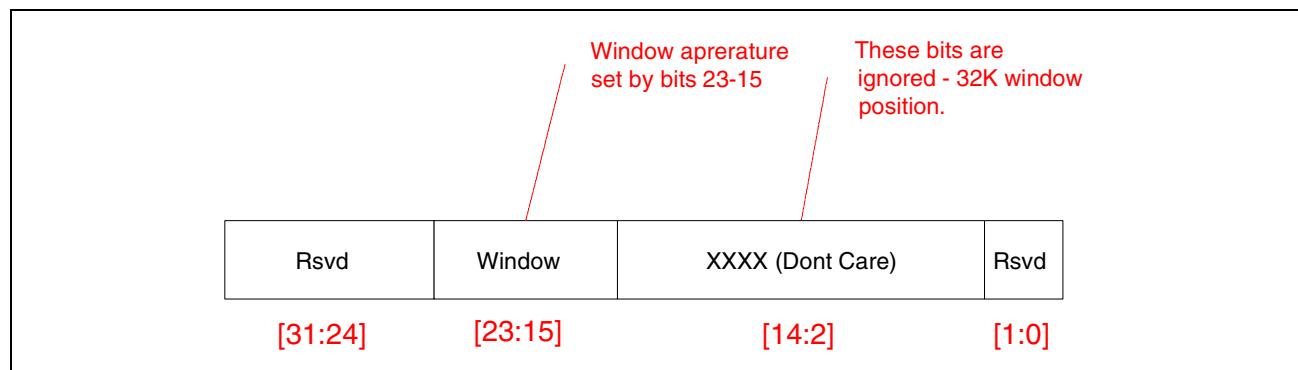


Figure 32: Low-Priority Mailbox Access for Indirect Mode

Standard Mode

Standard mode is the most useful memory mapped I/O view provided by the Ethernet controller (see [Figure 33](#)). 64K of host memory space must be made available. The PnP BIOS or OS will program BAR0 and BAR1 with a base address where the 64K address region may be decoded. The BAR registers point to the beginning of the host memory mapped regions where Ethernet controller can be accessed.




Figure 33: Standard Memory Mapped I/O Mode

The Ethernet controller resources listed in the following are decoded in the 64K address block.

Table 31: PCI Address Map Standard View

Offset	Name	Size
0x00000000–0x000000ff	PCI Configuration space	256 bytes
0x00000200–0x000003ff	High-Priority Mailboxes	512 bytes
0x00000400–0x00007fff	Ethernet controller registers	31 KB
0x00008000–0x0000ffff	Memory Window	32 KB

32K is partitioned for MAC control registers and 32K available for a memory access window. Range 0x0000–0x00FF is a complete shadow of the PCI configuration space registers—host software can also read/write to the Ethernet controller's PCI configuration space registers via the host memory map. Host software may use the shadow registers to change PCI register contents and avoid PCI configuration cycles (transactions). Again, using the host memory map is slightly more efficient. The MAC's control/status registers are mapped from 0x0400–0x8000. See [Section 12: “Ethernet Controller Register Definitions” on page 143](#) for complete register and bit definitions. Finally, the memory window range is 0x8000–0xFFFF. This 32K window is set in the PCI Configuration space using the `Memory_Window_Base_Address` register (see [Figure 34](#)). Bits 23:15 set the window aperture and bits 14:2 are effectively ignored/masked off. Bits 14–2 are relevant when host software uses memory indirection and the `Memory_Window_Data` register.

Figure 34: Memory Window Base Address Register

[Figure 35 on page 84](#) shows how the 32K window can float in the Ethernet controller's local memory. The window aligns on 32K boundaries.

Example: The memory window may start on the following addresses: 0x8000, 0x10000, and 0x18000. The window aperture may be positioned in the internal memory range 0x00000000 to 0x0001FFFF. When host software reads/writes to `PCI_BAR + 32K + OFFSET` in the host memory space, the Ethernet controller translates this read/write access to `Memory_Window_Base_Address + OFFSET`. Host software must not read/write from any address greater than `PCI_BAR + 64K`, since this memory space is not decoded by the Ethernet controller. Such an access may be decoded by another device, or simply go unclaimed on the PCI bus. [Figure 35 on page 84](#) shows the relationship between the `Memory_Window_Base_Address` register and the Memory Window.

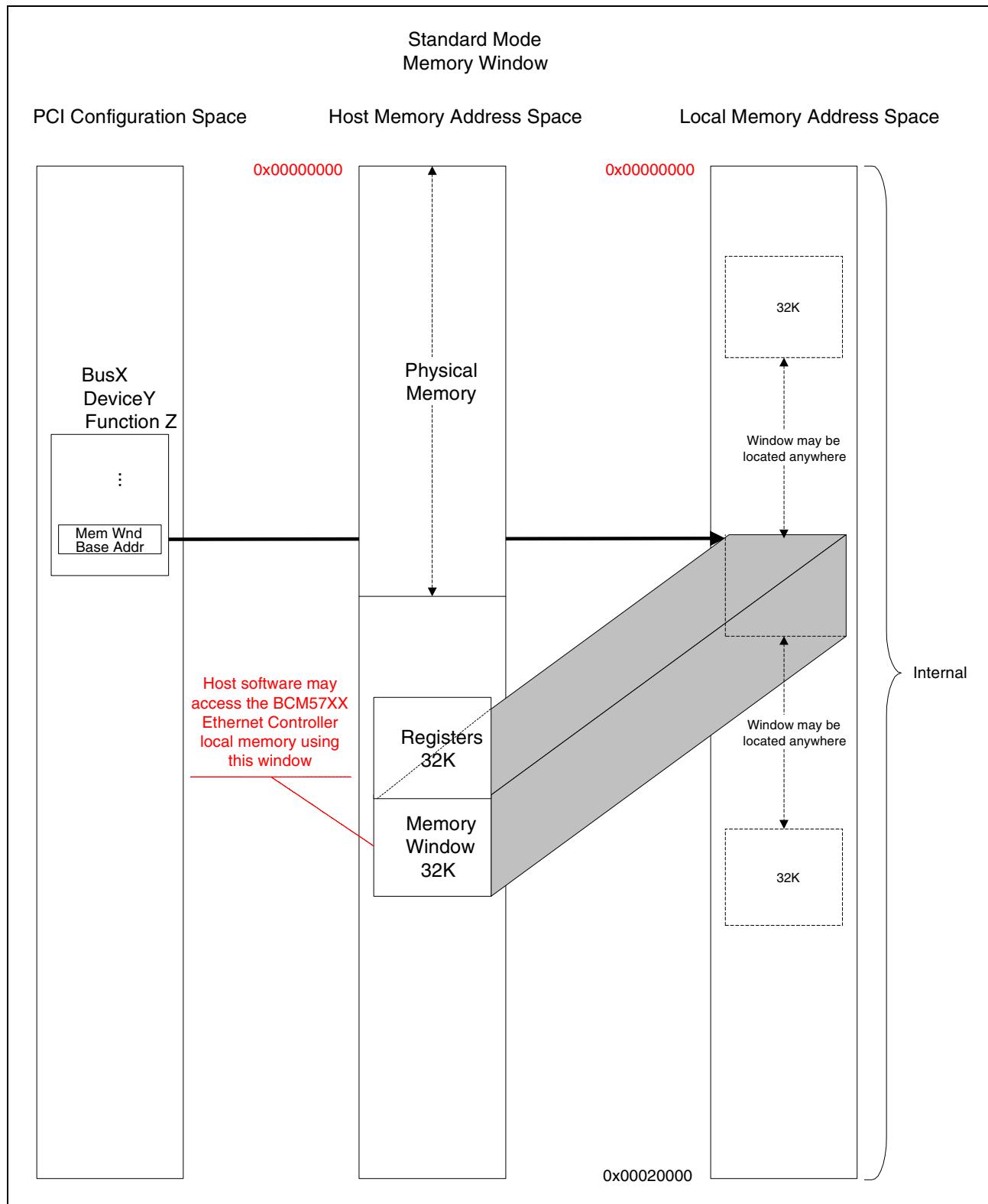


Figure 35: Standard Mode Memory Window

Flat Mode

Flat mode requires 32M of memory (see [Figure 36 on page 86](#)). Flat mode is useful when host software wants all Ethernet controller resources host memory mapped; diagnostic software is an example application. Mailboxes, Send Rings, Receive Rings, and Local Memory are directly mapped into the host memory space. Unlike standard mode, the Ethernet controller's local memory is addressable through host memory mapped I/O. Flat mode should not be used when there are limitations on the amount of memory mapped I/O available.

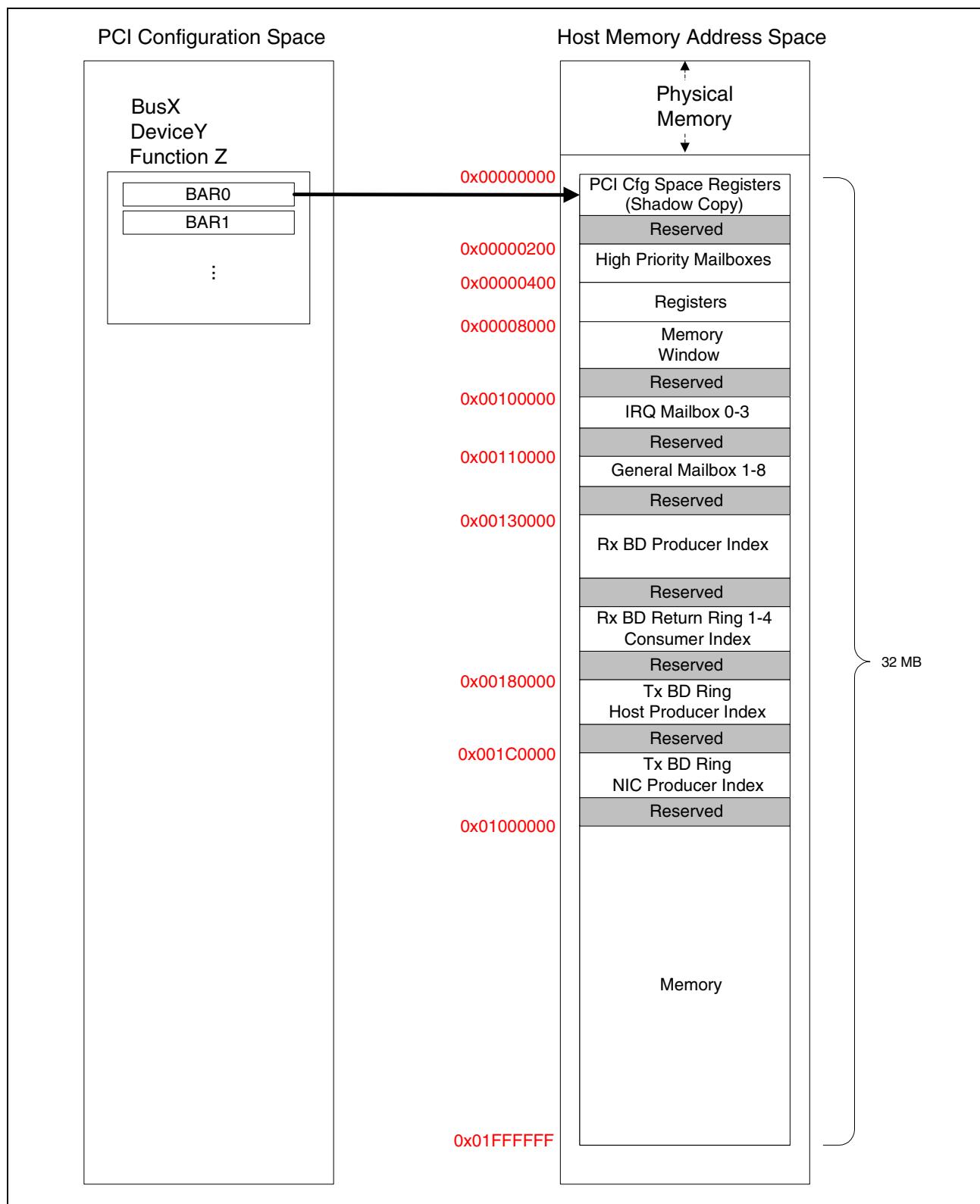


Figure 36: Flat Mode Memory Map

Table 32 shows the offsets which are relative to the PCI BAR—all host address decodes are BAR + OFFSET. Offsets 0x00–0xFF contain a shadow copy of the PCI configuration space registers. Host software may use this memory map to read/write to PCI configuration space registers. Address offsets 0x200–0x3FF are the high-priority mailboxes.

Table 32: PCI Address Map Flat View

Offset	Name	Size
0x00000000–0x000000FF	PCI Configuration space	256 bytes
0x00000100–0x000001FF	PCIe Extended Configuration space	256 bytes
0x00000200–0x000003FF	High-Priority Mailboxes	512 bytes
0x00000400–0x00007FFF	Ethernet controller registers	31 KB
0x00008000–0x0000FFFF	Memory Window	32 KB
0x00100000–0x00100007	Interrupt Mailbox 0	8 bytes
0x00104000–0x00104007	Interrupt Mailbox 1	8 bytes
0x00108000–0x00108007	Interrupt Mailbox 2	8 bytes
0x0010C000–0x0010C007	Interrupt Mailbox 3	8 bytes
0x00110000–0x00110007	General Mailbox 1	8 bytes
0x00114000–0x00114007	General Mailbox 2	8 bytes
0x00118000–0x00118007	General Mailbox 3	8 bytes
0x0011C000–0x0011C007	General Mailbox 4	8 bytes
0x00120000–0x00120007	General Mailbox 5	8 bytes
0x00124000–0x00124007	General Mailbox 6	8 bytes
0x00128000–0x00128007	General Mailbox 7	8 bytes
0x0012C000–0x0012C007	General Mailbox 8	8 bytes
0x00130000–0x00130007	Reserved	8 bytes
0x00134000–0x00134007	Receive BD Standard Producer Ring Producer Index	8 bytes
0x00138000–0x00138007	Receive BD Jumbo Producer Ring Producer Index	8 bytes
0x0013C000–0x0013C007	Receive BD Mini Producer Ring Producer Index	8 bytes
0x00140000–0x00140007	Receive BD Return Ring 1 Consumer Index	8 bytes
0x00144000–0x00144007	Receive BD Return Ring 2 Consumer Index	8 bytes
0x00148000–0x00148007	Receive BD Return Ring 3 Consumer Index	8 bytes
0x0014C000–0x0014C007	Receive BD Return Ring 4 Consumer Index	8 bytes
0x00150000–0x00150007	Receive BD Return Ring 5 Consumer Index	8 bytes
0x00154000–0x00154007	Receive BD Return Ring 6 Consumer Index	8 bytes
0x00158000–0x00158007	Receive BD Return Ring 7 Consumer Index	8 bytes
0x0015C000–0x0015C007	Receive BD Return Ring 8 Consumer Index	8 bytes
0x00160000–0x00160007	Receive BD Return Ring 9 Consumer Index	8 bytes
0x00164000–0x00164007	Receive BD Return Ring 10 Consumer Index	8 bytes
0x00168000–0x00168007	Receive BD Return Ring 11 Consumer Index	8 bytes
0x0016C000–0x0016C007	Receive BD Return Ring 12 Consumer Index	8 bytes
0x00170000–0x00170007	Receive BD Return Ring 13 Consumer Index	8 bytes
0x00174000–0x00174007	Receive BD Return Ring 14 Consumer Index	8 bytes
0x00178000–0x00178007	Receive BD Return Ring 15 Consumer Index	8 bytes
0x0017C000–0x0017C007	Receive BD Return Ring 16 Consumer Index	8 bytes
0x00180000–0x00180007	Send BD Ring 1 Host Producer Index	8 bytes

Table 32: PCI Address Map Flat View (Cont.)

Offset	Name	Size
0x00184000–0x00184007	Send BD Ring 2 Host Producer Index	8 bytes
0x00188000–0x00188007	Send BD Ring 3 Host Producer Index	8 bytes
0x0018C000–0x0018C007	Send BD Ring 4 Host Producer Index	8 bytes
0x00190000–0x00190007	Send BD Ring 5 Host Producer Index	8 bytes
0x00194000–0x00194007	Send BD Ring 6 Host Producer Index	8 bytes
0x00198000–0x00198007	Send BD Ring 7 Host Producer Index	8 bytes
0x0019C000–0x0019C007	Send BD Ring 8 Host Producer Index	8 bytes
0x001A0000–0x001A0007	Send BD Ring 9 Host Producer Index	8 bytes
0x001A4000–0x001A4007	Send BD Ring 10 Host Producer Index	8 bytes
0x001A8000–0x001A8007	Send BD Ring 11 Host Producer Index	8 bytes
0x001AC000–0x001AC007	Send BD Ring 12 Host Producer Index	8 bytes
0x001B0000–0x001B0007	Send BD Ring 13 Host Producer Index	8 bytes
0x001B4000–0x001B4007	Send BD Ring 14 Host Producer Index	8 bytes
0x001B8000–0x001B8007	Send BD Ring 15 Host Producer Index	8 bytes
0x001BC000–0x001BC007	Send BD Ring 16 Host Producer Index	8 bytes
0x001C0000–0x001C0007	Send BD Ring 1 NIC Producer Index	8 bytes
0x001C4000–0x001C4007	Send BD Ring 2 NIC Producer Index	8 bytes
0x001C8000–0x001C8007	Send BD Ring 3 NIC Producer Index	8 bytes
0x001CC000–0x001CC007	Send BD Ring 4 NIC Producer Index	8 bytes
0x001D0000–0x001D0007	Send BD Ring 5 NIC Producer Index	8 bytes
0x001D4000–0x001D4007	Send BD Ring 6 NIC Producer Index	8 bytes
0x001D8000–0x001D8007	Send BD Ring 7 NIC Producer Index	8 bytes
0x001DC000–0x001DC007	Send BD Ring 8 NIC Producer Index	8 bytes
0x001E0000–0x001E0007	Send BD Ring 9 NIC Producer Index	8 bytes
0x001E4000–0x001E4007	Send BD Ring 10 NIC Producer Index	8 bytes
0x001E8000–0x001E8007	Send BD Ring 11 NIC Producer Index	8 bytes
0x001EC000–0x001EC007	Send BD Ring 12 NIC Producer Index	8 bytes
0x001F0000–0x001F0007	Send BD Ring 13 NIC Producer Index	8 bytes
0x001F4000–0x001F4007	Send BD Ring 14 NIC Producer Index	8 bytes
0x001F8000–0x001F8007	Send BD Ring 15 NIC Producer Index	8 bytes
0x001FC000–0x001FC007	Send BD Ring 16 NIC Producer Index	8 bytes
0x01000000–0x01FFFFFF	Memory	16 MB

The proceeding host memory ranges are relative to the Ethernet controller PCI BAR—the address decodes are BAR + offset. Offsets 0x00–0xFF contain a shadow copy of the PCI configuration space registers. Host software may use this memory map to read/write to PCI configuration space registers. Address offsets 0x200–0x3FF are high-priority mailboxes.

There are several similarities to standard mode. Initially, Ethernet controller registers are memory-mapped into the host offsets 0x400–0x7FFF. See [Section 12: “Ethernet Controller Register Definitions” on page 143](#) for complete register and bit definitions. Second, the 32K memory window is available in flat mode. However, host software should just use the direct memory map, at BAR + offsets 0x01000000–0x01FFFFFF. The direct memory map requires no setup (PCI Memory Base Address register), and is always available in flat mode. See [“Standard Mode” on page 82](#) for the discussion of the memory window in the standard mode. [Figure 37 on page 90](#) shows the Flat Mode Memory map.

The interrupt mailboxes are accessible from BAR + offsets 0x00100000 to 0x0010C007. Host software may use this memory map to access the interrupt mailboxes located in Ethernet controller's register block (0x200–0x21F). The Receive Producer consumer index mailboxes are available at offsets 0x00130000–0x0013C0007. Receive return ring mailboxes are shadowed at BAR + offsets 0x00140000 to 0x0017C007. The Ethernet controller receive return rings are located in register block range 0x280–0x2FF. Host-based send rings are located at BAR + offsets 0x00180000–0x001BC007. These send ring mailboxes are mapped from the Ethernet controller register block range 0x300–0x37F.

The address ranges 0x01000000–0x01FFFFFF are aliases for the Ethernet controller device local memory. When host software reads/writes from address ranges starting at BAR + 0x01000000, the address is normalized/mapped to a device local address starting at 0x00000000.

Example: The host address 0x010000FF is translated to device local address 0x000000FF.

[Figure 38 on page 91](#) shows the two mechanisms host software may use to access Ethernet controller local memory (flat mode configuration).

- First, host software can use the memory window.
- Second, host software may access the memory-mapped range 0x01000000 to 0x01FFFFFF.

The second technique is preferable since flat mode has made 32 MB of host memory-mapped space available. Software does not need to use the memory window since the Ethernet controller's entire memory region is memory-mapped.

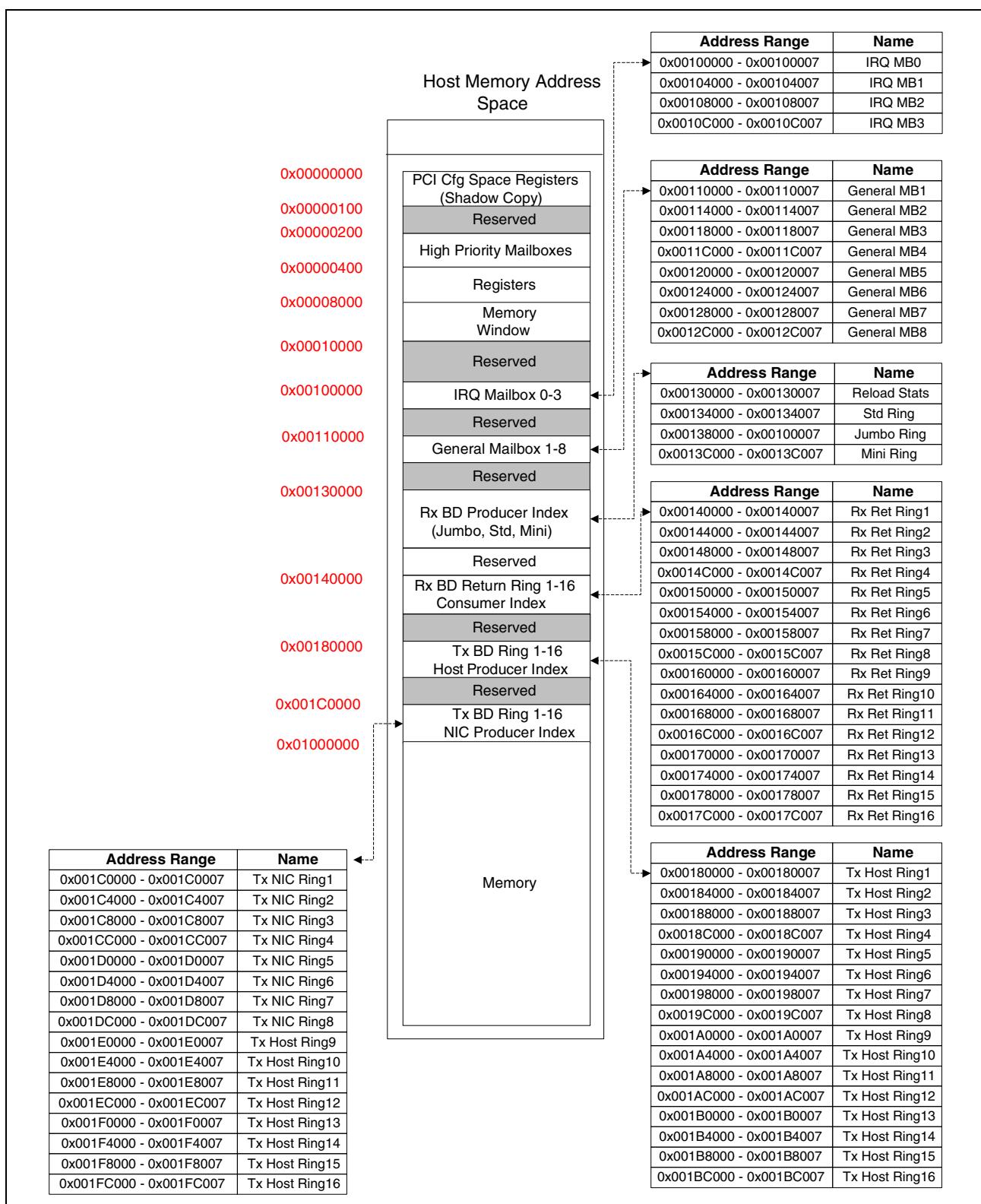


Figure 37: Flat Mode Memory Map

Broadcom Corporation

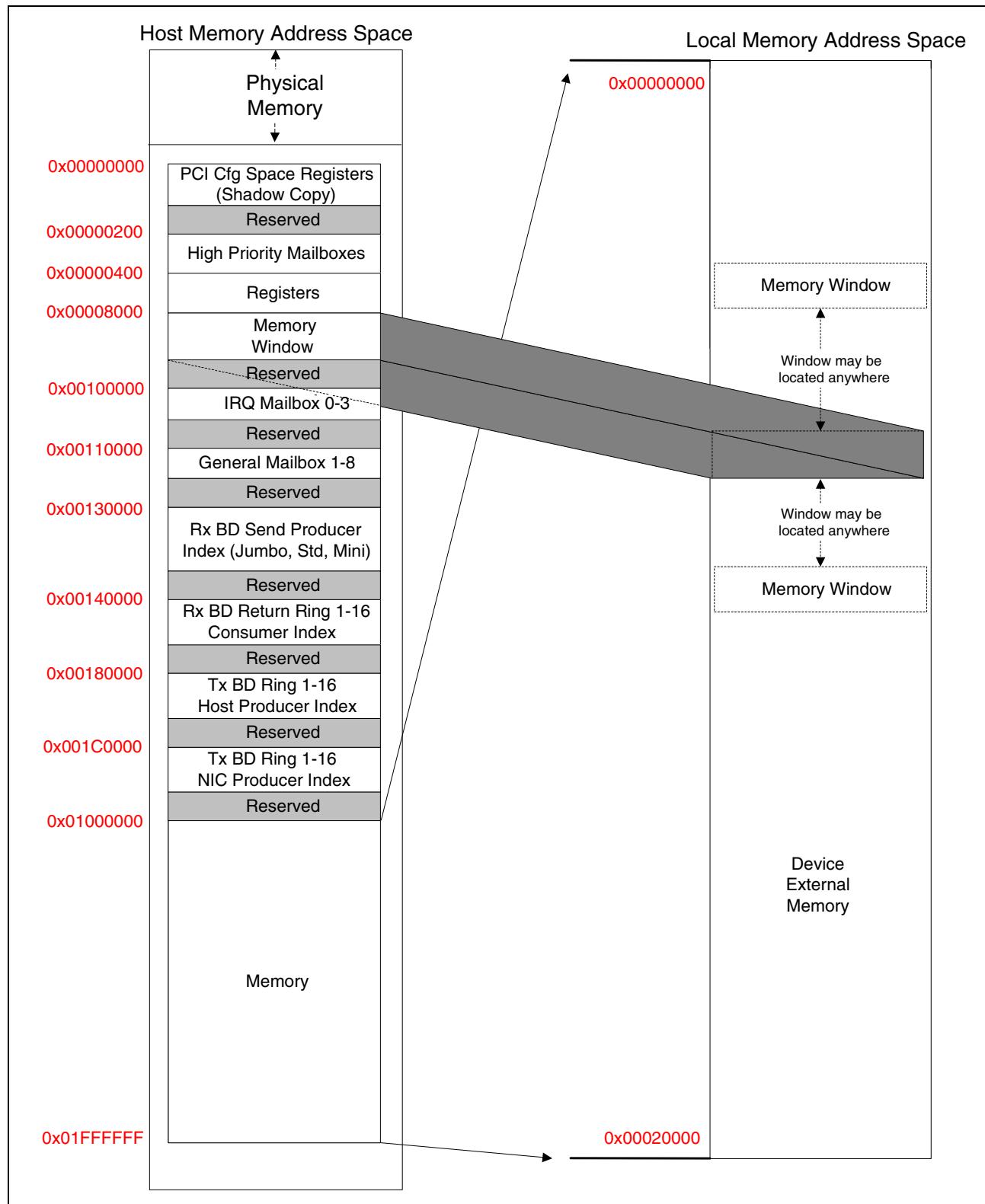


Figure 38: Techniques for Accessing Ethernet Controller Local Memory

MEMORY MAPPED I/O REGISTERS

The following Ethernet controller registers are used in the mode configuration of the PCI memory-mapped I/O.

PCI Command Register

The PCI_Command register is 16-bits wide (see [Figure 39](#)). The Ethernet controller does not have I/O mapped I/O. The I/O_Space bit is de-asserted by hardware. The Ethernet controller does support Memory_Mapped_Memory and hardware will assert the Memory_Space bit. Both these bits are read-only and are usually read by the PnP BIOS/OS. The BIOS/OS examines these bits to assign non-conflicting resources to PCI devices.

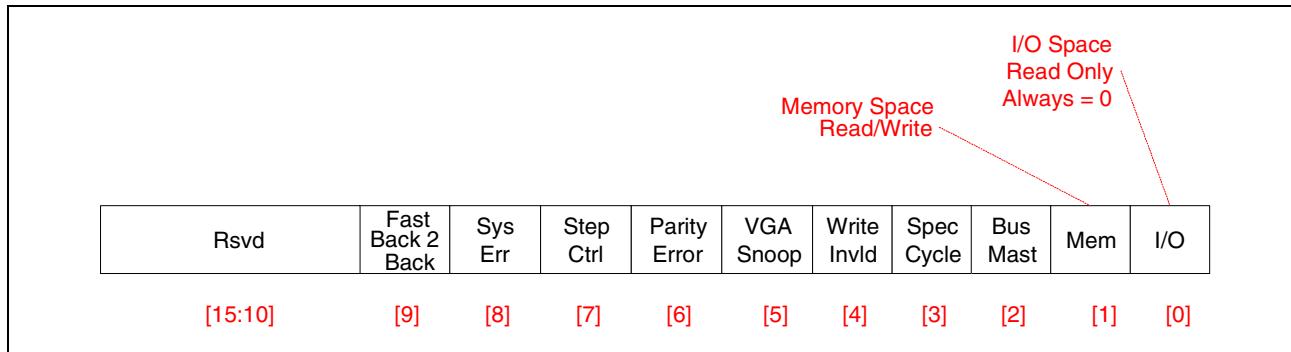
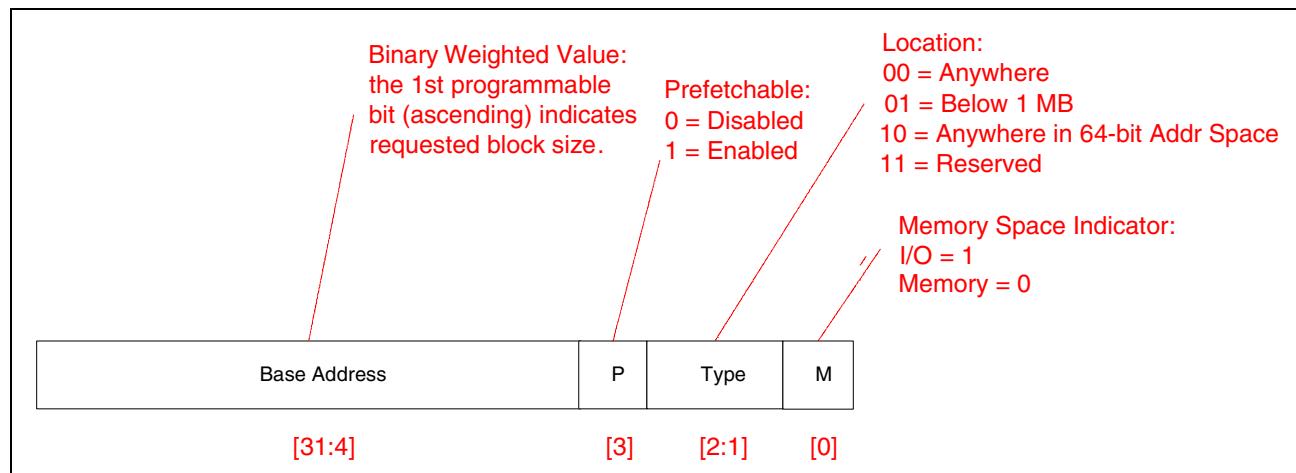
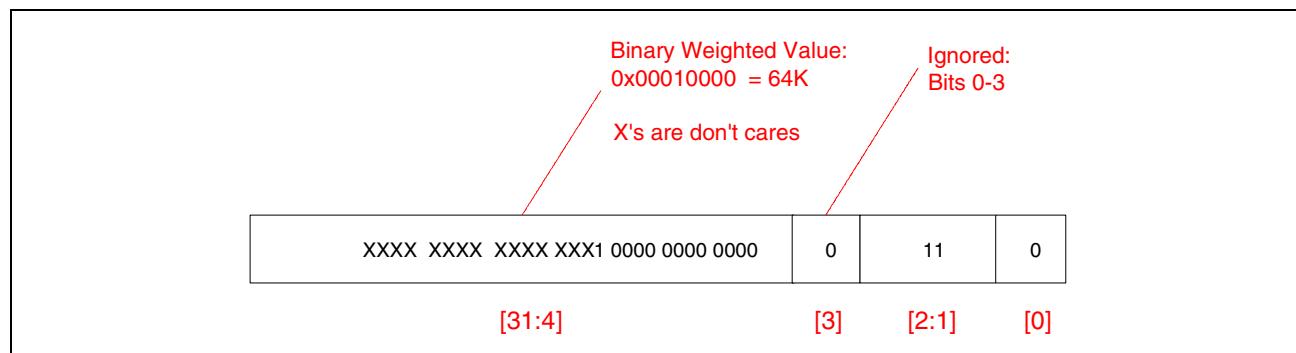


Figure 39: PCI Command Register

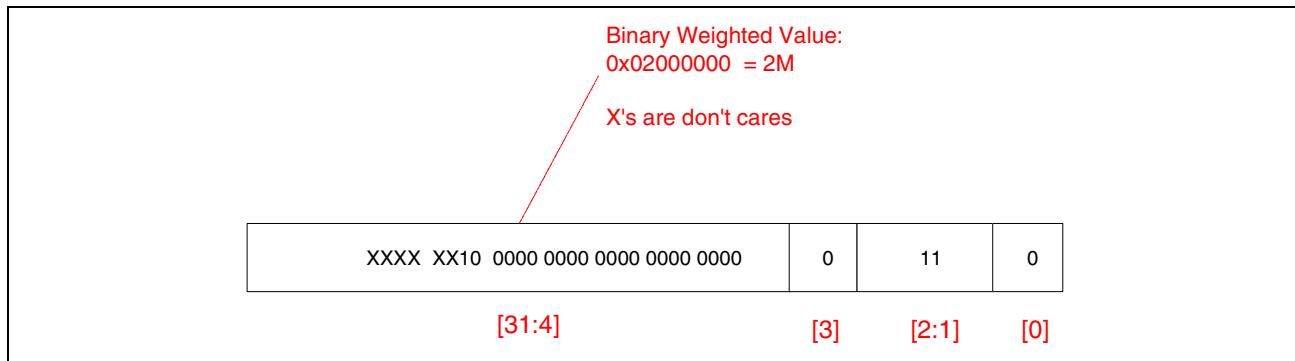

PCI State Register

The PCI_State register is 32-bits wide. Operating mode is set with the Flat_View bit in the PCI_State register. When the Flat_View bit is asserted, the Ethernet controller decodes a 32M of block host memory. When the Flat_View bit is de-asserted, the Ethernet controller decodes a 64K block of host memory.

PCI Base Address Register


The PCI_Base_Address Register (BAR) specifies the location of a Ethernet controller memory mapped I/O block. The Ethernet controller mode configuration (Flat vs. Standard) affects how the BAR is setup (see [Figure 40](#)).

- Bits 4–31 in the PCI_Base_Address register are selectively programmable based on the amount of host memory requested. The PnP BIOS/OS will use an algorithm to test the BAR bits and determine the amount of physical memory requested.
- The Memory_Space_Indicator bit designates whether the BAR is memory or I/O mapped. The Ethernet controller hard codes the Memory_Space_Indicator bit to zero (de-asserted).
- The Location/Type bits specify locations in host memory space where a device can decode physical addresses. The Ethernet controller memory mapped I/O range may be placed anywhere in 64-bit address space (Type = 10).
- The Ethernet controller deasserts the Prefetchable bit to indicate that the memory range should not be cached.


Figure 40: PCI Base Address Register

The Ethernet controller 64K memory mapped I/O block is determined by the first programmable bit in the BAR. When the MAC is configured in standard mode, the mask 0xFFFF0000 identifies the BAR bits, which are programmable. Bit 16 is the first bit encountered in the scan upward, which is programmable; bits 0–3 are ignored. Host software will read zero values from bits 4–16. [Figure 41](#) shows the BAR register and the bits returned to the OS/BIOS during resource allocation.

Figure 41: PCI Base Address Register Bits Read in Standard Mode

When the Ethernet controller is programmed in flat mode, a 32M region of memory mapped I/O must be made available. The PnP BIOS/OS will probe the BAR, and scan upwards looking for the first programmable bit. Again, bits 0–3 are ignored. The mask 0xE000000 identifies the BAR bits, which are programmable. Bit 25 is the first bit encountered in the scan upward, which is programmable. Host software will read zero values from bits 4–24. [Figure 42](#) shows the BAR register and the bits returned to the OS/BIOS during resource allocation.

Figure 42: PCI Base Address Register Bits Read in Flat Mode

REGISTER QUICK CROSS REFERENCE

Device Family

The Ethernet controller PCI registers are listed in [Table 33](#).

Table 33: PCI Registers

Register	Bit	Cross Reference
PCI Command	Memory_Space	"Status & Command Register (Offset: 0x04)" on page 144.
PCI Command	IO_Space	"Status & Command Register (Offset: 0x04)" on page 144.
PCI State	Flat_View	"PCI State Register (Offset: 0x70)" on page 155.
PCI Base Address 1	All	"Base Address Register 1 (Offset: 0x10)" on page 146.
PCI Base Address 2	All	"Base Address Register 3 (Offset: 0x18)" on page 147.

PSEUDOCODE

- Variable BCM57XXMemAddr represents a local memory address.
- Variable BCM57XXMemBase represents a 32K aligned local memory address.
- Variable BCM57XXMemOffset represents a byte offset.
- PCI_CFG_WRITE (address, value) is a routine to write the device's PCI configuration space register.
- PCI_CFG_READ (address) is a routine to return the contents of the device's PCI configuration space register.

Memory Window Read in Standard Mode

```
BCM57XXMemBase = BCM57XXMemAddr & 0xFFFF0000
BCM57XXMemOffset = BCM57XXMemAddr & 0x0000FFFF
PCI_CFG_WRITE(Memory_Window_Base_Address, BCM57XXXMemBase)
Value = *(PCI_BAR + 0x8000 + BCM57XXMemOffset)
```

Memory Window Write in Standard Mode

```
BCM57XXMemBase = BCM57XXMemAddr & 0xFFFF0000
BCM57XXMemOffset = BCM57XXMemAddr & 0x0000FFFF
PCI_CFG_WRITE(Memory_Window_Base_Address, BCM57XXXMemBase)
*(PCI_BAR + 0x8000 + BCM57XXMemOffset) = Value
```

Register Read in Standard Mode

```
Value = *(PCI_BAR + 0x400 + BCM57XX_REGISTER_OFFSET)
```

Register Write in Standard Mode

```
*(PCI_BAR + 0x400 + BCM57XX_REGISTER_OFFSET) = Value
```

Memory Read in Flat Mode¹

```
Value = *(PCI_BAR + 0x01000000 + BCM57XXMemAddr)
```

Memory Write in Flat Mode¹

```
*(PCI_BAR + 0x01000000 + BCM57XXMemAddr) = Value
```

Register Read in Flat Mode

```
Value = *(PCI_BAR + 0x400 + BCM57XX_REGISTER_OFFSET)
```

Register Write in Flat Mode

```
*(PCI_BAR + 0x400 + BCM57XX_REGISTER_OFFSET) = Value
```

Memory Read Using Indirect Mode

```
PCI_CFG_WRITE(Memory_Window_Base_Address, BCM57XXXMemAddr)
Value = PCI_CFG_READ(Memory_Window_Data)
```

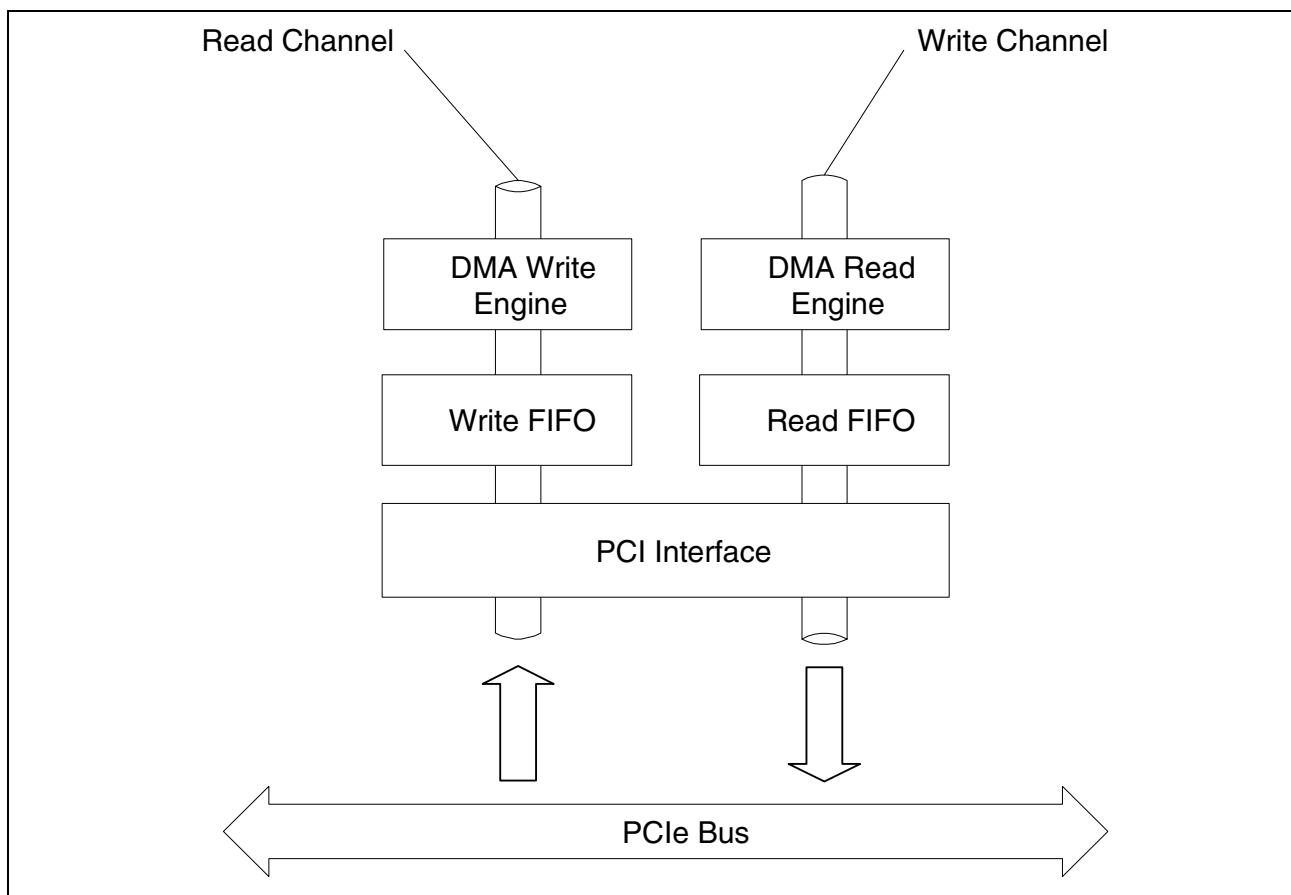
Memory Write Using Indirect Mode

```
PCI_CFG_WRITE(Memory_Window_Base_Address, BCM57XXXMemAddr)
PCI_CFG_WRITE(Memory_Window_Data, Value)
```

1. The scratchpad and ROM regions must be accessed using indirect register pairs.

Register Read Using Indirect Mode

```
PCI_CFG_WRITE(Register_Base_Address, BCM57XXXRegAddr)  
Value = PCI_CFG_READ(Register_Data_Register)
```


Register Write Using Indirect Mode

```
PCI_CFG_WRITE(Register_Base_Address, BCM57XXXRegAddr)  
PCI_CFG_WRITE(Register_Data_Register, Value)
```

Bus INTERFACE

DESCRIPTION

The read/write DMA engines both drive the PCIe interface. Typically, each DMA engine alternates bursts to the PCIe bus, and both interfaces may have outstanding transactions on the PCI bus. The BCM5761 architecture identifies two channels—a read DMA channel and a write DMA channel. Each channel corresponds to the appropriate DMA engine (see [Figure 43](#)). The configuration of the DMA engines and the PCI interface is discussed in this section.

Figure 43: Read and Write Channels of DMA Engine

The following architectural components are involved in the configuration of the PCI/DMA interface:

- DMA read engine
- DMA write engine
- DMA read FIFO
- DMA write FIFO
- PCIe interface
- PCI state register
- DMA read/write register

OPERATIONAL CHARACTERISTICS

Read/Write DMA Engines

Software must enable the bus master DMA bit for the Ethernet controller. The Ethernet controller is a bus-mastering device and the PCI interface requires that the Bus_Master enable bit be set by either the BIOS or host device driver. The bus master is the PCI transaction initiator. A PCI target will claim the transaction driven by the bus master. The Bus_Master enable bit is located in the PCI configuration space Command register (see “[Status & Command Register \(Offset: 0x04\)](#)” on page 144) and this bit is read/write. The bit defaults to cleared/disabled after device reset.

The read and write DMA channels use FIFOs to buffer small amounts of PCI bus data. The FIFOs provide elasticity for data movement between internal memory and the PCI interface. Host software may configure DMA watermarks—values where PCI activity is enabled/disabled.

When enqueued data is less than the watermark value, PCI bus transactions are inhibited. The DMA channel will wait until the FIFO fills above the threshold before initiating PCI transactions. Host software may configure the DMA_Write_Watermark bit fields to set the activity threshold in the write FIFO. The DMA_Write_Watermark bit field is read/write and is also located in the DMA Read/Write register. The write watermark registers default to zero after power-on reset.

REGISTER QUICK CROSS REFERENCE

Table 34: PCI -X Registers

Register	Bit	Cross Reference
PCI Command	Bus_Master	"Status & Command Register (Offset: 0x04)" on page 144.
PCI Command	Memory_Write_And_Invalidate	
PCI Command	Parity_Error_Enable	
PCI Status	Detected_Parity_Error	"Status & Command Register (Offset: 0x04)" on page 144.
PCI Status	Master_Data_Parity_Error	
Write DMA Status	Write_DMA_PCI_Parity_Error	"Write DMA Status Register (Offset: 0x4C04)" on page 260.
Read DMA Status	Read_DMA_PCI_Parity_Error	"Read DMA Status Register (Offset: 0x4804)" on page 256.
MSI Status	PCI_Parity_Error	"MSI Mode Register (Offset: 0x6000)" on page 269.
PCI State	Conventional_PCI	"PCI State Register (Offset: 0x70)" on page 155.
	33/66PCI_66/133PCIX_Mode	
	No_Snoop	
	Split_Completion_Message_Class	
	Split_Completion_Message_Index	

EXPANSION ROM

DESCRIPTION

The expansion ROM on the Ethernet controller is intended for implementation of PXE (Preboot Execution Environment). The devices support expansion ROM of up to 16 MB.

OPERATIONAL CHARACTERISTICS

By default, the Expansion ROM is disabled and the firmware has to explicitly enable this feature by setting `PCI_State.PCI_Expansion_ROM_Desired` bit to one (see ["PCI State Register \(Offset: 0x70\)" on page 155](#)). After this bit is enabled, the bootcode firmware handles the Expansion ROM accesses of the device.

BIOS

The BIOS detects if a PCI device supports Expansion ROM or not by writing the value 0xFFFFFFF to Expansion_ROM_Base_Register (register 0x30 of PCI configuration). The BIOS then reads back from this register. If the value is nonzero, then this PCI device supports Expansion ROM; otherwise, it does not. The Ethernet controller returns a non-zero value appropriate for the expansion ROM size selected in NVRAM (see [Section 5: "Common Data Structures" on page 22](#)) when Expansion ROM is enabled (PCI_State.PCI_Expansion_ROM_Desired bit is set to 1). On the other hand, if the PCI_Expansion_ROM_Desired bit cleared, then the Ethernet controller returns a value of 0x00000000. This indicates to the BIOS that no Expansion ROM is supported.

If a PCI device supports Expansion ROM, the BIOS will assign a Expansion Base address to the device. It then checks for a valid ROM header (0x55 0xAA as first two bytes, and so forth) and checksum. If the ROM header and image are valid, the BIOS will copy the Expansion ROM image to HOST's Upper Memory Block (UMB) and invoke the initializing entry point.

Preboot Execution Environment

Preboot Execution Environment (PXE) is implemented as an Expansion ROM in the NIC implementation. In the LOM implementation, PXE normally resides in the system BIOS. In the NIC implementation, PXE image is stored in the NVRAM. Upon power on reset of the Ethernet controller, the RX RISC will load the bootcode from the NVRAM into RX RISC scratch pad and execute. This bootcode will program the device with programmable manufacturing information (such as MAC address, PCI vendor ID/device ID, etc.). If PXE is enabled, the bootcode responds to the Expansion ROM accesses of system BIOS.

Bootcode is executed whenever the Ethernet controller is reset via PCI Reset or S/W device reset. PXE initialization should only be necessary after a PCI reset. The bootcode differentiates PCI Reset and driver initiated software reset by checking content in Internal Memory at 0xb50. If the content is 0x4B657654, then the reset is due to driver initiated software reset. Therefore, the device driver has to initialize 0xb50 with 0x4B657654 before issuing a S/W device reset.

DISABLE DEVICE THROUGH BIOS

The Ethernet controllers can be disabled through BIOS by writing the value of DEADDEADh to shared memory location of B50h. This eliminates the need for BIOS to execute the device specific procedure for disabling the MAC device. The BIOS must do the following steps to disable the device.

1. Config cycle, write 88h to location 68h.
2. Config cycle, write 0B50h to location 7Ch.
3. Config cycle, write DEADDEADh to location 84h.

ENDIAN CONTROL (BYTE AND WORD SWAPPING)

BACKGROUND

There are two basic formats for storing data in memory—little-endian and big-endian. The endianess of a system is determined by how multibyte quantities are stored in memory. A big-endian architecture stores the most significant byte at the lowest address offset while little-endian architecture stores the least significant byte at the lowest address offset.

Example: The 32-bit hex value 0x12345678 would be stored in memory as shown in the following table.

Table 35: Endian Example

Address	00	01	02	03
Big Endian	12	34	56	78
Little Endian	78	56	34	12

Another method of viewing how this data would be stored is shown in the following tables.

Table 36: Storage of Big-Endian Data

Storage Byte	00	01	02	03
Data Contents	12	34	56	78

Table 37: Storage of Little-Endian Data

Storage Byte	03	02	01	00
Data Contents	12	34	56	78

Examples of big-endian platforms include SGI Irix, IBM RS6000, and SUN.

Examples of little-endian platforms include Intel x86 and DEC Alpha.

PCI assumes a little-endian memory model. PCI configuration registers are organized so that the least significant portion of the data is assigned to the lower address.

ARCHITECTURE

The Ethernet controller is internally a big-endian machine, and its internal processors are big-endian devices. The Ethernet controller stores data internally in big-endian format using a 64-bit memory subsystem.

However, many hosts (e.g., x86 systems) use the little-endian format, and the PCI bus uses the little-endian format. Therefore the Ethernet controller has a number of byte swapping options that may be configured by software so that Little or Big Endian hosts can interface as seamlessly as possible with Ethernet controller over PCI. The Ethernet controller has the following bits that control byte and word swapping:

- Enable Endian Word Swap (bit 3, Miscellaneous Host Control register (offset: 0x68 into PCI Config register, see ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#)). If 1, this register enables 32-bit word swapping when accessing the Ethernet controller via the PCI target interface.
- Enable Endian Byte Swap (bit 2, Miscellaneous Host Control register (offset: 0x68 into PCI Config register, see ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#)). If 1, this register enables byte swapping (within a 32-bit word) when accessing the Ethernet controller via the PCI target interface.
- Word Swap Data (bit 5, Mode Control register (offset: 0x6800 into the Ethernet controller registers). If 1, this register enables word swapping of frame data when it comes across the bus.
- Byte Swap Data (bit 4, Mode Control register (offset: 0x6800 into the Ethernet controller registers). If 1, this register enables byte swapping of frame data when it comes across the bus.
- Word Swap Non-Frame Data (bit 2, Mode Control register (offset: 0x6800 into the Ethernet controller registers). If 1, this register enables word swapping of non frame data (i.e., buffer descriptors, statistics, etc.) when it comes across the bus.
- Byte Swap Non-Frame Data (bit 1, Mode Control register (offset: 0x6800 into the Ethernet controller registers). If 1, this register enables byte swapping of non frame data (i.e., buffer descriptors, statistics, etc.) when it comes across the bus.

The setting of the above swapping bits will affect the order of how data is represented when it is transferred across PCI. Since byte swapping is a confusing subject, examples will be shown that reflect how each byte swapping bit works

ENABLE ENDIAN WORD SWAP AND ENABLE ENDIAN BYTE SWAP BITS

The Enable Endian Word Swap, and Enable Endian Byte Swap bits affect whether words or bytes are swapped during target PCI accesses. Thus, these bits affect the byte order when the host is directly reading/writing to registers or control structures that are physically located on the Ethernet controller. These bits do not affect the byte ordering of packet data or other structures that are mastered (DMAed) by the Ethernet controller.

When the Ethernet controller is accessed via PCI (which is little endian) as a PCI target, the Ethernet controller must implicitly map those accesses to internal structures that use a 64-bit Big Endian architecture. In the default case where no swap bits are set the Ethernet controller maps PCI data to internal structures shown in [Figure 44](#) and [Figure 45](#).

MSB								LSB							
Internal Byte #	0	1	2	3	4	5	6	7	Internal Bit #	63	48 47	32 31	16 15	15	0
Example Content	88	89	8A	8B	8C	8D	8E	8F							
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓															
MSB								LSB							
PCI Byte #	7	6	5	4	3	2	1	0	PCI Bit #	63	48 47	32 31	16 15	15	0
Example Content	88	89	8A	8B	8C	8D	8E	8F							

Figure 44: Default Translation (No Swapping) on 64-Bit PCI

Internal Byte Ordering				PCI Byte Ordering					
	31	16	15	0		31	16	15	0
0x00	88	89	8A	8B		8C	8D	8E	8F
0x04	8C	8D	8E	8F		88	89	8A	8B

Figure 45: Default Translation (No Swapping) on 32-bit PCI

As illustrated above, because the Ethernet controller uses an internal 64-bit big endian architecture, it will map (by default) the most significant byte of an 8-byte (64-bit) internal quantity to the most significant byte on a 64-bit PCI bus. This works nicely for quantities (fields) that are 64 bits in size (e.g., a host physical address). However, this can be confusing for quantities that are 32 bits in size. Without Word Swapping enabled, the host could easily access the wrong 32-bit quantity when making a 32-bit access.

Example: A Ring Control Block (RCB). RCBs are on-chip structures and read/written by the host via PCI target accesses. The table below shows the big-endian layout of an on-chip RCB:

Table 38: RCB (Big Endian 32-bit format)

Byte #	0	1	2	3	
Bit #	31		16 15		0
	MSB		Host Ring Address		LSB
	MSB	MAX_Len	LSB	Flags	0x00
				NIC Ring Address	0x04
					0x08
					0x0C

If Word Swapping is not enabled, and the host made a 32-bit read request to address 0x08, the four bytes of data returned on the PCI bus would actually be the NIC Ring Address rather than the Max_Len and Flags fields. This initially might seem

counter-intuitive, but is explained in [Figure 45 on page 102](#). Therefore, if a software driver running on an x86 host (Little Endian) referenced on-chip data structures as they are defined in the Ethernet controller data sheet, the driver should set the Enable Endian Word Swap bit. By setting this bit, the translation would be as follows:

Internal Byte Ordering

	31	16	15	0
0x00	88	89	8A	8B
0x04	8C	8D	8E	8F

PCI Byte Ordering

	31	16	15	0
0x00	88	89	8A	8B
0x04	8C	8D	8E	8F

Figure 46: Word Swap Enable Translation on 32-Bit PCI (No Byte Swap)

The only side effect for a little endian host that sets the Enable Endian Word Swap bit would be that the driver would have to perform an additional word swap on any 64-bit fields (e.g., a 64-bit physical address) that were given to the driver by the Network Operating System (NOS).

Little-endian hosts will not want to set the Enable Endian Byte Swap bit for target accesses. This bit is intended to be used by big endian systems that needed PCI data (little endian) translated back to big endian format.

Note: Some big endian systems automatically do this depending on the architecture of the host's PCI to memory interface.

The following figures show the translation of data when the Enable Endian Byte Swap bit is set:

Internal Byte Ordering

	31	16	15	0
0x00	88	89	8A	8B
0x04	8C	8D	8E	8F

PCI Byte Ordering

	31	16	15	0
0x00	8F	8E	8D	8C
0x04	8B	8A	89	88

Figure 47: Byte Swap Enable Translation on 32-Bit PCI (No Word Swap)

Internal Byte Ordering

	31	16	15	0
0x00	88	89	8A	8B
0x04	8C	8D	8E	8F

PCI Byte Ordering

	31	16	15	0
0x00	8B	8A	89	88
0x04	8F	8E	8D	8C

Figure 48: Byte and Word Swap Enable Translation on 32-Bit PCI

WORD SWAP DATA AND BYTE SWAP DATA BITS

The Word Swap Data, and Byte Swap Data bits effect how packet data is ordered on the PCI bus. These only affect how packet data is ordered, and do not affect non-frame data (i.e., buffer descriptors, statistics block, etc.). In other words, these bits effect how data is transferred to/from host send/receive buffers.

Example: If Ethernet controller were to receive a packet that had the following byte order:

01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10
D1	D2	D3	D4	D5	D6	S1	S2	S3	S4	S5	S6	T1	T2	IP1	IP2

Where:

- D1–D6 consists of the packet's destination address (Byte D0 is the first byte on the wire);
- S1–S6 is the source address;
- T1–T2 is the Ethernet type/length field;
- IP1–IP2 are the first two bytes of the IP header which immediately follow the type/length field.

The packet would be stored internally in big endian format:

Table 39: Big-Endian Internal Packet Data Format

B0	B1	B2	B3	B4	B5	B6	B7
63–56	55–48	47–40	39–32	31–24	23–16	15–8	7–0
D1	D2	D3	D4	D5	D6	S1	S2
S3	S4	S5	S6	T1	T2	IP1	IP2

However, when the data gets transferred across PCI, there could be confusion about the correct byte ordering because PCI is Little Endian whereas Ethernet controller is a Big Endian device. So, in order to provide flexibility for different host processor/memory architectures, Ethernet controller can order this data on PCI in four different ways depending on the settings of the Word Swap Data, and Byte Swap Data bits. The following figures illustrate how data would appear on the PCI AD[63:0] pins depending on the settings of those swap bits:

Word Swap Data = 0, and Byte Swap Data = 0

Table 40: 64-Bit PCI Bus (WSD = 0, BSD = 0)

B7	7B6	B5	B4	B3	B2	B1	B0
63–56	55–48	47–40	39–32	31–24	23–16	15–8	7–0
D1	D2	D3	D4	D5	D6	S1	S2
S3	S4	S5	S6	T1	T2	IP1	IP2

Table 41: 32-Bit PCI Bus (WSD = 0, BSD = 0)

B3	B2	B1	B0
31–24	23–16	15–8	7–0
D5	D6	S1	S2
D1	D2	D3	D4
T1	T2	IP1	IP2
S3	S4	S5	S6

Word Swap Data = 0, and Byte Swap Data = 1

Table 42: 64-Bit PCI Bus (WSD = 0, BSD = 1)

B7	B6	B5	B4	B3	B2	B1	B0
63–56	55–48	47–40	39–32	31–24	23–16	15–8	7–0
D4	D3	D2	D1	S2	S1	D6	D5
S6	S5	S4	S3	IP2	IP1	T2	T1

Table 43: 32-Bit PCI Bus (WSD = 0, BSD = 1)

B3	B2	B1	B0
31–24	23–16	15–8	7–0
S2	S1	D6	D5
D4	D3	D2	D1
IP2	IP1	T2	T1
S6	S5	S4	S3

Word Swap Data = 1, and Byte Swap Data = 0

Table 44: 64-Bit PCI Bus (WSD = 1, BSD = 0)

B7	B6	B5	B4	B3	B2	B1	B0
63–56	55–48	47–40	39–32	31–24	23–16	15–8	7–0
D5	D6	S1	S2	D1	D2	D3	D4
T1	T2	IP1	IP2	S3	S4	S5	S6

Table 45: 32-Bit PCI Bus (WSD = 1, BSD = 0)

B3	B2	B1	B0
31–24	23–16	15–8	7–0
D1	D2	D3	D4
D5	D6	S1	S2
S3	S4	S5	S6
T1	T2	IP1	IP2

Word Swap Data = 1, and Byte Swap Data = 1

Table 46: 64-Bit PCI Bus (WSD = 1, BSD = 1)

B7	B6	B5	B4	B3	B2	B1	B0
63–56	55–48	47–40	39–32	31–24	23–16	15–8	7–0
S2	S1	D6	D5	D4	D3	D2	D1
IP2	IP1	T2	T1	S6	S5	S4	S3

Table 47: 32-Bit PCI Bus (WSD = 1, BSD = 1)

B3	B2	B1	B0
31–24	23–16	15–8	7–0
D4	D3	D2	D1
S2	S1	D6	D5
S6	S5	S4	S3
IP2	IP1	T2	T1

So, for a little-endian (e.g., x86) host, software should set both the Word Swap Data, and Byte Swap Data bits. This is because a little endian host will expect the first byte on the wire (byte D1) to be placed into memory at the least significant (starting) address of the packet data.

WORD SWAP NON-FRAME DATA AND BYTE SWAP NON-FRAME DATA BITS

The Word Swap Non-Frame Data, and Byte Swap Non-Frame Data bits affect the byte ordering of certain shared memory data structures (buffer descriptors, statistics block, etc.) when those structures are transferred across PCI.

[Table 48](#) shows an example of how a Send Buffer Descriptor is stored internally in the Ethernet controller.

Table 48: Send Buffer Descriptor (Big-Endian 64-Bit format)

Byte #	0	1	2	3	4	5	6	7	
Bit #	63		48 47		32 31		16 15		0
	MSB				Host Address			LSB	0x00
	MSB	Length	LSB	Flags		Reserved		VLAN	0x08

Since the Ethernet controller uses a 64-bit memory subsystem, the above diagram is shown in 64-bit format. Furthermore, the table shows both the internal byte offset for each field and the bit position for each byte.

Note: This may seem confusing because big-endian notation normally has the bit positions incrementing from left to right. However, in this case, the bit positions are relevant because they correspond to the bit positions on PCI (AD[63:0]) if neither of the non-frame data swap bits are set. For clarification, the [Table 49](#) shows the same structure in 32-bit format.

Table 49: Send Buffer Descriptor (Big-Endian 32-Bit format)

Byte #	0	1	2	3	
Bit #	31		16 15		0
	MSB		Host Address		0x00
				LSB	0x04
	MSB	Length	LSB	Flags	0x08
		Reserved		VLAN	0x0C

To provide flexibility for different host processor/memory architectures, the Ethernet controller can order the data in memory in four different ways depending on the settings of the Word Swap Non-Frame Data and Byte Swap Non-Frame Data bits. The following tables show how data will appear depending on the settings of those swap bits:

Word Swap Non-Frame Data = 0 and Byte Swap Non-Frame Data = 0

This would require the software to use the following little-endian data structure on the host:

Table 50: Send Buffer Descriptor (Little-Endian 32-Bit format) with No Swapping

Byte #	3	2	1	0		
Bit #	31	16 15		0		
MSB	Host Address		VLAN	LSB	0x00 0x04	
	Reserved				0x08	
	Length	LSB		Flags	0x0C	

In this case, the data structure takes on a slightly new format because the words have been swapped.

Word Swap Non-Frame Data = 1 and Byte Swap Non-Frame Data = 0

This requires the software to use the following little-endian data structure on the host:

Table 51: Send Buffer Descriptor (Little-Endian 32-Bit format) with Word Swapping

Byte #	3	2	1	0	
Bit #	31	16 15		0	
MSB	Host Address		Flags	LSB	0x00 0x04
	Length	LSB			0x08
	Reserved			VLAN	0x0C

The disadvantage of this approach is if the host operating system supported a 64-bit data type for a physical address, the host device driver would have to swap the two 32-bit words that comprise the 64-bit address that the host operating system used.

Word Swap Non-Frame Data = 0 and Byte Swap Non-Frame Data = 1

This requires the software to use the following big-endian data structure on the host:

Table 52: Send Buffer Descriptor (Big-Endian 32-bit format) with Byte Swapping

Byte #	0	1	2	3		
Bit #	31	16 15		0		
MSB	Host Address		VLAN	LSB	0x00 0x04	
	Reserved				0x08	
	Length	LSB		Flags	0x0C	

Word Swap Non-Frame Data = 1 and Byte Swap Non-Frame Data = 1

This requires the software to use the following big-endian data structure on the host:

Table 53: Send Buffer Descriptor (Big-Endian 32-bit format) with Word and Byte Swapping

Byte #	0	1	2	3	
Bit #	31	16 15		0	
	MSB	Host Address			0x00 0x04
	MSB	Length	LSB	Flags	0x08
	Reserved		VLAN		0x0C

Section 9: Ethernet Link Configuration

OVERVIEW

The Ethernet controller supports multiple link operating modes. It can operate at multiple link speeds: 10 Mbps, 100 Mbps, or 1000 Mbps. It can also operate at half-duplex (IEEE 802.3 CSMA/CD) or full-duplex. The MAC is compliant with IEEE 802.3, IEEE 802.3u, IEEE 802.3x, and IEEE 802.3z specifications.

GMII/MII

The Gigabit Media Independent Interface (GMII) is normally used to interface the controller to a transceiver that supports Gigabit Ethernet over copper wiring (1000BASE-T). The Media Independent Interface (MII) is used to interface the controller to a transceiver that is capable of 10/100 Mbps Ethernet. Depending upon the link speed, driver software will need to configure the Ethernet controller to operate in either GMII mode or MII mode.

Note: The integrated PHY transceiver of Ethernet controllers is hardcoded with a PHY address of 1.

CONFIGURING THE ETHERNET CONTROLLER FOR GMII AND MII MODES

Configuring the Ethernet controller to operate in GMII or MII mode is simple. During initialization, software should configure the Ethernet_MAC_Mode.Port_Mode bits to a value that corresponds to the correct interface speed (01b for MII, 10b for GMII).

CONFIGURING How MAC DETECTS LINK UP/Down

The Ethernet controller has two different methods that it can use to determine if the Ethernet link is up or down. The link will be down if the Ethernet cable is not properly attached at both ends of the network. Link will be up only if the cable is properly attached and the devices at both ends of the cable recognize that link has been established. The device cannot successfully transfer packets on the link unless it determines that it has a valid link up.

The first method is called auto-polling. Software can enable auto-polling by setting the MI_Mode.Port_Polling bit. If enabled, the Ethernet controller periodically generates MDIO cycles to read the PHY's Link_Status bit in MII Status register. The link status from the auto-polling operation is then reported in the MI_Status_Register.Link_Status and Transmit_MAC_Status.Link_Up (see "[Transmit MAC Status Register \(Offset: 0x460\)](#)" on page 201) bits.

The second method involves using the Ethernet controller's LNKRDY input signal. This method allows the Ethernet controller to determine the link status based on the link status output from integrated PHY connected to LNKRDY input of MAC. The Transmit_MAC_Status.Link Up bit (see "[Transmit MAC Status Register \(Offset: 0x460\)](#)" on page 201) will reflect the link status input on LNKRDY signal to MAC from PHY. Host software can enable this method by clearing the MI_Mode.Port_Polling bit (bit-4 of offset 0x454).

The link state of the Ethernet controller can also be forced by disabling both the auto-polling function and the LNKRDY signal and forcing the link status by directly writing to the MI_Status.Link_Status bit.

LINK STATUS CHANGE INDICATIONS

It is advantageous for host software to know when the status of the Ethernet link has changed. To generate an interrupt to the host when link status changes, software should set the Ethernet_MAC_Event_Enable.Link_State_Changed bit (see “[EMAC Event Enable Register \(Offset: 0x408\)](#)” on page 193) and the Mode_Control.Interrupt_on_MAC_Attention bit (see “[Mode Control Register \(Offset: 0x6800\)](#)” on page 270). With this configuration, the Ethernet_MAC_Status.Link_State_Changed bit and Link_State_Changed bit in the status block (see “[Status Block](#)” on page 33) will be set when the link has changed state.

CONFIGURING THE GMII/MII PHY

GMII/MII transceivers (PHYs) contain registers that a software driver can manipulate to change parameters in the PHY. These parameters include the link speed or duplex that the PHY is currently running at, or the speed/duplex options that the PHY advertises during the auto-negotiation process. NIC device drivers will typically access PHY registers during the driver initialization process to configure the PHYs speed/duplex or to examine the results of the auto-negotiation process.

The integrated PHY registers are accessed via a process called MDIO. The integrated PHY is connected to the Ethernet controller through an internal MDIO bus (MDIO and MDC pins). Software accesses PHY's registers via MDIO through the Ethernet controller's MI_Communication register. The following example code describes accessing the PHY registers through the MI_Communication registers of the Ethernet controller.

Reading a PHY Register

```
// If auto-polling is enabled, temporarily disable it
If (AutoPolling_Enabled == TRUE) Then
Begin
    Mi_Mode.PortPolling = 0
End

// Setup the value that we are going to write to MI Communication register
// Set bit 27 to indicate a PHY read.
// Set bit 29 to indicate the start of a MDIO transaction
Value32 = ((PhyAddress << 21) | (PhyRegOffset << 16) | 0x28000000)

// Write value to MI communication register
Mi_Communication_Register = Value32

// Now read back MI Communication register until the start bit
// has been cleared or we have timed out (>5000 reads)
Loopcount = 5000
While (LoopCount > 0)
Begin
    Value32 = Mi_Communication_Register
    If (!(Value32 | 0x20000000)) then BREAK loop
    Else Loopcount--
End

// Print message if error
If (Value32 | 0x20000000) then
Begin
    // It a debug case - cannot read PHY
    Procedure (Print Error Message)
    Value32 = 0
End

// If auto-polling is enabled, turn it back on
If (AutoPolling_Enabled == TRUE) then
```

```
Begin
    Mi_Mode.PortPolling = 1
End

// Now return the value that we read (lower 16 bits of reg)
Return (Value32 & 0xffff)
```

Writing a PHY Register

```
// If auto-polling is enabled, temporarily disable it
If (AutoPolling_Enabled == TRUE) Then
Begin
    Mi_Mode.PortPolling = 0
End

// Setup the value that we are going to write to MI Communication register
// Set bit 26 set to indicate a PHY write.
// Set bit 29 to indicate the start of a MDIO transaction
// The lower 16 bits equal the value we want to write to the PHY register
Value32 = ((PhyAddress << 21) | (PhyRegOffset << 16) | RegValue | 0x24000000)

// Write value to MI communication register
Mi_Communication_Register = Value32

// Now read back MI Communication register until the start bit
// has been cleared or we have timed out (>5000 reads)
Loopcount = 5000
While (LoopCount > 0)
Begin
    Value32 = Mi_Communication_Register
    If (!(Value32 | 0x20000000)) then BREAK loop
    Else Loopcount--
End

// Print message if error
If (Value32 | 0x20000000) then
Begin
    // It a debug case - can't write PHY
    Procedure (Print Error Message)
    Value32 = 0
End

// If auto-polling is enabled, turn it back on
If (AutoPolling_Enabled == TRUE) Then
Begin
    Mi_Mode.PortPolling = 1
End
```

MDI REGISTER ACCESS

Configuring physical devices and querying the status of physical devices are done via the MDIO interface (MDC and MDIO).

Note: This procedure is PHY-independent. The MAC access to the PHY is the same for the entire NetXtreme family.

There are three modes in which the internal MII Management interface signals (MDC/MDIO) can be controlled for communication with the internal transceiver registers. These modes are as follows:

- Autopollling Mode. Enabled by setting the Enable bit in the MAC Ethernet MI Mode register. The device will poll for the link status bit in the transceiver.
- Command Control. Writing to the MI Communications register directly to either read or write the transceiver registers.
- Register Control. When enabled, the host writes the MDC clock and data values into the MDI Control register (see "[MDI Control Register \(Offset: 0x6844\)](#)" on page 276). The values in the register directly control the interface signals. This Mode is enabled by setting the MDI Select bit of the MDI Control register (offset: 0x6844).

Autopollling Mode has the lowest priority and it will be stalled any time there is an active operation through the MI Communications register. Register Control Mode has the highest priority and When this mode is enabled, the MI Communications register cannot be read or written.

OPERATIONAL CHARACTERISTICS

The interface between the MAC and physical devices is with the two signals of:

- MDIO clock (MDC)
- Bidirectional serial data (MDIO)

The details of the MDIO interface can be found in the IEEE 802.3 specification.

ACCESS METHODS

The MAC provides two methods to access the Physical Device registers via the MDIO interface:

- Traditional bit-bang method
- Auto-access method

Traditional Bit-Bang Method

In this method, software has to toggle the MDC and MDIO pins to access physical device registers. Software is responsible for providing the proper delay to satisfy timing requirements such as setup time, hold time, clock frequency, etc.

The MDI_Control_Register (see ["MDI Control Register \(Offset: 0x6844\)" on page 276](#)) controls the MDC and MDIO pins as follows:

- MDI_Control_Register.MDI_Clock: is used to clock MDC pin. If this bit is set, MDC is logic high. Otherwise, it is logic low.
- MDI_Control_Register.MDI_Select: This bit is used to select either the traditional bit-bang method or auto-access method. This bit must be set to 1 when the traditional bit-bang method is used.
- MDI_Control_Register.MDI_Enable: This bit is used to control bidirectional data pin. If this bit is set to 1, then MDI_Control_Register.MDI_Data is output. Otherwise, it is input.
- MDI_Control_Register.MDI_Data: This is used to control bidirectional MDIO pin.

Note: The auto-access method which is explained next is the recommended access method. This is because of additional software overhead required in maintaining the MDIO bus timing when using the Traditional bit-bang access method.

Auto-Access Method

The Ethernet controller has a built-in interface to access physical device registers without having to control MDC and MDIO pins by software/firmware. It provides an easy way to access the physical device register.

To use this mode, MDI_Control_Register.MDI_Select has to be cleared to 0. The MI_Communication_Register is used to access physical device.

Note: Programmers must be careful to wait for the start_busy bit to clear. Writing to the MI_Communication register prior to the completion of a previous MDI access will yield unpredictable MDI data. The previous access will not complete successfully.

Example: To read a 16-bit PHY register at offset 0x2 of a PHY device which is strapped to PHY address 1, perform the following steps:

1. MI_Communication_Register.Register_Address is set to 0x2.
2. MI_Communication_Register.PHY_Addr is set to 1.
3. MI_Communication_Register.Command is set to 0x2.
4. MI_Communication_Register.Start_Busy is set to 1.
5. Poll Until MI_Communication_Register.Start_Busy is cleared to 0.
6. MI_Communication_Register.Transaction_Data contains 16-bit data of the PHY register.

See ["Configuring the GMII/MII PHY" on page 111](#) for example code.

To write a value of 0x1000 into 16-bit PHY register at offset 0x0 of a PHY device which is strapped to PHY address 1, perform the following steps:

1. MI_Communication_Register.Register_Address is set to 0x0.
2. MI_Communication_Register.PHY_Addr is set to 1.
3. MI_Communication_Register.Command is set to 0x1.
4. MI_Communication_Register.Transaction_Data is set to 0x1000
5. MI_Communication_Register.Start_Busy is set to 1.
6. Poll Until MI_Communication_Register.Start_Busy is cleared to 0.

See “[Configuring the GMII/MII PHY](#)” on page 111 for example code.

WAKE ON LAN MODE/LOW-POWER

DESCRIPTION

The Ethernet controller uses the ACPI D3 hot/cold (low-power) state to conserve energy. The OS power management policy notifies device drivers to initiate power management transitions. The device driver should move the MAC into the D3 hot/cold power state—a response to the power management request. While the Ethernet controller is in a D3 state, the RX MAC will filter incoming packets. The RX MAC compares incoming traffic for Interesting Packet pattern matches. The Ethernet controller asserts the PCI PME signal, when a positive WOL packet comparison is made. The PME signal notifies the Operating System and host device driver to transition the MAC into the D0 (high power) state.

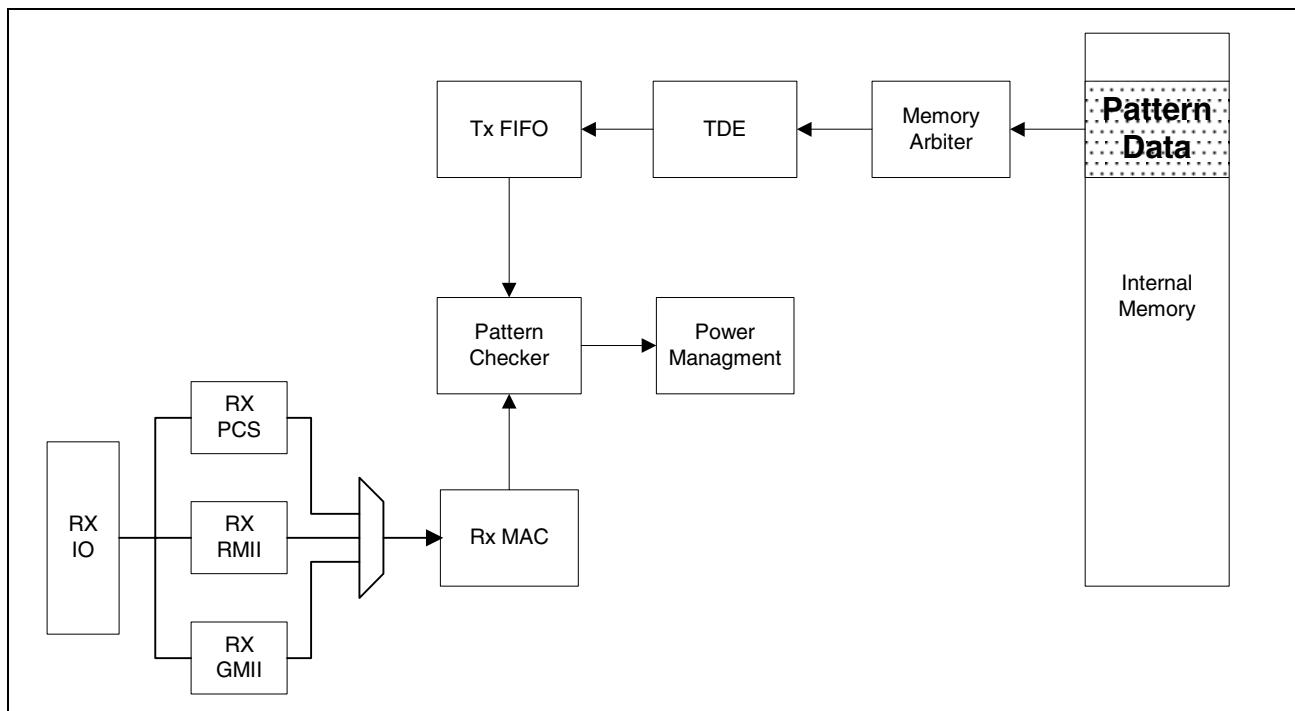
WOL mode is a combination of PHY and MAC configurations. Both the PHY and MAC must be configured correctly to enable Broadcom's WOL technology. The Ethernet controller provides WOL pattern filters for 10/100 wire speeds.

The Ethernet controller supports both Interesting Packet pattern matching the AMD Magic Packet proprietary technology for WOL. The WOL support for the AMD Magic Packet format does not require host software to configure a pattern filter. The Magic Packet comparison is made in hardware and is enabled through a register interface. The AMD Magic Packet can be either broadcast or directed, and must contain the receiver's MAC address at least six times (repeating) in the packet. The Magic Packet wake-up is configured different from pattern match wake-up.

The following components are involved in WOL operation:

- Internal memory
- WOL Pattern Pointer register
- WOL Pattern Configuration register
- WOL streams
- Pattern data structure
- GPIO
- Firmware mailbox
- PHY auto-negotiation
- Ethernet controller power management

FUNCTIONAL OVERVIEW


The Ethernet controller is capable of WOL in 10/100 Mbps for copper-based controllers.

Note: When configured for WOL in 1000-Mbps mode, the Ethernet controller draws more than the 375 mA allowed by the PCI specification.

The Ethernet controller uses the TX FIFO to store pattern data (see [Figure 49](#)). During WOL operation, the transmit engine is disabled and its FIFO is free for use. The TDE fetches data from the memory arbiter starting at a location specified in the WOL_Pattern_Pointer register. The WOL pattern checker pulls data off the TX FIFO for packet comparisons. The RX MAC will move incoming frame(s) to the pattern checker, and the remaining RX data path is not utilized. A state machine controls the Magic Packet comparisons. The WOL state machine will move out of an Idle state, when ACPI power management is enabled. The WOL state machine will clear the TX FIFO and Match register. The Match register indicates a positive Magic Packet comparison(s) on a stream.

In 10/100 Mbit mode, data is received once every four clock cycles. The pattern checker compares the first three patterns in the first cycle, the second three patterns in the second cycle, and the third three patterns in the last cycle. It is idle during the fourth cycle. In Gigabit mode, the pattern checker gets three pattern words from the FIFO at one time.

Figure 49: WOL Functional Block Diagram

OPERATIONAL CHARACTERISTICS

Internal Memory

The WOL pattern must be stored in the Ethernet controller miscellaneous memory region. All memory locations require the host software to reinitialize the WOL pattern before each D0 to D3 transition. The RX/TX MAC places packets into this internal memory and the WOL pattern is overwritten during normal operation. When the Ethernet controller operates in D0 state, internal data structures use the same memory location as the WOL pattern. Host software should re-initialize the WOL pattern before each WOL sleep transition.

Table 54 shows the required memory regions for the WOL pattern.

Table 54: Required Memory Regions for WOL Pattern

Internal Address Range	Size	Name
0x8000–0x8FFF	8 KB	Miscellaneous Memory Region

WOL Pattern Pointer Register

The WOL_Pattern_Pointer specifies a location within Ethernet controller address space where the pattern buffers reside (see “[WOL Pattern Pointer Register \(Offset: 0x430\)](#)” on page 196 for the register definition). The internal memory subsection discusses how host programmers can choose an address range. The WOL_Pattern_Pointer register uses a pointer value, not an internal memory location. The pointer value is calculated by dividing an internal memory location by the value 8. Do not program the WOL_Pattern_Pointer register with the actual internal memory location. Rather, host software must first convert the base address to a pointer value. The following is an example conversion from memory base to pointer values:

- 0x0000 (Misc Memory)/8 = 0x00 (required value)
- 0x400 (base addr)/8 = 0x80 (pointer value)
- 0x8000 (base addr)/8 = 0x1000 (pointer value)
- 0xF000 (base addr)/8 = 0x1E00 (pointer value)

WOL Pattern Configuration Register

The WOL_Pattern_Configuration register contains two programmable data fields. Both fields use different units of measurement, so the host programmer should be careful (see “[WOL Pattern Configuration Register \(Offset: 0x434\)](#)” on page 196 for the register definition). This register is used to position and extract data from RX Ethernet frames.

- Offset Field—The Offset field in the WOL_Pattern_Configuration register specifies a position in RX Ethernet frame(s), where comparisons for WOL patterns should begin. This register uses a unit of measurement specified in terms of 2-byte chunks. Software should not program this field with a byte value, but should first normalize to a 2-byte unit. Hardware cannot begin WOL comparisons on odd byte alignments (i.e., 3,5,7,9 offsets). Host software must begin all pattern matching on even byte boundaries (i.e., 2,4,6,8 offsets). The 2 bytes per unit forces even byte alignment.

Example:

- 0x14 (byte offset)/2 = 0x0A (register ready)
- 0x28 (byte offset)/2 = 0x14 (register ready)
- 0xFC (byte offset)/2 = 0x7E (register ready)
- Length Field—The Length field in the WOL_Pattern_Configuration register specifies the number of clock cycles required to compare a variable number of bytes, in the RX stream. The Length field uses a unit of measurement specified in terms of memory arbiter clock cycles. Software should not program this field with a byte value. The Length field should be programmed with the maximum number of clocks required to compare the largest pattern size for the nine streams (10/100 mode only).

Note: The Ethernet controller only supports one pattern stream at Gigabit wire speed, so the length field will always be the largest pattern size.

The programmer must use the following equation to calculate the number of clock cycles required to match patterns at 10/100 wire-speed: $(\text{Length}/2) * 3$ MA clocks. The equation breaks down as follows:

- Determine the number of bytes in the RX Ethernet frame to compare. This value is a byte length.
- The WOL pattern checker can compare two bytes simultaneously. Divide length by two bytes and round up to nearest integer value.
- The Ethernet controller compares 2 bytes every three memory arbiter (MA) clock cycles. Multiply $(\text{Length}/2)$ by three clock cycles.

Example: clock cycle calculations:

- Data stream length = 25 bytes
- $25 \text{ bytes}/2 = 12.5$ byte-pairs
- $\text{Round}(12.5) = 13$ byte-pairs
- $13 \text{ byte-pairs} * 3 \text{ clocks}/\text{byte-pairs} = 39 \text{ clocks}$ (register ready)
- Data stream length = 83 bytes
- $83 \text{ bytes}/2 = 41.5$ byte-pairs
- $\text{Round}(41.5) = 42$ byte-pairs
- $42 \text{ byte-pairs} * 3 \text{ clocks}/\text{byte-pair} = 126 \text{ clocks}$ (register ready)

WOL Streams

A stream is a comparison operation on RX frame(s). When the MAC is running at 10/100 Mbps wire speed, nine different patterns can be compared against the RX frame(s). The Ethernet controller moves RX frame(s) into nine parallel comparators, and the frame is matched simultaneously. The MAC is capable of filtering nine different patterns in 10/100 modes. The WOL pattern checker breaks frames into 2-byte pairs, so all nine comparators can begin matching data. In [Figure 50 on page 119](#), three Ethernet frames are compared against the nine available patterns.

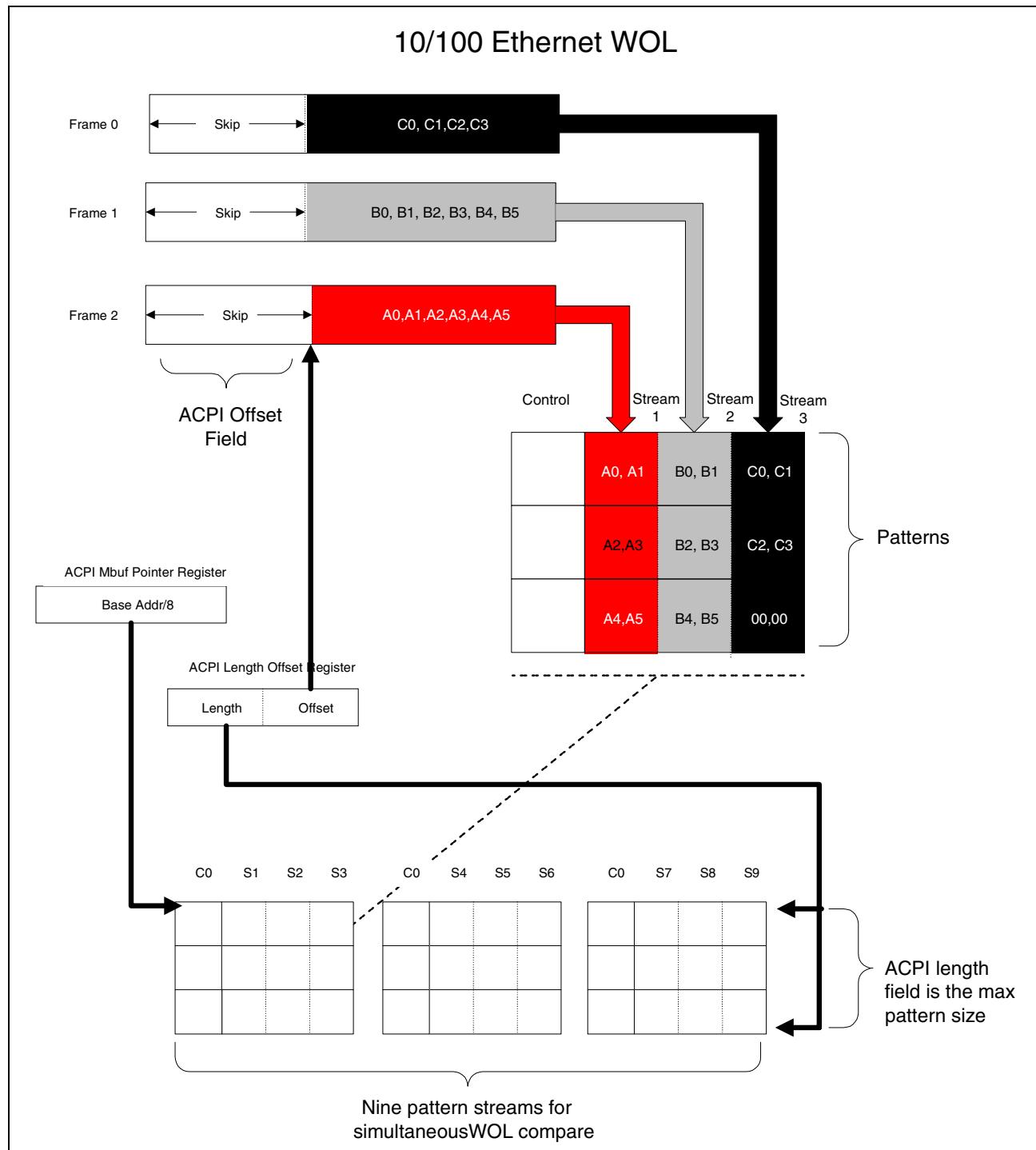
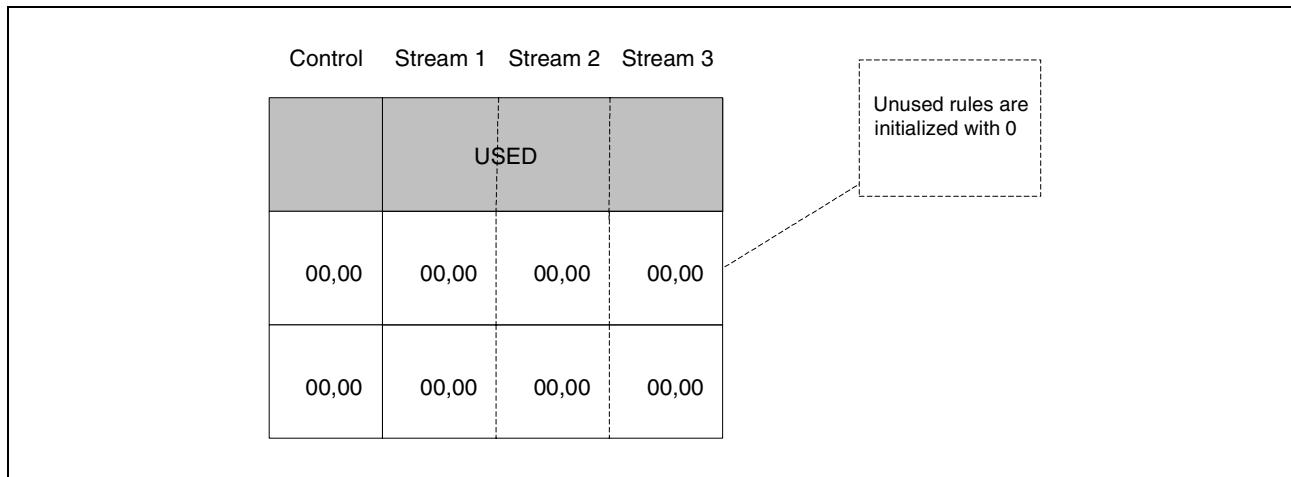



Figure 50: Comparing Ethernet Frames Against Available Patterns (10/100 Ethernet WOL)

Pattern Data Structure

The maximum number of entries in either 10/100 or 1000 mode is 128. The Ethernet controller cannot process a pattern that requires more than 128 entries. The size of an entry will vary based on 10/100 or 1000 Mbps mode. Additionally, all unused rows must be initialized with zeros. The WOL hardware cannot process an entry unless unused rows and rules have been zeroed out (see [Figure 51](#)).

Figure 51: Unused Rows and Rules Must Be Initialized with Zeros

Frame patterns are stored as data structures in memory. A control word is always present in a 64 bit entry/row. The control word describes proceeding data fields in the entry.

In 10/100 Mbps mode, one WOL entry requires three 64-bit wide rows (see [Table 55](#)). The total length of an entry is 192 bits. Each 64-bit row contains a 16-bit control word, which identifies byte enables (see [Table 56](#)). The remaining 48-bits contains 2-byte rules. The 2-byte rules are distributed across three streams: S, S+1, and S+2. The next row's 2-byte rules will correspond to three more streams: S+3, S+4, and S+5. Both [Table 55](#) and [Table 56 on page 121](#) use Sx notation to denote separate comparison streams. The D0 notation indicates the first 2 bytes in the packet stream are compared.

Table 55: 10/100 Mbps Mode Frame Patterns Memory

63	48	47	32	31	16	15	0
CTRL012		S0D0		S1D0		S2D0	
CTRL345		S3D0		S4D0		S5D0	
CTRL678		S6D0		S7D0		S8D0	

Table 56: Frame Control Field for 10/100 Mbps Mode

Bits	Field	Description	Access
63:62	Reserved		
61	S0 High Byte Enable	Enable S0 higher byte for comparison	R/W
60	S0 Low Byte Enable	Enable S0 lower byte for comparison	R/W
59	S1 High Byte Enable	Enable S1 higher byte for comparison	R/W
58	S1 Low Byte Enable	Enable S1 lower byte for comparison	R/W
57	S2 High Byte Enable	Enable S2 higher byte for comparison	R/W
56	S2 Low Byte Enable	Enable S2 lower byte for comparison	R/W
55:51	Reserved		
50	S0 Done	End of S0 Stream	R/W
49	S1 Done	End of S1 Stream	R/W
48	S2 Done	End of S2 Stream	R/W

[Table 57](#) shows an example of how 10/100 Mbps frame data is split up in the pattern data structure. Eight streams are compared simultaneously with three 64-bit rows comprising one WOL entry. Rows 0–2 compare frame data0 against eight rules. Rows 3–5 compare frame data1 against the next eight rules. Rows 6–9 compare data2 against the final eight rules. The eight rules may be uniquely defined for all three WOL entries.

Table 57: Example of Splitting 10/100 Mbps Frame Data in Pattern Data Structure

Data[63:48]	Data[47:32]	Data[31:16]	Data[15:0]
Control Bits	Stream 0 data 0	Stream 1 data 0	Stream 2 data 0
Control Bits	Stream 3 data 0	Stream 4 data 0	Stream 5 data 0
Control Bits	Stream 6 data 0	Stream 7 data 0	Stream 8 data 0
Control Bits	Stream 0 data 1	Stream 1 data 1	Stream 2 data 1
Control Bits	Stream 3 data 1	Stream 4 data 1	Stream 5 data 1
Control Bits	Stream 6 data 1	Stream 7 data 1	Stream 8 data 1
Control Bits	Stream 0 data 2	Stream 1 data 2	Stream 2 data 2
Control Bits	Stream 3 data 2	Stream 4 data 2	Stream 5 data 2
Control Bits	Stream 6 data 2	Stream 7 data 2	Stream 8 data 2

Firmware Mailbox

When the Ethernet controller initializes (the firmware bootcode is loaded from NVRAM when the chip powers on or when reset completes), the bootcode checks the T3_FIRMWARE_MAILBOX in shared memory. When the T3_MAGIC_NUM signature (0x4B657654) is present, the bootcode does not issue a hard reset to the PHY. This is especially important in WOL mode since the PHY should not be reset.

Before the host software issues a reset to the Ethernet controller, it must write the T3_MAGIC_NUM to the shared memory address T3_FIRMWARE_MAILBOX (0xb50). This address is a software mailbox, which bootcode polls before it resets the PHY. The bootcode will acknowledge the signature by writing the one's complement of the T3_MAGIC_NUM back into the T3_FIRMWARE_MAILBOX. If the T3_MAGIC_NUM is present, the bootcode will not reset the PHY. After resetting the Ethernet controller, host software should poll for the one's complement of the T3_MAGIC_NUM before it proceeds, otherwise, bootcode initialization may interfere with the host software initialization.

If the host software will be controlling the WOL configuration, it should write the DRV_WOL_SIGNATURE (0x474c0000) to the shared memory address DRV_WOL_MAILBOX (0xd30) so that the bootcode will not take over the WOL initialization. If the DRV_WOL_SIGNATURE is not present, and WOL has been enabled, the bootcode will assume that the host software is a legacy driver and skip the WOL initialization. If WOL is disabled, the bootcode will take over the WOL initialization based on the NVRAM configuration.

Table 58: Firmware Mailbox Initialization

Name	Address	Recommended Value
T3_FIRMWARE_MAILBOX	0x0B50	0x4B657654
DRV_WOL_MAILBOX	0xd30	0x474c0000

PHY Auto-Negotiation

The integrated PHY should be configured to auto-negotiate for a 10 Mbps connection (see [Table 59](#)). This step is required if the NIC must be placed into a D3 cold state. Half- or full-duplex operation is acceptable. Software must modify auto-advertise configurations in the PHY's MDI registers. The link partner will read advertisement settings to find a highest common capability. Since WOL requires 10 Mbps wire speed, the two PHYs will effectively auto-negotiate for half- or full-duplex connection.

Table 59: Recommended Settings for PHY Auto-Negotiation

Register	Bit	Recommended Value
Auto_Negotiation_Advertisement	10_BASE_TX_Half_Duplex	Enable
Auto_Negotiation_Advertisement	10_BASE_TX_Full_Duplex	Enable
Auto_Negotiation_Advertisement	100_BASE_TX_Half_Duplex	Disable
Auto_Negotiation_Advertisement	100_BASE_TX_Full_Duplex	Disable
1000BASE-T_Control	1000_BASE_TX_Half_Duplex	Disable
1000BASE-T_Control	1000_BASE_TX_Full_Duplex	Disable

Power Management

The clocking inputs need to be modified for WOL mode (see [Table 60](#)). The RX CPU is not required during WOL operation, so its clock can be disabled. The MAC has an internal phase-locked loop that clocks internal logic at 133 MHz. Software must select an alternate clocking source and then disable this PLL.

Table 60: WOL Mode Clock Inputs

Register	Bit	Recommended Value
PCI Clock_Control	RX_RISC_Clock_Disable	Set the bit to 1
PCI Clock_Control	Select_Alternate_Clock	Set the bit to 1
PCI Clock_Control	PLL133	Set the bit to 1

The settings shown in [Table 61](#) enable Magic Packet detection logic in the MAC. These setting also enable the MAC to assert PME on the PCI bus. The RX MAC should maintain the multicast and broadcast settings that were previously configured by the NOS. The Microsoft power management specification states:

“Only a frame that passes the device’s MAC, broadcast, or multicast address filter and matches on the previously loaded sample patterns will cause the wake-up signal to be asserted.”

The ACPI_Power-on bit needs to be set for pattern match, but not for Magic Packet recognition. The Magic Packet detection mechanism is separate from the pattern match mechanism. Host software may configure WOL using four filter permutations:

- Pattern match WOL disabled. Magic Packet disabled.
- Pattern match WOL enabled. Magic Packet disabled.
- Pattern match WOL disabled. Magic Packet enabled.
- Pattern match WOL enabled. Magic Packet enabled.

Table 61: Magic Packet Detection Logic Enable

Register	Bit(s)	Recommended Value
PCI Power_Management_Control/Status	PME_Enable	Enable
PCI Power_Management_Control/Status	Power_State	0x03
Ethernet_MAC_Mode	ACPI_Power-On	See above
Ethernet_MAC_Mode	Magic_Packet_Detection	See above

Integrated MACs

Table 62 lists the WOL mode control registers in the Ethernet controllers.

Table 62: Integrated MAC WOL Mode Control Registers

Register	Bit(s) Name	Description	Cross Reference
WOL_Pattern_Pointer	All	This register points to an internal memory location. Programmers should calculate pointer value by dividing a base address by 8.	"WOL Pattern Pointer Register (Offset: 0x430)" on page 196.
WOL_Pattern_Configuration	Length	The number of memory arbiter clock cycles needed to read X bytes in the RX stream/frame.	"WOL Pattern Configuration Register (Offset: 0x434)" on page 196.
	Offset	The number of bytes into the RX stream/frame to begin the pattern comparison.	
Ethernet_MAC_Mode	Port_Mode	This bit field specifies the type of interface the Ethernet controller port is currently using: MII, GMII, or none.	"EMAC Mode Register (Offset: 0x400)" on page 191.
	Magic_Packet_Detection	Enable WOL pattern filtering.	
	Promiscuous_mode	All frames are forwarded, without any filtering, when this bit is enabled.	
PCI Clock_Control	TX_RISC_Clock_Disable	Disable the clock to the transmit CPU.	"Clock Control Register (Offset: 0x74)" on page 156.
	RX_RISC_Clock_Disable	Disable the clock to the receive CPU.	
	Alternate_Clock_Source	Use an alternate clock as a reference, rather than the PLL 133.	
	PLL133	Disable the 133-MHz phase-locked loop.	
Misc Local Control	Misc_Pin_0_Output	GPIO pin 0.	"Miscellaneous Local Control Register (Offset: 0x6808)" on page 272.
	Misc_Pin_0_Output_Enable	When asserted, MAC drives pin output.	
	Misc_Pin_1_Output	GPIO pin 1.	
	Misc_Pin_1_Output_Enable	When asserted, MAC drives pin output.	
	Misc_Pin_2_Output	GPIO pin 2.	
	Misc_Pin_2_Output_Enable	When asserted, MAC drives pin output.	
Power Management Control/Status	PME_Enable	Enable the Ethernet controller to assert PME on PCI bus.	"Power Management Control/Status Register (Offset: 0x4C)" on page 152.
	Power_State	Set the ACPI power state: D0, D3.	

WOL DATA FLOW DIAGRAM

The Ethernet controller and PHY are both configured for WOL mode. The process is as follows:

1. Clear the PME_Status bit in the [“Power Management Control/Status Register \(Offset: 0x4C\)” on page 152](#). This bit must be cleared, so the PME interrupt is not immediately generated once the NIC is moved to the D3 state. The bit could be asserted from a previous D3–D0 transition.
2. Set the Mask_PCI Interrupt_Output bit in the Miscellaneous_Host_Control register (see [“Miscellaneous Host Control Register \(Offset: 0x68\)” on page 154](#)). This bit should be set, so the Ethernet controller does not generate interrupts during the WOL configuration of the PHY. The device driver's ISR may attempt to reset and reconfigure the PHY as part of an error recovery code path.
3. If host software must place the NIC into D3 cold state, the following step is necessary. Set the 10_Base_TX_Half_Duplex and 10_Base_TX_Full_Duplex Capability bits, in the Auto-Negotiation Advertisement Register. Clear the 100_Base_TX_Full_Half_Duplex and 100_Base_TX_Full_Duplex Capability bits, in the Auto-Negotiation Advertisement Register. Clear the 1000_Base_TX_Half_Duplex and 1000_Base_TX_Full_Duplex Capability bits, in the 1000BASE-T Control Register. The link partner will now only be able to auto-negotiate for 10-Mbps speed full/half-duplex.
4. Set the Restart_Auto_Negotiation bit in the MII Control Register. The integrated PHY and link partner will now reconfigure for 10 Mbps wire speed. Essentially, 10 Mbps link must be auto-negotiated or forced.
5. Disable the FHDE, RDE, TDE bits of the [“EMAC Mode Register \(Offset: 0x400\)” on page 191](#), and on-chip RISCs.
6. Host software must write the signature 0x4B657654 to internal memory address 0x0B50. Check for one's complement of 0x4B657654.
7. Enable the Wake_On_LAN bit in the AUXILIARY Control Register.
8. For Interesting Packet WOL Only: Set up the Interesting Packet pattern in Ethernet controller local memory.
9. For Interesting Packet WOL Only: Write a pointer value to the [“WOL Pattern Pointer Register \(Offset: 0x430\)” on page 196](#). This register uses a normalized pointer value, not a device base address. The value written to this register is BCM5700_BASE_ADDR/8. The base address must be a specific location in local memory: 0x8000, 0xC000, or 0xD000. The choice of memory location depends upon other MAC configurations, and the selection is not arbitrary.
10. For Interesting Packet WOL Only: Write the Offset field in the [“WOL Pattern Configuration Register \(Offset: 0x434\)” on page 196](#). The WOL pattern checker will position into received frames on two-byte intervals. The pattern checker compares two bytes in parallel, so host software should program the offset field accordingly. Host software may perceive this unit as OFFSET_BYT/2 units.
11. For Interesting Packet WOL Only: Write the Length field in the [“WOL Pattern Configuration Register \(Offset: 0x434\)” on page 196](#). The length value is specified in terms of Memory Arbitrator clock cycles, not bytes/words/dwords. A comprehensive discussion of how the clock cycles are calculated will be presented.
12. Set the Port_Mode field in the [“EMAC Mode Register \(Offset: 0x400\)” on page 191](#) to GMII mode. These bits enable the GMII between the MAC and internal PHY.
13. For Interesting Packet WOL Only: Enable the ACPI_Power-On bit in the [“EMAC Mode Register \(Offset: 0x400\)” on page 191](#). This bit will enable logic for D3 hot/cold transitions to D0 ACPI state. The MAC will also be capable of asserting PME on the PCI bus.
14. For Interesting Packet WOL Only: Enable the Magic_Packet_Detection bit in the [“EMAC Mode Register \(Offset: 0x400\)” on page 191](#). The WOL logic will compare RX frames for Magic Packet patterns.
15. Set the RX_RISC_Clock_Disable bit in the PCI Clock_Control register (see [“Power Management Control/Status Register \(Offset: 0x4C\)” on page 152](#)). The receive CPU will be stopped, and the clocking circuitry disabled.
16. Set the Enable_Alternate_Clock bit in the PCI Clock_Control register (see [“Clock Control Register \(Offset: 0x74\)” on page 156](#)). The Ethernet controller's 133-MHz Phase Locked Loop (PLL) no longer clocks internal logic and an alternate

clock reference is used. Set the PLL LowPowerClock bit while keeping the Enable_Alternate_Clock bit set. Wait at least 27 μ s and then clear the Enable_Alternate_Clock bit. The Ethernet controller's PLL is then switched to its lower power consumption mode.

17. In NIC applications, switch from VMAIN to VAUX in order to prevent a GRC reset. Set the required GPIOs of Ethernet controller if any of them are used for switching the power from VMAIN to VAUX.
18. Enable the RX MAC by setting the Enable bit of ["Receive MAC Mode Register \(Offset: 0x468\)" on page 202](#) and put it in promiscuous mode by setting the Promiscuous Mode bit of ["Receive MAC Mode Register \(Offset: 0x468\)" on page 202](#).
19. Enable the PME bit in the PCI ["Power Management Control/Status Register \(Offset: 0x4C\)" on page 152](#). The Ethernet controller asserts PME to wake up the system. Set the Power_State bits to D3 in the ["Power Management Control/Status Register \(Offset: 0x4C\)" on page 152](#).

FLOW CONTROL

DESCRIPTION

The Ethernet controller supports IEEE 802.3x flow control. Flow control is a switched Ethernet capability, where link partners may pause traffic. The 802.3x flow control specifies that a MAC sublayer may transmit pause frames. The pause frames instruct the MAC's link partner to wait a specified amount of time, before sending additional frames. This delay provides the MAC time to free packet buffers. Conversely, the MAC sublayer must also accept/receive pause frames. Flow control is used by switches and bridges to prevent clients of dissimilar speeds from exhausting switching packet buffers. Clients and servers may use flow control for similar reasons. A very important requirement is that both link partners must share a full-duplex connection for flow control to be enabled. IEEE 802.3x flow control does not operate on a half-duplex connection. More information on flow control can be found in [Appendix A "Flow Control" on page 383](#).

The following architectural blocks are integral to flow control:

- Transmit MAC
- Receive MAC
- Statistics Block
- PHY Auto-negotiation
- PHY Auto-Advertise

OPERATIONAL CHARACTERISTICS

The Ethernet controller implements pause functionality using Xon and Xoff states. The MAC will extract a pause quantum from a pause control frame. Then, the MAC will configure its internal timer with the pause_time specified by the link partner. Frames that are currently in the transmit engine will be completed before the transmit engine is inhibited. The MAC has moved flow control into a Xoff state once the transmit engine is inhibited. The transmit engine is not completely disabled since the IEEE 802.3 specification stipulates that MAC control frames should not be paused.

One of the following conditions moves the Ethernet controller into an Xon state:

- Link partner sends a pause frame with pause_time = 0.
- Internal pause timer expires.

Transmit MAC

The transmit MAC is responsible for sending flow control frames. Software enables the transmit MAC to send flow control frames by setting the Enable_Flow_Control bit in the Transmit_MAC_Mode register (see ["Transmit MAC Mode Register \(Offset: 0x45C\)" on page 199](#)). When software clears the Enable_Flow_Control bit, the transmit MAC will not generate flow control frames. The MAC_RX_MBUF_Low_Water_Mark register value triggers PAUSE frames to be transmitted when a threshold value is passed. Software may alter the watermark to tune system performance.

Table 63: Transmit MAC Watermark Recommendation

Register	Recommended Value
MAC_RX_MBUF_Low_Water_Mark	24

As soon as PAUSE frame is transmitted, any incoming packet can be dropped, and the ifInDiscard counter in statistics (see ["MIB Network Interface Card Statistics" on page 36](#)) will increase. When packet size is small (64 bytes) with 1000 Mbps, more frames can be dropped. Even if the PAUSE frame is transmitted, Pause frames cannot inhibit MAC control frames.

Low Water Mark Maximum Receive Frames register (see ["Low Watermark Maximum Receive Frame Register \(Offset: 0x504\)" on page 206](#)) control the number of good frames to receive after the RX MBUF Low Water Mark has been reached. After the RX MAC receives this number of frames, it will drop subsequent incoming frames until the MBUF High Water Mark is reached.

The IEEE 802.3 pause control frame contains a pause_time field. The Ethernet controller inserts a time quanta into the pause_time field. Software should set the Enable_Long_Pause bit in the Transmit_MAC_Mode register to configure long pause quanta. Clearing the Enable_Long_Pause bit will default the pause_time back to the shorter quanta. [Table 64](#) shows the pause quanta based on the Enable_Long_Pause bit setting.

Table 64: Pause Quanta

Enable_Long_Pause Bit	Pause_Time
DISABLED (0)	0x1FFF
ENABLED (1)	0xFFFF

Receive MAC

The Ethernet controller receive MAC's link partner may want to inhibit frame transmission until upstream resources become available. The receive MAC must be configured to accept IEEE 802.3x pause frames (see [Table 65](#)). Software should set the Enable_Flow_Control bit in the Receive_MAC_Mode_Control register to enable automatic processing of flow control frames. If software clears the Enable_Flow_Control bit, IEEE 802.3x pause frames will be discarded. The Keep_Pause bit in the Receive_MAC_Mode_Control register will instruct the RX engine to forward pause frames to host memory. Software may be interested in setting this bit for debugging or promiscuous/sniffer configurations. Passing pause frames to the host will increase DMA and protocol processing and consume available host buffers. The receive MAC will filter pause control frames when the Keep_Pause bit is disabled.

Table 65: Keep_Pause Recommended Value

Register.Bit	Recommended Value
Receive_MAC_Mode_Control.Keep_Pause	DISABLED

Statistics Block

The statistic block shown in [Table 66](#) is a common data structure. The relationships of flow control statistics are discussed in this section. Xon/Xoff statistical counters are related to internal Ethernet controller flow control states. Xon is associated to transmit enabled state and Xoff is associated to transmit disabled state. These Xon/Xoff states are not part of the IEEE 802.3 specification; the Ethernet controller uses Xon/Xoff to manage flow control state and transitions. The Xon/Xoff statistics provide programmers with a high level of granularity for the measurement of Ethernet controller flow control performance in a LAN (see [Appendix A "Flow Control" on page 383](#)).

Table 66: Statistic Block

Statistic	Description
xoffStateEntered	<p>This counter is bumped under the following conditions:</p> <ul style="list-style-type: none"> IEEE 802.3 MAC flow control pause frame received with valid CRC. (Pause_time > 0) The link partner requests transmission inhibit. <p>The counter increments independently of the enabled/disabled state of Receive_MAC_Mode_Control.Flow_Enabled.</p>
xonPauseFramesReceived	<p>This counter is incremented under the following conditions:</p> <ul style="list-style-type: none"> IEEE 802.3 MAC flow control pause frame received with valid CRC. (Pause_time == 0) The link partner no longer requires the device family to pause/wait/delay outgoing packets. <p>The counter increments independently of the enabled/disabled state of Receive_MAC_Mode_Control.Flow_Enabled.</p>
xoffPauseFramesReceived	<p>This counter is incremented under the following conditions:</p> <ul style="list-style-type: none"> IEEE 802.3 MAC flow control pause frame received with valid CRC. (Pause_time > 0) The link partner requires the BCM5761 family to pause/wait/delay outgoing packets. <p>The counter increments independently of the enabled/disabled state of Receive_MAC_Mode_Control.Flow_Enabled.</p>
outXon	<p>This counter is incremented under the following conditions:</p> <ul style="list-style-type: none"> Transmit_MAC_Mode_Control.Flow_Enabled bit is set. (MAC_RX_MBUF_Low_Water_Mark > Threshold Value) MAC resources are available. (pause_time == 0) 802.3 MAC flow control frame is sent.
outXoff	<p>This counter is incremented under the following conditions:</p> <ul style="list-style-type: none"> Transmit_MAC_Mode_Control.Flow_Enabled bit is set. (MAC_RX_MBUF_Low_Water_Mark < Threshold Value) MAC resources are running low and a pause is desired. (pause_time > 0) IEEE 802.3 MAC flow control frame is sent.

PHY Auto-Negotiation

The PHY encodes flow control capability into Fast Link Pulse (FLPs) bursts. Link partners will extract encoded flow control capability from FLPs and then create a Link Code Word (LCW). The LCW is a message, which contains a selector and technology ability field. The technology ability field contains a bit called Pause_Operation_for_Full_Duplex_Link (A5). Refer to Annex 28-B of the IEEE 802.3 specifications. The A5 bit signifies that a link partner has implemented pause functionality. If both link partners support auto-negotiation, they will further exchange data regarding flow control, using the next page bit in the LCW.

Auto-advertise is integrally tied to auto-negotiation. If link partner does not support pause functionality, the PHY Auto_Negotiation_Link_Partner_Ability_Register does not set the Pause_Capable bit. The Ethernet controller should not send pause frames to this link partner since flow control is not implemented or disabled. The Ethernet controller can still accept pause frames, but sending a pause frame does not yield a preferred result.

Integrated MACs

Table 67 lists the flow control registers in the Ethernet controllers.

Table 67: Integrated MAC Flow Control Registers

Register	Bit(s) Name	Description	Cross Reference
Receive MAC Mode	Enable_Flow_Control	Enable automatic processing of IEEE 802.3 flow control frames.	See “Receive MAC Mode Register (Offset: 0x468)” on page 202.
Transmit MAC Mode	Enable_Flow_Control	Enable automatic processing of IEEE 802.3 flow control frames.	See “Transmit MAC Mode Register (Offset: 0x45C)” on page 199.
MAC_RX_MBUF_Low_Water_Mark	All 32 bits	<p>The number of internal buffers that must be available before the RX engine can accept a frame from the wire.</p> <p>Threshold value for initiating flow control.</p>	See “Low Watermark Maximum Receive Frame Register (Offset: 0x504)” on page 206.

FLOW CONTROL INITIALIZATION PSEUDOCODE

```

//Check the Link State
If (MII_Status_Reg.Link_Status == TRUE) Then
{
    //Check PHY status register for full-duplex configuration
    If (MII_Aux_Status_Reg.Auto_Neg_HCD ==
        (1000_FULL_DUPLEX Or 100_FULL_DUPLEX Or 10_FULL_DUPLEX) ) Then
    {
        //Check if USER has forced either auto-negotiation or auto-advertise
        If ( (Driver_Auto_Neg_Variable == ENABLED) And
            (Driver_Auto_Advertise_Variable != FORCED_SPEED_DUPLEX) ) Then
        {
            // Probe Phy control registers for advertised flow control info
            // Expected abilities should match the configured abilities. Expected abilities
            // are based on the IEEE 803.3ab flow control subsection.
            If ( (Auto_Neg_Advertise_Reg.Asymmetric_Pause != 802.3ab_Table_28B-3) And
                (Auto_Neg_Advertise_Reg.Pause_Capable != 802.3ab_Table_28B-3) ) Then
            {
                //The current advertised state does not match 802.3 specifications
                Driver_Link_link_state = LINK_STATUS_DOWN
            }
        }
        Else
        {
            If (Auto_Neg_Advertise_Reg.Pause_Capable == ENABLED)
            {
                If ( Auto_Neg_Advertise_Reg.Asymmetric_Pause == ENABLED) ) Then
                {
                    If (Auto_Neg_Link_Partner_Ability_Reg.Pause_Capable == ENABLED)
                    {
                        If (Driver_Flow_Capability == FLOW_CONTROL_TRANSMIT_PAUSE \
                            | FLOW_CONTROL_RECEIVE_PAUSE)
                        {
                            Else If (Auto_Neg_Link_Partner_Ability_Reg.Asymmetric_Pause == \
                                ENABLED) Then
                        {
                            Then
                            {
                                Driver_Flow_Capability = FLOW_CONTROL_TRANSMIT_PAUSE \
                                    | FLOW_CONTROL_RECEIVE_PAUSE
                            }
                        }
                    }
                }
            }
        }
    }
}

```

```

        Driver_Flow_Capability = FLOW_CONTROL_RECEIVE_PAUSE
    }
    Else
    {
        Driver_Flow_Capability = NONE
    }
}
//The local physical layer was not configured to advertise Asymmetric
pause
Else
{
    If  (Auto_Neg_Link_Partner_Ability_Reg.Pause_Capable == ENABLED)
Then
{
    {
        Driver_Flow_Capability = FLOW_CONTROL_TRANSMIT_PAUSE \
            | FLOW_CONTROL_RECEIVE_PAUSE
    }
    Else
    {
        Driver_Flow_Capability = NONE
    }
}
}
// The local physical layer was not configured to advertise Pause capability
Else If  (Auto_Neg_Advertise_Reg.Asymmetric_Pause == ENABLED) Then
{
    If  (Auto_Neg_Link_Partner_Ability_Reg.Pause_Capable == ENABLED) Then
    {
        Driver_Flow_Capability = FLOW_CONTROL_TRANSMIT_PAUSE
    }
    Else
    {
        Driver_Flow_Capability = NONE
    }
}
}
} //Link Status is up
} // Auto negotiation was not disabled && Speed Duplex was not forced
Else
{
    // The use forced speed/duplex, so the partner's flow control capabilities are
    // indeterminate - software cannot use the Link_Partner_Ability
    // registers.
    Driver_Flow_Capability= DISABLED
}
}
} //The current link is full-duplex at 10/100/1000 wire speeds
Else
{
    //Full-Duplex mode is not available or forced half-duplex
    //Flow control is not available in half-duplex mode.
    Driver_Flow_Capability = NONE
}
}
//Configure MAC Flow Control Registers
if ( Driver_Flow_Capability & FLOW_CONTROL_RECEIVE_PAUSE )
{
    Receive_MAC_Mode_Control_Register.Enable_Flow_Control = ENABLED
}

```

```
if ( Driver_Flow_Capability & FLOW_CONTROL_TRANSMIT_PAUSE ) Then
{
    Transmit_MAC_Mode_Control_Register.Enable_Flow_Control = ENABLED
}
} // Link is up on the local PHY
```

Section 10: Interrupt Processing

HOST COALESCING

Interrupt coalescing (or interrupt moderation) is a common technique used by NIC vendors to increase the performance of NICs. High-level descriptions of the benefits of interrupt coalescing can be found at:

- <http://www.microsoft.com/HWDEV/devdes/optinic.htm>
- <http://support.microsoft.com/support/kb/articles/Q170/6/43.ASP>
- <http://msdn.microsoft.com/library/books/serverdg/networkadapterrequirements.htm>

DESCRIPTION

The Ethernet controller supports the concept of host coalescing. Host coalescing controls when status information is returned to the host, and when interrupts are generated. The Ethernet controller provides a number of SW configurable registers that control when/how it updates the host with status information and how often it asserts an interrupt.

When the Ethernet controller has completed transmit or receive events, it updates a Status block in host memory. This status block contains information that tells the host which transmit buffers have been DMAed by the NIC, and which receive Buffer Descriptors (BDs) have been consumed by a newly arrived received packet. Normally, the host will check this status block whenever an interrupt is generated. In addition, the host could also poll the status block to determine whether or not it had been updated by the hardware since the last time the host had read the status block (this is called during interrupt processing).

Whenever the NIC updates the status block, it will make a decision about whether to assert the interrupt line (INTA) or not. The Ethernet controller has special interrupt avoidance mechanisms that allow the host to tell the NIC not to generate an interrupt when it writes a status block back to the host. In addition, there are also mechanisms that allow host SW to control when and how often the status block is updated.

Example: The host could configure the NIC to only update status block after it receives two packets, as opposed to one packet. These mechanisms are documented in more detail to follow.

OPERATIONAL CHARACTERISTICS

The Ethernet controller DMAs the status block to host memory before a line interrupt or MSI is generated. The host ISR reads the update bit at the top of the status block and checks whether this bit is set to 1 or not. When set to 1, the updated bit of status block indicates the host that the status block has been refreshed by the MAC. The ISR must then write to clear/de-assert this bit to dirty the status block, and then the ISR may proceed to read the updated producer/consumer index pointers. This mechanism allows host system software to determine if the status block has been updated. Due to various asynchronous timing issues (dependent upon platform) the ISR may occasionally see stale data. The ISR may either spin and wait for the status block DMA to complete and explicitly flush the status block or just wait for the next line interrupt.

REGISTERS

The Ethernet controller supports a variety of registers that affect status block updates and interrupt generation (see Table 68).

Table 68: Interrupt-Related Registers

Register	Cross Reference
Miscellaneous Host Control register. The two bits of this register that are related to interrupts are: • Mask PCI Interrupt Output (aka Mask Interrupt) bit • Clear Interrupt INTA bit	"Miscellaneous Host Control Register (Offset: 0x68)" on page 154.
Miscellaneous Local Control register. The two bits of this register that are related to interrupts are: • Set Interrupt bit • Clear Interrupt bit	"Miscellaneous Local Control Register (Offset: 0x6808)" on page 272.
Interrupt Mailbox 0 register	"Interrupt Mailbox 0 Register (Offset: 0x5800)" on page 264 for host standard and flat modes and "Other Interrupt Mailbox Register (Offset: 0x5808–0x5818)" on page 264 for indirect mode.
Receive Coalescing Ticks register	"Receive Coalescing Ticks Register (Offset: 0x3C08)" on page 244.
Send Coalescing Ticks register	"Send Max Coalesced BD Count Register (Offset: 0x3C14)" on page 245.
Receive Max Coalesced BD Count register	"Receive Max Coalesced BD Count Register (Offset: 0x3C10)" on page 245.
Send Max Coalesced BD Count register	"Send Max Coalesced BD Count Register (Offset: 0x3C14)" on page 245.
Receive Max Coalesced BD Count During Interrupt register	"Receive Max Coalesced BD Count Register (Offset: 0x3C10)" on page 245.
Send Max Coalesced BD Count During Interrupt register	"Send Max Coalesced BD Count Register (Offset: 0x3C14)" on page 245.

MSI

PCI Specification 2.2 defines a new mechanism for a device to request services by its device driver. It is called Message Signaled Interrupt (MSI). MSI will eventually deprecate the traditional interrupt mechanism. In MSI, device DMA's a specified DWORD data to a specified host address if it needs to request services by its device driver. The MSI state machine can be enabled/disabled by setting/resetting the Enable bit of MSI Mode register (offset: 0x6000). By default, this bit is set to 1 indicating that the MSI state machine is enabled. The main advantages of MSI generation versus using a traditional interrupt are as follows:

- Eliminates the need for interrupt signal trace on the PCI device.
- Eliminates the need to perform a dummy read from the device by the device driver in its interrupt service routine. The dummy read is done at the beginning of ISR to force all posted memory writes to be flushed to the host memory.

TRADITIONAL INTERRUPT SCHEME

A simplified block diagram showing traditional interrupt scheme is depicted in [Figure 52](#).

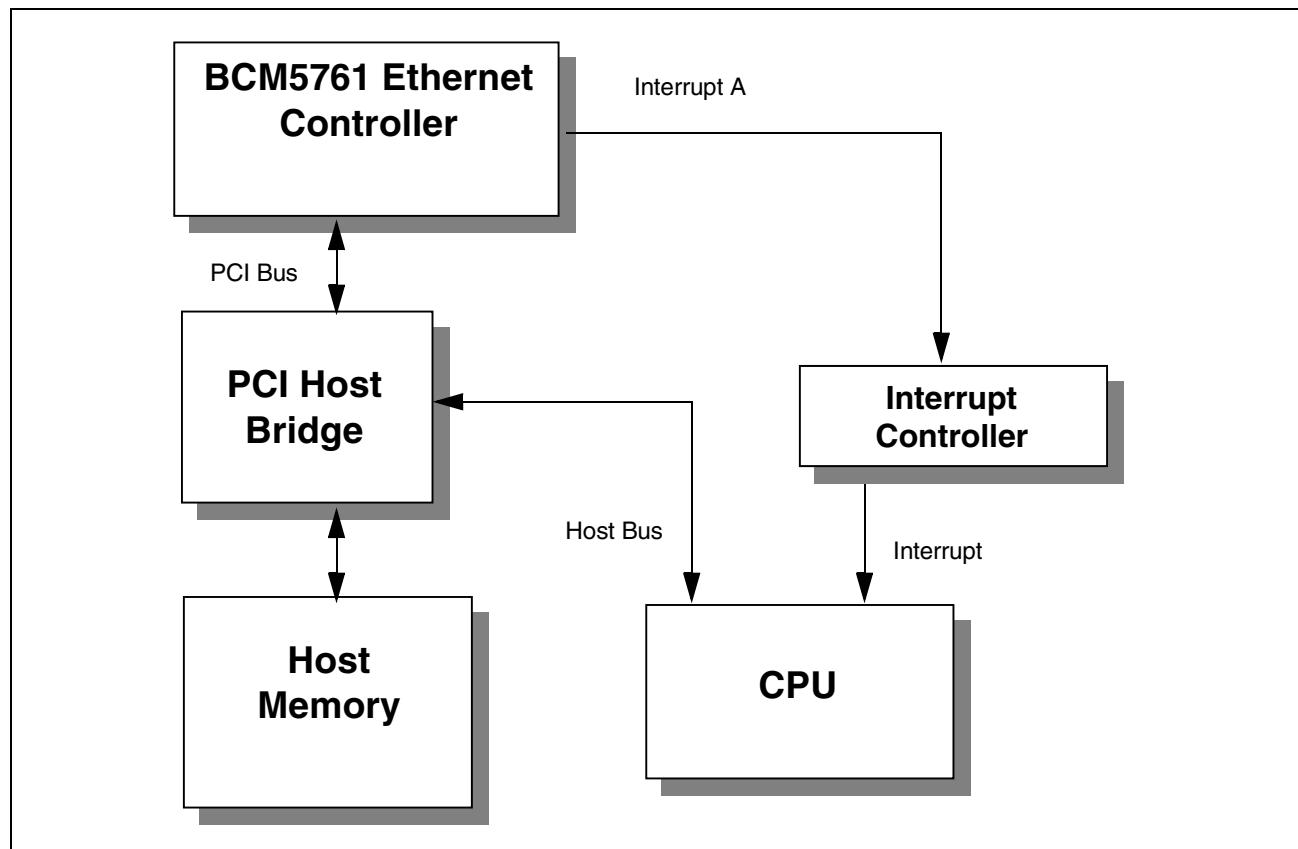


Figure 52: Traditional Interrupt Scheme

An example is provided to clarify second issue in traditional interrupt scheme. The Ethernet controller receives one or more packets from the networks. The Ethernet controller does the following:

- DMAs data of received packets to the host.
- DMAs receive buffer descriptors to Receive Return Ring in the host memory.
- DMAs status block to the host memory.
- Generates an interrupt to request its device driver for processing.

The writes are posted and are actually performed at some later time by the PCI host bridge. When interrupt service routine of device driver is executed, the driver reads the status block from the host memory and finds that status block does not contain latest index information if the writes for status block are not performed by the PCI host bridge yet. The scheme to resolve this problem is to do a dummy read of the Ethernet controller in the beginning of the interrupt service routine. The dummy read has to traverse the same bridge that memory writes from the Ethernet controller have to traverse to get to the host memory. The ordering rules for bridges dictate that the bridge must flush its posted write buffers before permitting a read to traverse the bridge. As a result, writes for status block are flushed to the host memory by the bridge before dummy read cycle is completed.

MESSAGE SIGNALLED INTERRUPT

A simplified block diagram showing a possible MSI scheme is depicted in [Figure 53](#).

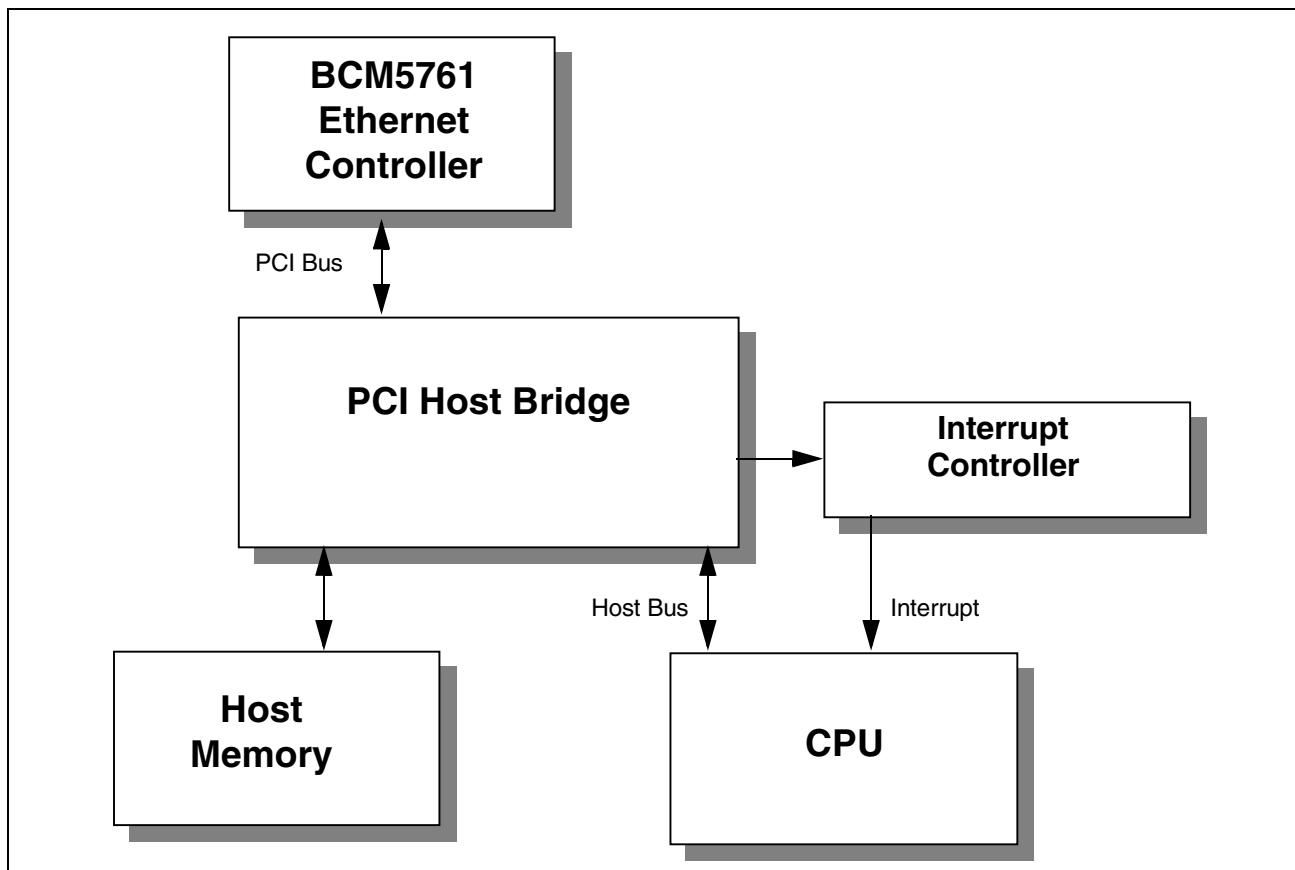


Figure 53: Message-Signaled Interrupt Scheme

A similar example in traditional interrupt scheme is provided to illustrate the MSI concept. The Ethernet controller receives one or more packets from the networks. The Ethernet controller does the following:

- DMAs data of received packets to the host.
- DMAs receive buffer descriptors to receive return ring in the host memory.
- DMAs status block to the host memory.
- Writes specified DWORD data to specified host address.

In this mode, the Ethernet controller writes DWORD data to specified host address instead of generating an interrupt. The specified data and address are configurable. The specified address is typically a memory-mapped IO port within the PCI host bridge. The PCI host bridge is the gateway to the main memory controller. This means that the DWORD data write (MSI message) to PCI host bridge is in the posted write buffers and was posted after the writes for the status block update. It is the rule that PCI host bridge must perform posted writes in the same order that they were received. This means that by the time MSI message arrives at the PCI host bridge, the status block has already been posted to the host memory. Upon receipt of the MSI message write, the PCI host bridge generates the interrupt request to the processor. Interrupt service routine of the device driver is invoked. It is not necessary to do a dummy read because updated status block is already in the host memory.

PCI CONFIGURATION REGISTERS

Operating system/system software can configure the specified DWORD data and specified 64-bit host address for the device with MSI_DATA (offset: 0x64) and MSI_Address register (offset: 0x5c), respectively.

MSI Address

This is a 64-bit field. MSI address at offset 0x5c and 0x60 should be programmed with the low-order and high-order bits of the 64-bit physical address. If the host only supports 32-bit physical address, the high-order address should be programmed with zeros.

MSI Data

This is a 16-bit field. The least significant three bits can be modified by the Ethernet controller when it writes MSI message to host. The DWORD data for the MSI message is depicted as shown in [Figure 54](#).

Figure 54: MSI Data Field

The Ethernet controller can support up to eight message types, and these MSI messages can be generated by either of the two sources of:

- Host coalescing engine
- Firmware

HOST COALESCING ENGINE

After the host coalescing engine updates the status block on the host (due to receive indication, transmit completion, and so on), it either generates an interrupt or writes a MSI message if MSI is enabled. The least significant 3-bits of the MSI message originating from host coalescing block is configurable and can be configured by programming bits 4, 5, and 6 of the Host_Coalescing_Mode register. The default of these bits is zeros.

FIRMWARE

The Ethernet controller provides a way for firmware executed by RX RISC to generate MSI messages. Firmware can generate MSI messages by using MSI_FIFO_Access register (offset: 0x6008).

Example: If firmware wants to generate an MSI message with least significant 3-bit as 0x2, it will write 2 to MSI_FIFO_Access register. It also needs to verify that the MSI message is written successfully by reading back MSI_FIFO_Access Overflow. If this bit is zero, then the MSI message is encoded successfully and will be sent to HOST. Otherwise, the message is not encoded.

Note: Without any special firmware supporting multiple MSIs, the device can generate only 1 MSI message even though the device requests for 8 MSI messages through Multiple Message Capable field (bits 3:1) of Message Control register (offset: 0x5A). The least significant 3-bits of the MSI message generated by the device are always taken from bits 6:4 of Host_Coalescing_Mode register (offset: 0x3C00).

BASIC DRIVER INTERRUPT PROCESSING FLOW

FLOWCHART FOR SERVICING AN INTERRUPT

The following figure shows the basic driver interrupt service routine flow.

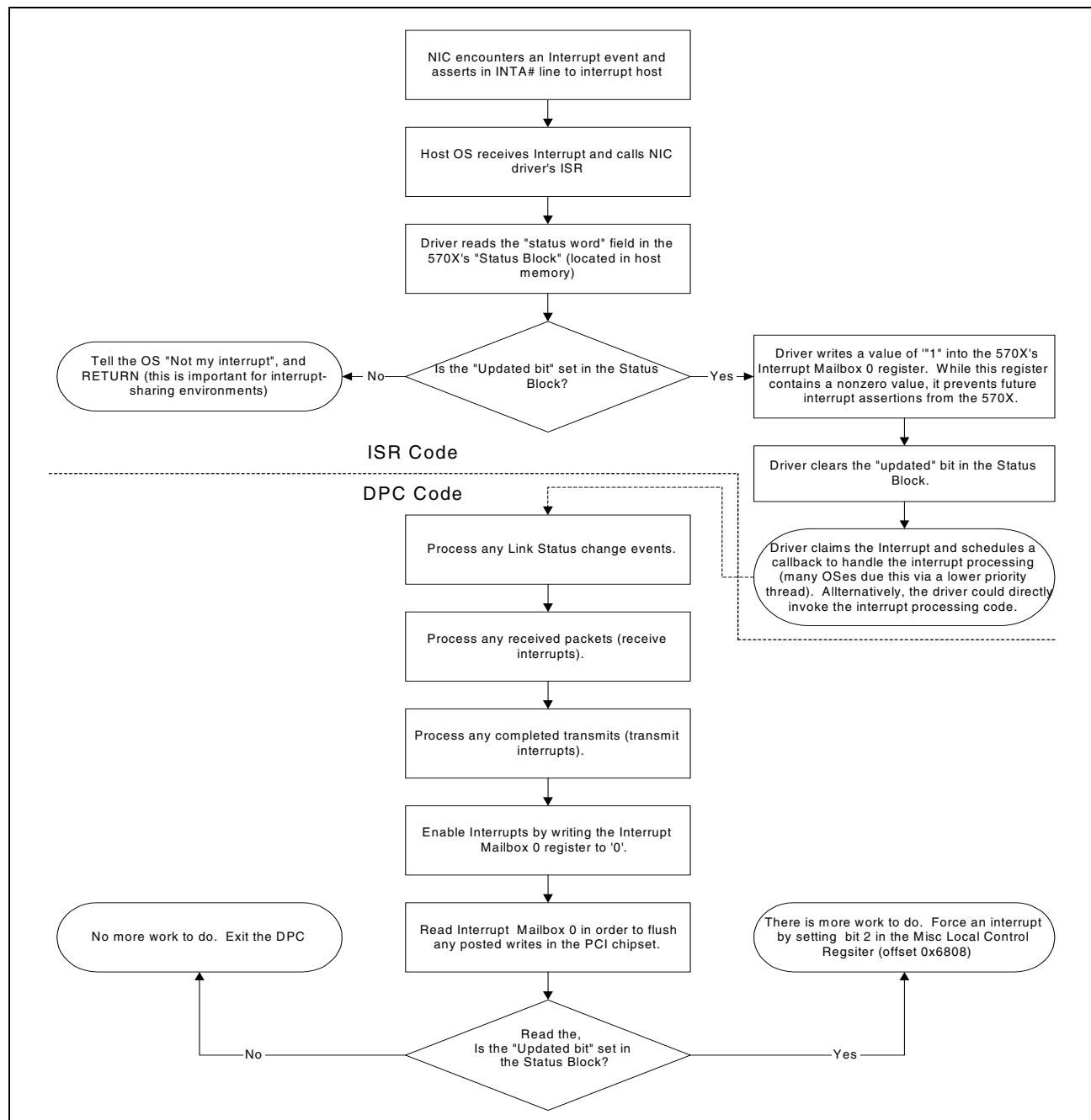


Figure 55: Basic Driver Interrupt Service Routine Flow

INTERRUPT PROCEDURE

1. Acknowledge interrupt. Write a nonzero value (i.e., value = 1) to the interrupt mailbox 0 (see ["Interrupt Mailbox 0 Register \(Offset: 0x5800\)" on page 264](#) for host standard and flat modes and ["Other Interrupt Mailbox Register \(Offset: 0x5808–0x5818\)" on page 264](#) for indirect mode) to indicate that the driver is currently processing the interrupt. This step disables device interrupts except during interrupt feature.
2. Read and save the value of the Status Tag field of the Status Block (see ["Status Block" on page 33](#)).
3. Claim interrupt. Determine if the Ethernet controller action is required. Read the Updated bit of the status word (see [Table 19 on page 37](#)). If the Updated bit is asserted, then the host coalescing engine has updated the status block.
4. Clear the Updated bit of the status word (see [Table 19 on page 37](#)). This indicates that the host driver either has or will touch the status block. If a during interrupt event is driven, the host driver can examine the Updated bit to determine if a fresh status block has been moved to host memory space.
5. Check for RX traffic.
 - Loop through enabled RX Return Rings (1 to 16).
 - Check for difference between RX Return Ring Producer index (Status block) and RX Return Ring Consumer index (value written to mailbox on previous call) are the number of frames to process for RX Return Ring.
 - Process the packet.
 - Update the RX Return Ring consumer pointer in each mailbox for new RX frames.
6. Check for TX completes.
 - Loop through enabled TX Send Rings.
 - Check for difference between previous consumer index (software kept) and current consumer index in the status block. These are the TX BDs which can be made available to next send operation.
 - Update the previous consumer index (i.e., next call) to the value of the status block consumer index.
7. Compare the current value of the Status Tag to the saved value of the Status Tag. Flush status block (i.e., force update of status blocks cached by PCI bridge).
 - Read interrupt mailbox (see ["Interrupt Mailbox 0 Register \(Offset: 0x5800\)" on page 264](#) for host standard and flat modes and ["Other Interrupt Mailbox Register \(Offset: 0x5808–0x5818\)" on page 264](#) for indirect mode).
 - Check the Updated bit in the status word (see [Table 19 on page 37](#)) located in the status block. If the Updated bit is asserted, then new data has been DMAed to the host. Repeat steps 5 and 6.
8. Check the Error bit in status word (optional, see [Table 19 on page 37](#)). The driver may check the state machine/FTQ status registers for various attentions.
9. Enable interrupts. When Status Tagged Status Mode bit of the Miscellaneous Host Control register (see ["Miscellaneous Host Control Register \(Offset: 0x68\)" on page 154](#)) is set to 1, then write the saved Status Tag to the upper 8 bits of Interrupt Mailbox 0, and 0 to the remaining bits (23 down to 0) to indicate that the ISR is done processing RX/TX. Otherwise, write 0 to Interrupt Mailbox 0 register. This step also clears existing interrupts.

OTHER CONFIGURATION CONTROLS

BROADCOM MASK MODE

Enabled by setting the Mask_Interrupt_Mode bit (bit 8) of the Miscellaneous Host Control register (see “[Miscellaneous Host Control Register \(Offset: 0x68\)](#)” on page 154). When enabled, setting the mask bit of the Miscellaneous Host Control register will mask (de-assert) the $\overline{\text{INTA}}$ signal at the pin, but it will not clear the interrupt state and it will not latch the $\overline{\text{INTA}}$ value. Clearing the mask bit will enable the interrupt state to propagate to the $\overline{\text{INTA}}$ signal.

The During Interrupt Coalescence registers are only used when the Mailbox 0 is set.

BROADCOM TAGGED STATUS MODE

Enabled by setting the Status Tagged Status Mode bit of the Miscellaneous Host Control register (see “[Miscellaneous Host Control Register \(Offset: 0x68\)](#)” on page 154). When enabled, a unique eight-bit tag value will be inserted into the Status Block Status Tag at location 7:0. The Status Tag can be returned to the Mailbox 0 register at location 31:24 by the host driver. When the Mailbox 0 register field 23:0 is written with a zero value, the tag field of the Mailbox 0 register is compared with the tag field of the last Status Block to be DMAed to the host. If the tag returned is not equivalent to the tag of the first Status Block DMAed, the interrupt status is entered.

CLEAR TICKS ON BD EVENTS MODE

Enabled by setting the Clear Ticks Mode on RX or the Clear Ticks Mode on TX bits of the Host Coalescing Mode register (see “[Miscellaneous Host Control Register \(Offset: 0x68\)](#)” on page 154). When enabled, the counters initialize to the idle state and begin counting only after a receive or transmit BD event is detected.

NO INTERRUPT ON FORCE UPDATE

Enabled by setting the No Interrupt on Force bit of the Host Coalescing Mode register (see “[Host Coalescing Status Register \(Offset: 0x3C04\)](#)” on page 244). When enabled, writing the Force update bit of the Host Coalescing Mode register will cause a status block update without a corresponding interrupt event.

NO INTERRUPT ON DMAD FORCE

Enabled by setting the No Interrupt on DMAD force bit of the Host Coalescing Mode register (see “[Host Coalescing Status Register \(Offset: 0x3C04\)](#)” on page 244). When enabled, the BD_FLAG_COAL_NOW bit of the buffer descriptor may be set to force a status block update without a corresponding interrupt.

Section 11: Text Console Redirect

The BCM5761 introduces a LAN controller feature known as Text Console Redirect. For detailed information regarding this feature, refer to Broadcom Application Note 5761-AN10X-R.

Section 12: Ethernet Controller Register Definitions

Table 69: Register Access Legend

Item	Description
R, RO	Read Only
FW-RW	Readable and Writeable by controller internal CPU only. Not accessible from host CPU.
W1	Write from PCI function #1
Host RW	Readable and Writeable by host CPU only.
Host RO	Read only by host CPU.
W2C	Write to clear
RW2C	Read and Write to Clear
RW1CS	Read/Write 1 to clear and sticky (reset only by POR reset - perst_n cannot reset this bit)
RWS	Read/Write Sticky
ROS	Read Only Sticky
W0C	Write '0' to clear
W1	Write 1 but read will always return 0
NA	Not Applicable

PCI CONFIGURATION REGISTERS

This section describes the registers required by PCI Express specifications for configuration. The primary reset for these registers is PCIe Reset.

DEVICE ID & VENDOR ID REGISTER (OFFSET: 0x00)

This register is reset by Hard Reset.

Table 70: Device ID & Vendor ID Register (Offset: 0x00)

Name	Bits	Access	Default Value	Description
Device ID	31:16	FW-RW Host-RO	–	For function 0, 0x1680 for BCM5761E and 0x1681 for BCM5761 For function 1 (UART), 0x160A
Vendor ID	15:0	FW-RW Host-RO	0x14E4	–

STATUS & COMMAND REGISTER (OFFSET: 0x04)

This register is reset by PCIe Reset.

Table 71: Status & Command Register (Offset: 0x04)

Name	Bits	Access	Default Value	Description
Detected Parity Error	31	R/W2C	0x0	Indicates a data parity error was detected even if parity reporting is not enabled.
Signaled System Error	30	R/W2C	0x0	Indicates this device generated a system error After sending an error_fatal or error_nonfatal message this bit get set.
Received Master Abort	29	R/W2C	0x0	Indicates this device was a bus master and transaction was terminated with a master abort.
Received Target Abort	28	R/W2C	0x0	Indicates this device was a bus master and received a target abort.
Signaled Target Abort	27	R/W2C	0x0	Indicates this device initiated a target-abort. This bit is only set if an external master disappears during a target operation.
DEVSEL Timing	26:25	RO	0x0	N/A for PCIe device. Hardwired to 0x0
Master Data Parity Error	24	R/W2C	0x0	Indicates that this device was a bus master when a parity error was detected and reporting of parity errors is enabled. This device is capable of operating with this bit set.
Fast Back-to-back capable	23	RO	0x0	Indicates whether fast back-to-back transactions can be accepted when transactions are not to the same agent
Reserved	22	RO	0x0	
66-MHz Capable	21	RO	0x0	N/A for PCIe device. Hardwired to 0x0
Capabilities List	20	RO	0x1	Indicates whether this device has a capabilities list. The device has a capabilities list, so this bit is hardwired to 1.
Interrupt Status	19	RO	0x0	Indicates this device generated an interrupt
Reserved	18:16	RO	0x0	
Reserved	15:11	RO	0x00	
Interrupt Disable	10	RW	0x0	Setting this bit 1 disables the device from generating interrupt on the PCIe bus. This bit does not affect the internal state of the interrupt request.
Fast Back-to-back Enable	9	RO	0x0	Enables fast back-to-back transactions to different devices. This device does not support this capability, therefore, this bit is hardwired to 0
System Error Enable	8	RW	0x0	Enables system error detection. The device reports address parity errors when this bit is set if parity error detection is enabled.
Stepping Control	7	RO	0x0	Controls whether address/data stepping is done. This device does not do stepping, therefore, this bit is hardwired to 0.
Parity Error Enable	6	RW	0x0	Enables data parity error detection. This device reports data parity errors when this bit is set.
VGA Palette Snoop	5	RO	0x0	Enables palette snoop on VGA devices. This device does not support this capability, therefore, this bit is hardwired to 0.

Table 71: Status & Command Register (Offset: 0x04) (Cont.)

Name	Bits	Access	Default Value	Description
Memory Write and Invalidate	4	RO	0x0	This device does not support the MWI command, therefore, this bit should remain cleared to 0.
Special Cycles	3	RO	0x0	Enables device to monitor Special Cycle operations. This device does not support Special Cycles, therefore, this bit is hardwired to 0.
Bus Master	2	RW	0x0	Enables bus mastering. This device will not act as a bus master until this bit is set.
Memory Space	1	RW	0x0	Enables memory space accesses. This device will not respond to memory accesses until this bit is set.
I/O Space	0	RO	0x0	Enables I/O space accesses. This device does not support I/O space, therefore, this bit is hardwired to 0.

PCI CLASSCODE & REVISION ID REGISTER (OFFSET: 0x8)

This register is reset by Hard Reset.

Table 72: PCI Classcode & Revision ID Register (Offset: 0x8)

Name	Bits	Access	Default Value	Description
PCI Classcode	31:8	RO	0x020000	Ethernet Controller
Revision ID—All-layer Revision ID	7:4	FW-RW Host-RO	ASIC Rev Input	This field will be updated automatically by hardware based on the External All Layer Revision ID. <i>Example:</i> This field will contain a value of 0x0 after hard reset for StanfordME A0 silicon. Software uses this field only to display the Device Silicon Revision ID for application where the user/customer needs to know the Device Silicon Revision ID. One such application is the B57DIAG Device Banner. Furthermore, Software (Boot Code/Driver/B57DIAG) will not use this field to determine Bug Fixes. It should only use the Internal Revision ID, bits 31:24 and bits 19:16 from Register 68, for that purpose.
				0x0 for A Steps 0x1 for B Steps 0x2 for C Steps
Revision ID—Metal Revision ID	3:0	FW-RW Host-RO	ASIC Rev Input	This field will be updated automatically by hardware based on the Metal Revision ID. <i>Example:</i> This field will contain a value of 0x2 after hard reset for Stanford_ME A2 silicon
				0x0 for metal 0 step 0x1 for metal 1 step 0x2 for metal 2 step

BIST, HEADER TYPE, LATENCY TIMER, CACHE LINE SIZE REGISTER (OFFSET: 0x0C)

Table 73: BIST, Header Type, Latency Timer, Cache Line Size Register (Offset: 0x0C)

Name	Bits	Access	Default Value	Description

Table 73: BIST, Header Type, Latency Timer, Cache Line Size Register (Offset: 0x0C)

BIST	31:24	RO FW-RW	0x0	Built-in Self Test
Header Type	23:16	RO	0x0	Hardwired to 0x0 single function device
Latency Timer	15:8	RO	0x0	N/A for PCIe device. Hardwired to 0x0
Cache Line Size	7:0	RO FW-RW	0x0	N/A for PCIe device. Hardwired to 0x0

BASE ADDRESS REGISTER 1 (OFFSET: 0x10)**Table 74: Base Address Register 1 (Offset: 0x10)**

Name	Bits	Access	Default Value	Description																																																
Base Address	31:xx	RW	0x0	Low order address bits																																																
Size indication	xx-1:4	RO	0x0	<p>Rephrase and make it clear</p> <p>Portion of the address bits that are used to indicate the size of the PCIe address map. These are all set to 0.</p> <p>Bar1_size[3:0] comes to core as an input and defines xx based on the decode.</p> <table> <tr><td>0000</td><td>disable</td><td>all the bits are RO</td></tr> <tr><td>0001</td><td>64 KB</td><td>xx will be 16</td></tr> <tr><td>0010</td><td>128 KB</td><td>17</td></tr> <tr><td>0011</td><td>256 KB</td><td>18</td></tr> <tr><td>0100</td><td>512 KB</td><td>19</td></tr> <tr><td>0101</td><td>1 MB</td><td>20</td></tr> <tr><td>0110</td><td>2 MB</td><td>21</td></tr> <tr><td>0111</td><td>4 MB</td><td>22</td></tr> <tr><td>1000</td><td>8 MB</td><td>23</td></tr> <tr><td>1001</td><td>16 MB</td><td>24</td></tr> <tr><td>1010</td><td>32 MB</td><td>25</td></tr> <tr><td>1011</td><td>64 MB</td><td>26</td></tr> <tr><td>1100</td><td>128 MB</td><td>27</td></tr> <tr><td>1101</td><td>256 MB</td><td>28</td></tr> <tr><td>1110</td><td>512 MB</td><td>29</td></tr> <tr><td>1111</td><td>1 GB</td><td>30</td></tr> </table>	0000	disable	all the bits are RO	0001	64 KB	xx will be 16	0010	128 KB	17	0011	256 KB	18	0100	512 KB	19	0101	1 MB	20	0110	2 MB	21	0111	4 MB	22	1000	8 MB	23	1001	16 MB	24	1010	32 MB	25	1011	64 MB	26	1100	128 MB	27	1101	256 MB	28	1110	512 MB	29	1111	1 GB	30
0000	disable	all the bits are RO																																																		
0001	64 KB	xx will be 16																																																		
0010	128 KB	17																																																		
0011	256 KB	18																																																		
0100	512 KB	19																																																		
0101	1 MB	20																																																		
0110	2 MB	21																																																		
0111	4 MB	22																																																		
1000	8 MB	23																																																		
1001	16 MB	24																																																		
1010	32 MB	25																																																		
1011	64 MB	26																																																		
1100	128 MB	27																																																		
1101	256 MB	28																																																		
1110	512 MB	29																																																		
1111	1 GB	30																																																		
Prefetchable	3	RO	0x0	<p>Indicates that there are no side effects on reads; the device returns all bytes regardless of byte enables, and processor writes can get merged.</p> <p>Bar1_prefetch coming as input to core</p> <p>0 writes cannot be merged</p> <p>1 writes can be merged</p>																																																
Type	2:1	Host RO	0x2	<p>Encoded with the following values</p> <p>00: located anywhere in 32-bit address space</p> <p>01: Reserved</p> <p>10: Located anywhere in 64-bit address space</p> <p>11: Reserved</p>																																																
Memory Space Indicator	0	RO	0x0	This bit is always 0. Based address registers are mapped to Memory space.																																																

BASE ADDRESS REGISTER 2 (OFFSET: 0x14)*Table 75: Base Address Register 2 (Offset: 0x14)*

Name	Bits	Access	Default Value	Description
Extended Base Address	31:0	RW	0xXXXX	High Order address bits

BASE ADDRESS REGISTER 3 (OFFSET: 0x18)*Table 76: Base Address Register 3 (Offset: 0x18)*

Name	Bits	Access	Default Value	Description																																																
Base Address 2	31:xx	RW	0x0	Low order address bits																																																
Size indication	xx-1:4	RO	0x0	<p>Portion of the address bits that are used to indicate the size of the PCIe address map. These are all set to 0.</p> <p>Bar2_size[3:0] comes to core as an input and defines xx based on the decode.</p> <table> <tr><td>0000</td><td>disable</td><td>all the bits are RO</td></tr> <tr><td>0001</td><td>64 KB</td><td>xx will be 16</td></tr> <tr><td>0010</td><td>128 KB</td><td>17</td></tr> <tr><td>0011</td><td>256 KB</td><td>18</td></tr> <tr><td>0100</td><td>512 KB</td><td>19</td></tr> <tr><td>0101</td><td>1 MB</td><td>20</td></tr> <tr><td>0110</td><td>2 MB</td><td>21</td></tr> <tr><td>0111</td><td>4 MB</td><td>22</td></tr> <tr><td>1000</td><td>8 MB</td><td>23</td></tr> <tr><td>1001</td><td>16 MB</td><td>24</td></tr> <tr><td>1010</td><td>32 MB</td><td>25</td></tr> <tr><td>1011</td><td>64 MB</td><td>26</td></tr> <tr><td>1100</td><td>128 MB</td><td>27</td></tr> <tr><td>1101</td><td>256 MB</td><td>28</td></tr> <tr><td>1110</td><td>512 MB</td><td>29</td></tr> <tr><td>1111</td><td>1 GB</td><td>30</td></tr> </table>	0000	disable	all the bits are RO	0001	64 KB	xx will be 16	0010	128 KB	17	0011	256 KB	18	0100	512 KB	19	0101	1 MB	20	0110	2 MB	21	0111	4 MB	22	1000	8 MB	23	1001	16 MB	24	1010	32 MB	25	1011	64 MB	26	1100	128 MB	27	1101	256 MB	28	1110	512 MB	29	1111	1 GB	30
0000	disable	all the bits are RO																																																		
0001	64 KB	xx will be 16																																																		
0010	128 KB	17																																																		
0011	256 KB	18																																																		
0100	512 KB	19																																																		
0101	1 MB	20																																																		
0110	2 MB	21																																																		
0111	4 MB	22																																																		
1000	8 MB	23																																																		
1001	16 MB	24																																																		
1010	32 MB	25																																																		
1011	64 MB	26																																																		
1100	128 MB	27																																																		
1101	256 MB	28																																																		
1110	512 MB	29																																																		
1111	1 GB	30																																																		
Prefetchable	3	RO	0x0	<p>Indicates that there are no side effects on reads; the device returns all bytes regardless of byte enables, and processor writes can get merged.</p> <p>Bar2_prefetch coming as input to core</p> <p>0 writes cannot be merged</p> <p>1 writes can be merged</p>																																																

Table 76: Base Address Register 3 (Offset: 0x18) (Cont.)

Name	Bits	Access	Default Value	Description
Type	2:1	RO	0x2 Strap input to PCIe block	Encoded with the following values 00: Located anywhere in 32-bit address space 01: Reserved 10: Located anywhere in 64-bit address space 11: Reserved Bar2_64ena comes as input to core 0: Located in 32 bit address space only 1: Located anywhere in 64-bit address space
Memory Space Indicator	0	RO	0x0	This bit is always 0. Based address registers are mapped to Memory space

BASE ADDRESS REGISTER 4 (OFFSET: 0x1c)*Table 77: Base Address Register 4 (Offset: 0x1c)*

Name	Bits	Access	Default Value	Description
Extended Base Address 2	31:0	RW RO if bar2_64ena is 0'0'	0xXXXX	High Order address bits When bar2_64ena is 0, this register becomes Read Only and reads 0s.

CARDBUS CIS POINTER REGISTER (OFFSET: 0x28)

This register is reset by Hard Reset.

Table 78: Cardbus CIS Pointer Register (Offset: 0x28)

Name	Bits	Access	Default Value	Description
Cardbus CIS Pointer	31:0	FW-RW Host - RO	0x0	N/A for PCIe Device

SUBSYSTEM ID/VENDOR ID REGISTER (OFFSET: 0x2C)

This register is reset by Hard Reset.

Table 79: Subsystem ID/Vendor ID Register (Offset: 0x2C)

Name	Bits	Access	Default Value	Description
Subsystem Device ID	31:16	FW-RW Host - RO	–	–
Subsystem Vendor ID	15:0	FW-RW Host - RO	0x14E4	Identifies board manufacturer

EXPANSION ROM BASE ADDRESS REGISTER (OFFSET: 0x30)

This register is reset by PCIe Reset. It becomes a 'RW' register if bit 5 of PCI State Register is set.

Table 80: Expansion ROM Base Address Register (Offset: 0x30)

Name	Bits	Access	Default Value	Description
ROM Base Address	31:16	RO	0xXXXX	Address bits
ROM Size indication	15:11	RO	0x00	Reflects bits 3:0 in offset 0x88.
Reserved	10:1	RO	0x000	
Expansion ROM Enable	0	RO	0x0	Set to 1 to enable the use of this ROM region (firmware only)

CAPABILITIES POINTER REGISTER (OFFSET: 0x34)

Table 81: Capabilities Pointer Register (Offset: 0x34)

Name	Bits	Access	Default Value	Description
Capabilities pointer	0	RO	0x48	Points to a linked list of new PCI capabilities

INTERRUPT REGISTER (OFFSET: 0x3C)

Table 82: Interrupt Register (Offset: 0x3C)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0x0000	
Interrupt Pin	15:8	RO	0x01	Indicates which interrupt pin this device uses
Interrupt Line	7:0	RW	0x00	Identifies interrupt routing information

VPD CAPABILITIES (OFFSET: 0x40)

Table 83: VPD Capabilities (Offset: 0x40)

Name	Bits	Access	Default Value	Description
Flag	31	RW	0xX	Indicates when the transfer between the VPD data register and the storage component is completed. To read VPD information, 0 is written to the flag bit when device will then set the flag bit to 1, once the four bytes transferred to the VPD data register. To write VPD information, 1 is written to the flag bit. The device will clear this bit when the data is written.
VPD Address	30:16	RW	0xXX	Contains the byte address of the VPD to be accessed. Since the data register is four bytes in size, the address must be aligned on a 32-bit boundary
Next Capability Pointer	15:8	RO	0x60	Pointing to the Broadcom Vendor-Specific Capability Structure.
VPD Capability ID	7:0	RO	0x03	Identifies this item as Vital Product Data Capabilities

VPD DATA REGISTER (OFFSET: 0x44)

Table 84: VPD Data Register (Offset: 0x44)

Name	Bits	Access	Default Value	Description
VPD Data	31:0	RW	0XXXXXXXXX	The least significant byte of the register corresponds to the byte of VPD at the address specified by the VPD address register. 4 bytes are transferred between this register and the VPD storage component. The VPD storage component is the NVRAM. VPD data is stored in the NVRAM offset 0x100h–0x1FFh.

POWER MANAGEMENT CAPABILITY REGISTER (OFFSET: 0x48)

This register is reset by Hard Reset.

Table 85: Power Management Capability Register (Offset: 0x48)

Name	Bits	Access	Default Value	Description
PME Support	31:27	RO	0x08 if no aux 0x18 if aux	Indicates the power states in which the device may assert PME. A 0 for any bit indicates that the device is not capable of asserting the PME pin signal while in that power state. Bit 27: PME can be asserted from D0 Bit 28: PME can be asserted from D1 Bit 29: PME can be asserted from D2 Bit 30: PME can be asserted from D3H Bit 31: PME can be asserted from D3C (default depends on the presence of Aux power)
D2 Support	26	RO	0x0	Indicates whether the device supports the D2 PM state. This device does not support D2; hardwired to 0.
D1 Support	25	RO FW-RW	0x0	Indicates whether the device supports the D1 PM state. This device does not support D1.
Aux Current	24:22	RO FW-RW	0x0	This device supports the data register for reporting Aux Current requirements so this field is N/A
DSI	21	RO FW-RW	0x0	Indicates that the device requires device specific initialization (beyond PCI configuration header) before the generic class device driver is able to use it. This device hardwires this bit to 0 indicating that DSI is not necessary.
Reserved	20	RO	0x0	
PME Clock	19	RO	0x0	Indicates that the device relies on the presence of the PCI clock for PME operation. This device does not require the PCI clock to generate PME. Therefore, the bit is hardwired to 0
Version	18:16	RO	0x3	A value of 011b indicates that this function complies with revision 1.2 of the PCI PM specification.
PM Next Capabilities	15:8	RO	0x40	Points to the next capabilities block which is for Vital Product Data (VPD)
PM Capability ID	7:0	RO	0x01	Identifies this item as Power management capabilities

POWER MANAGEMENT CONTROL/STATUS REGISTER (OFFSET: 0x4C)

This register is reset by Hard Reset.

Table 86: Power Management Control/Status Register (Offset: 0x4C)

Name	Bits	Access	Default Value	Description
PM Data	31:24	RO FW-RW	0x00	Contains the power management data indicated by the Data Select field in PMCSR.
Reserved	23:16	RO	0x00	
PME Status	15	RW2C	0x0	This bit is set when the device asserts the WAKE signal independent of the PME enable bit. Writing 1 this bit will clear it and cause the device to stop asserting WAKE.
Data Scale	14:13	RO	0x1	Indicates the scaling factor that is used when interpreting the value of the data register (offset 7 in PM capability space). The device hardwires this value to 1 to indicate a scale of 1x.
Data Select	12:9	RW	0x0	Indicates which data is to be reported via the Data register (offset 7 in PM capability space).
PME Enable	8	RW	0x1	Enables the device to generate PME when this bit is set to 1. When 0, PME generation is disabled.
Reserved	7:4	RO	0x00	
No Soft Reset	3	RO	0x1	When set ("1"), this bit indicates that devices transitioning from D3 _{hot} to D0 because of PowerState commands do not perform an internal reset. Configuration Context is preserved. Upon transition from the D3 _{hot} to the D0 Initialized state, no additional operating system intervention is required to preserve Configuration Context beyond writing the PowerState bits. When clear ("0"), devices do perform an internal reset upon transitioning from D3 _{hot} to D0 via software control of the PowerState bits. Configuration Context is lost when performing the soft reset. Upon transition from the D3 _{hot} to the D0 state, full reinitialization sequence is needed to return the device to D0 Initialized. Regardless of this bit, devices that transition from D3 _{hot} to D0 by a system or bus segment reset will return to the device state D0 Uninitialized with only PME context preserved if PME is supported and enabled.
Reserved	2	RO	0x0	
Power State	1:0	RW	0x0	Indicates the current power state of the device when read When written, it sets the device into the specified power state: 00: D0 01: D1 10: D2 11: D3

MSI CAPABILITY HEADER (OFFSET: 0x50)

This register is reset by PERST_L.

Table 87: MSI Capability Header (Offset: 0x50)

Name	Bits	Access	Default Value	Description
MSI Control	31:24	R/W	0x00	Reserved
64-bit Address Capable	23	RO	1	Hardwired Advertise 64-bit address capable
Multiple Message Enable	22:20	R/W	0x0	Number of allocated message
Multiple Message Capable	19:17	R/O	0x0	Number of requested message
MSI Enable	16	R/W	0	Enable MSI
Next Capability Pointer	15:8	RO	0xCC	Next Capability Pointer: 0xCC
MSI capability ID	7:0	RO	0x5	Hardwired MSI capability ID

MSI LOWER ADDRESS REGISTER (OFFSET: 0x54)**Table 88: MSI Lower Address Register (Offset: 0x54)**

Name	Bits	Access	Default Value	Description
MSI Lower Address	31:2	R/W	Unknown	MSI Lower Address
Reserved	1:0	RO	0	

MSI UPPER ADDRESS REGISTER (OFFSET: 0x58)**Table 89: MSI Upper Address Register (Offset: 0x58)**

Name	Bits	Access	Default Value	Description
MSI Upper Address	31:0	R/W	Unknown	MSI Upper Address

MSI DATA REGISTER (OFFSET: 0x5c)**Table 90: MSI Data Register (Offset: 0x5c)**

Name	Bits	Access	Default Value	Description
MSI Data	15:0	R/W	Unknown	MSI Data

BROADCOM VENDOR-SPECIFIC CAPABILITY HEADER (OFFSET: 0x60)**Table 91: Broadcom Vendor-Specific Capability Header (Offset: 0x60)**

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0x00	
Vendor-Specific Capability Length	23:16	RO	0x6C	Length in bytes including the CAP ID

Table 91: Broadcom Vendor-Specific Capability Header (Offset: 0x60)

Next Capability Pointer	15:8	RO	0x50	Pointing to MSI Capability Structure located at E8
Vendor-Specific Capability ID 7:0		RO	0x9	0x9 for Vendor-Specific Capability ID

RESET COUNTERS INITIAL VALUES REGISTER (OFFSET: 0x64)**Table 92: Reset Counters Initial Values Register (Offset: 0x64)**

Name	Bits	Access	Default Value	Description
Reset Counter 5 Register	31:28	Host RW	Any	Keep tracks of the number of Core Syn Reset that are synchronized in the PCI Clock Domain
Reset Counter 4 Register (Hot Reset)	27:24	Host RW	Any	Keep tracks of the number of Hot Reset events.
Reset Counter 3 Register (GRC Reset)	23:16	Host RW	Any	Keep tracks of the number of GRC Reset.
Reset Counter 2 Register (Perst Reset)	15:8	Host RW	Any	Keep tracks of the number of Perst events.
Reset Counter 1 Register (LinkDown Reset)	7:0	Host RW	Any	Keep tracks of the number of LinkDown Reset events.

MISCELLANEOUS HOST CONTROL REGISTER (OFFSET: 0x68)**Table 93: Miscellaneous Host Control Register (Offset: 0x68)**

Name	Bits	Access	Default Value	Description
ASIC Rev ID	31:28	R	Product ID input	0xF: Indication that BCM5761 follows new PRODUCT/REV ID mapping
	27:24	R	ASIC Rev Input	External All Layer Revision ID. These bits will reflect in offset 8 --- bit mapping description 0x0: A 0x1: B 0x2: C
	23:16	R	ASIC Rev Input	Metal Rev Number 0x0: 0 0x1: 1 0x2: 2
Enable TLP Minor Error Tolerance	15	RW	0	Set this bit to enable TLP minor error tolerance (ATTR/TC/LOCK command)
Log Header Overflow	14	RW	0	Set this bit to enable log header due to overflow
Boundary check	13	RW	0	Set this bit to enable crossing 4KB boundary check
Byte-enable Rule Check	12	RW	0	Set this bit to enable the bye-enable rule check
Interrupt Check	11	RW	0	Set this bit to enable the interrupt check
RCB Check	10	RW	0	Set this bit to enable RCB check
Enable Tagged Status Mode	9	RW	0	When set, an unique eight-bit tag value will be inserted into the Status block status tag

Table 93: Miscellaneous Host Control Register (Offset: 0x68) (Cont.)

Name	Bits	Access	Default Value	Description
Mask Interrupt Mode	8	RW	0	When set, the interrupt is masked. However, the internal interrupt state (host coalescing event) will not be cleared
Enable indirect access	7	RW	0	Set this bit to enable indirect addressing mode
Enable Register Word Swap	6	RW	0	Set this bit to enable word swapping when accessing registers through the PCI target device.
Enable Clock Control register read/write capability	5	RW	0	Set this bit enable clock control register read/write capability, otherwise, the clock control register is read only.
Enable PCI State register read/write capability	4	RW	0	Set this bit to enable PCI state register read/write capability, otherwise the register is read only.
Enable Endian Word Swap	3	RW	0	Set this bit to enable endian word swapping when accessing through PCIe target interface.
Enable Endian Byte Swap	2	RW	0	Set this bit to enable endian byte swapping when accessing through PCIe target interface.
Mask Interrupt	1	RW	0	Setting this bit will mask future interrupt events from being generated. Setting this bit will not clear or de-assert the internal interrupt state, nor will it de-assert the external interrupt state.
Clear Interrupt	0	WO	0	Setting this bit will clear interrupt as long as the mask interrupt bit is not set. If mask interrupt bit is set, then writing 1 to this bit will not deassert interrupt, however, it will clear the internal unmasked interrupt state, so if the interrupt is later unmasked, the interrupt will deassert.

SPARE REGISTER (OFFSET: 0x6C)

Table 94: Spare Register (Offset: 0x6C)

Name	Bits	Access	Default Value	Description
Reserved	31:29	RW	0x0	
Reserved	28:2	RO	0x00	
Bar2_target_word_swap	1	RW	0	Brought out of PCIe core to control the word swapping for bar2 accesses
Bar2_target_byte_swap	0	RW	0	Brought out of PCIe core to control the byte swapping for bar2 accesses

PCI STATE REGISTER (OFFSET: 0x70)

This register is reset by PCIe Reset.

Table 95: PCI State Register (Offset: 0x70)

Name	Bits	Access	Default Value	Description
Reserved	31:20	RO	0x0000	Reserved
pcie_urid_soft_reset	19	W1 Read 0	0	For funct 1 write 1 generates 10 clock-wide reset pulse reads always 0 for func 0 reserved
pcie_ape_pspace_wr_en	18	RW	1	For func 0 ape psapece write enable

Table 95: PCI State Register (Offset: 0x70) (Cont.)

Name	Bits	Access	Default Value	Description
pcie_ape_shr_mem_wr_en	17	RW	1	For func 0 ape shared memory write enable
pcie_ape_ctrl_wr_en	16	RW	1	For func 0 ape ctrl reg write enable
Config Retry	15	FW-RW	0x1	When asserted, forces all config access to be retried
				On Hard reset After 805-ms timeout from PCIe_reset this bit get cleared by hardware or fast_reset (as a strap pin to PCIe block) is set or retry_mode (as a strap to PCIe block) is cleared this bit get cleared.
				The firmware can R/W at any time.
Reserved	14:12	RO	0x0	
Max PCI Target Retry	11:9	R/W	0x1	Indicates the number of PCI clock cycles before Retry occurs, in multiple of 8. At reset, this field is set to 001 N/A in PCIe.
Flat View	8	RW	0x0	Asserted if the Base Address register presents a 32MB PCI Address map flat view, otherwise, indicates a 64KB PCI Address map in standard view
VPD Available	7	RO	0x0	This bit reads as 1 if the VPD region of the NVRAM can be accessed by the host. Comes from GRC 6808.
PCI Expansion ROM Retry	6	RW	0x0	Force PCI Retry for accesses to Expansion ROM region if enabled.
PCI Expansion ROM Desired	5	RW	0x0	Enable PCI ROM base address register to be visible to the PCI host.
Pci 32 bit mode	4	RO	0x1	32-bit mode (PCIe no 64 bit mode)
Pci_66_133_mode	3	RO	0x0	N/A to PCIe
Conventional pci mode	2	RO	0x0	No PCI mode
Inta_I (status)	1	RO	0x1	Inta_I status
Reserved	0	RO	0x0	

CLOCK CONTROL REGISTER (OFFSET: 0x74)

Table 96: Clock Control Register (Offset: 0x74)

Name	Bits	Access	Default Value	Description
PL Clock Disable	31	R/W	0	When this bit is set to 1, PCI Express Physical Layer Clock is disabled
DLL Clock Disable	30	R/W	0	When this bit is set to 1, PCI Express Data Link Layer Clock is disabled
TL Clock Disable	29	R/W	0	When this bit is set to 1, PCI Express Transaction Layer Clock is disabled Once this bit is set, the FW can no longer access the PCI Config registers (including the clock control register), so it should be set only when the FW has no need to access the clock control and other PCI config registers until next power cycle. N/A for PCI Device*

Table 96: Clock Control Register (Offset: 0x74) (Cont.)

Name	Bits	Access	Default Value	Description
PCI Express Clock to Core Clock	28	R/W	0	When this bit is 1, the source of internal PCI Express Clock is CORE_CLK
Reserved	26	R/W	0	
Reserved	25	R/W	0	
Reserved	24	R/W	0	
Reserved	23	R/W	0	
Reserved	22	R/W	0	
Reserved	21	R/W	0	
Select Final Alt Clock Source: 0 = Alt Clock Source 1, 1 = 6.25 MHz	20	R/W	0	Select the 6.25-MHz clock as the alternate clock (use in Airplane Mode). If this bit is 0, the alternate clock will be selected by bit 13.
LED polarity	18	R/W	0	When set to 1, it would change the polarity of the 4 LEDs.
BIST function control	17	R/W	0	—
Asynchronous BIST Reset	16	R/W	0	—
Reserved	15:14			
Select Alt Clock Source 1: 0 = ck25 (XTAL_IN)/2, 1 = MII_CLK/2	13	R/W	0	Use the MII CLK input as the alternate clock for the internal clocks, rather than the Xtal CK25 input as the alternate clock.
Select Alt Clock	12	R/W	0	Use the alternate clock as the clock reference for the internal clocks, rather than the 62.5 MHz.
Reserved	11:10			
Core Clock Disable	9	R/W	0	Disable the CORE CLK to all blocks.
Reserved	8			
Reserved	7			
Reserved	6:5			
Reserved	4:0			

REGISTER BASE REGISTER (OFFSET: 0x78)

Table 97: Register Base Register (Offset: 0x78)

Name	Bits	Access	Default Value	Description
Reserved	31:18	RO	0	
Register Base Register	17:2	RW	X	Local controller memory address of a register than can be written or read by writing to the register data register
Reserved	1:0	RO	0	

MEMORY BASE REGISTER (OFFSET: 0x7C)

Table 98: Memory Base Register (Offset: 0x7C)

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
Memory Base Register	23:2	RW	X	This is the local controller memory address of the NIC memory region that can be accessed via Memory Window data register.
Reserved	1:0	RO	0	

REGISTER DATA REGISTER (OFFSET: 0x80)

Table 99: Register Data Register (Offset: 0x80)

Name	Bits	Access	Default Value	Description
Register Data Register	31:0	RW	X	This is the Register Data at the location pointed by the Register Base Address Register.

MEMORY DATA REGISTER (OFFSET: 0x84)

Table 100: Memory Data Register (Offset: 0x84)

Name	Bits	Access	Default Value	Description
Memory Base Register	31:0	RW	X	Memory value at the location pointed by the Memory Window Base Address Register

EXPANSION ROM BAR SIZE REGISTER (OFFSET: 0x88)

Table 101: Expansion ROM BAR Size Register (Offset: 0x88)

Name	Bits	Access	Default Value	Description
Reserved	31:4	RO	0	
BAR Size	3:0	FW-RW	0	0000: 64 KB 0001: 128 KB 0010: 256 KB 0011: 512 KB 0100: 1 MB 0101: 2 MB 0110: 4 MB 0111: 8 MB 1000: 16 MB

EXPANSION ROM ADDRESS REGISTER (OFFSET: 0x8C)

Table 102: Expansion ROM Address Register (Offset: 0x8C)

Name	Bits	Access	Default Value	Description

Table 102: Expansion ROM Address Register (Offset: 0x8C)

ROM Request	31	FW-RW	0	ROM Request The PCI Interface block will set the ROM Request whenever it detects that the Host is accessing the Serial EEPROM memory space.
Reserved	30:24	RO	0	
Address	23:0	FW-RW	0	Expansion ROM Address Address field of the Memory Read transaction is loaded into this field if the address matches the expansion ROM address space as defined by the Expansion ROM BAR and size registers. The internal processors utilize this field to execute the ROM read

EXPANSION ROM DATA REGISTER (OFFSET: 0x90)**Table 103: Expansion ROM Data Register (Offset: 0x90)**

Name	Bits	Access	Default Value	Description
Data	31:0	FW-RW	0	Expansion ROM Data Loaded by the firmware after executing the ROM read cycle

VPD INTERFACE REGISTER (OFFSET: 0x94)**Table 104: VPD Interface Register (Offset: 0x94)**

Name	Bits	Access	Default Value	Description
Reserved	31:1	RO		
VPD Request	0	RW	0	VPD Request Set when the VPD Flag/Address register is written by the host. Triggers a VPD event in the CPU event register in the GRC. Cleared by the internal CPU. Writes by the host to the VPD Flag register are not accepted while this bit is set.

UNDI RECEIVE BD STANDARD PRODUCER RING PRODUCER INDEX MAILBOX REGISTER (OFFSET: 0x98)

Table 105: UNDI Receive BD Standard Producer Ring Producer Index Mailbox Register (Offset: 0x98)

Name	Bits	Access	Default Value	Description
UNDI Receive BD Standard Ring Producer Index	63:0	RW	0	UNDI Receive BD Std. Ring Producer Index Mailbox

UNDI RECEIVE RETURN RING CONSUMER INDEX REGISTER (OFFSET: 0xA0)

Table 106: UNDI Receive Return Ring Consumer Index Register (Offset: 0xA0)

Name	Bits	Access	Default Value	Description
UNDI Receive Return C_Idx	63:0	RW	0	UNDI Receive Return Ring Consumer Index Mailbox

UNDI SEND BD PRODUCER INDEX MAILBOX REGISTER (OFFSET: 0xA8)

Table 107: UNDI Send BD Producer Index Mailbox Register (Offset: 0xA8)

Name	Bits	Access	Default Value	Description
UNDI Send BD NIC P_Idx	63:0	RW	0	UNDI Send BD NIC Producer Index Mailbox

INT MAILBOX REGISTER (OFFSET: 0xB0)

Table 108: INT Mailbox Register (Offset: 0xB0)

Name	Bits	Access	Default Value	Description
Indirect Interrupt mail box	63:0	RW	0	Interrupt Mailbox Check the history of this register...

PRODUCT ID AND ASIC REVISION (OFFSET: 0xBC)

Table 109: Product ID and ASIC Revision (Offset: 0xBC)

Name	Bits	Access	Default Value	Description
Reserved	31:28	RO	0	
Product ID and ASIC REV	27:0	RO	PRODUCT ID and ASIC REV ports	Product ID and ASIC revision read only register 27:12: Product ID: 5761 11:8: Base Layer Revision Info 7:0: Metal Layer Revision Info

FUNCTION EVENT REGISTER (OFFSET: 0xC0)—CHANGE TO SPARE*Table 110: Function Event Register (Offset: 0xC0)—Change to Spare*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
Inta_event	15	RW (control/status only)	0	Inta event status
Reserved	14:5	RO	0	
Gwake_event	4	RO	0	Gwake event status
Reserved	3:0	RO	0	

FUNCTION EVENT MASK REGISTER (OFFSET: 0xC4)—CHANGE TO SPARE*Table 111: Function Event Mask Register (Offset: 0xC4)—Change to Spare*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
Inta_mask	15	RW (control/status only)	0	Inta mask only used in cardbus mode
Wake up mask	14	RW (control/status only)	0	Wake up mask not used anywhere in the present design
Reserved	13:5	RO	0	
Gwake_event	4	RO	0	Gwake event mask not used anywhere in the present design
Reserved	3:0	RO	0	

FUNCTION PRESENT REGISTER (OFFSET: 0xC8)—CHANGE TO SPARE*Table 112: Function Present Register (Offset: 0xC8)—Change to Spare*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
Inta status	15	RO	0	Inta status
Reserved	14:5	RO	0	
PME status	4	RO	0	PME status
Reserved	3:0	RO	0xE	

PCIe CAPABILITY LIST REGISTER (OFFSET: 0xCC)*Table 113: PCIe Capability List Register (Offset: 0xCC)*

Name	Bits	Access	Default Value	Description
PCIe Capability ID	7:0	RO	10h	Identifies this item as PCIe capabilities

PCIe Next Capability Pointer Register (Offset: 0xCD)

Table 114: PCIe Next Capability Pointer Register (Offset: 0xCD)

Name	Bits	Access	Default Value	Description
PCIe Next Capabilities	7:0	RO	0	Points to the next capabilities block, which is NULL, because this is the last item in the capabilities list.

PCIe Capabilities Register (Offset: 0xCE)

Table 115: PCIe Capabilities Register (Offset: 0xCE)

Name	Bits	Access	Default Value	Description
Reserved	15:14	RO	0	
Interrupt Message Number	13:9	FW-RW	0	Contains the MSI data value that is written to the MSI destination address when any status bit in either the Slot Status register or the Root Status register is set.
Slot implemented	8	RO	0	Hardwired to 0 because this is an endpoint device.
Device/Port Type	7:4	RO	0	Hardwired to 0 because this is an endpoint device.
Capability Version	3:0	RO	1	Indicates the version of the PCIe capability structure.

Device Capabilities Register (Offset: 0xD0)

This register defines operational characteristics that are globally applicable to this device. This register is reset by Hard Reset.

Table 116: Device Capabilities Register (Offset: 0xD0)

Name	Bits	Access	Default Value	Description
Reserved	31:28	RO	0	
Captured Slot Power Limit Scale	27:26	RO	0	This value specifies the scale used for the Power Limit. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x
Captured Slot Power Limit Value	25:18	RO	0	This value specifies the upper limit on the power supplied for this device.
Reserved	17:16	RO	0	
Role Based Error Support	15	RO	1	When set to 1, this value indicates that a role based error is supported.
Power Indicator Present	14	FW-RW	0	When set to 1, this value indicates that a Power Indicator is implemented.
Attention Indicator Present	13	FW-RW	0	When set to 1, this value indicates that an Attention Indicator is implemented for this device.
Attention Button Present	12	FW-RW	0	When set to 1, this value indicates that an Attention Button is implemented for this device.

Table 116: Device Capabilities Register (Offset: 0xD0) (Cont.)

Name	Bits	Access	Default Value	Description
Endpoint L1 Acceptable Latency	11:9	FW-RW	7h	<p>This value returns the latency that this device can accept when transitioning from the L1 to the L0 state</p> <p>000 = less than 1 μs 001 = 1 μs to less than 2 μs 010 = 2 μs to less than 4 μs 011 = 4 μs to less than 8 μs 100 = 8 μs to less than 16 μs 101 = 16 μs to less than 32 μs 110 = 32 μs to 64 μs 111 = Greater than 64 μs</p>
Endpoint L0s Acceptable Latency	8:6	FW-RW	6h	<p>This value returns the total latency that this device can accept when transitioning from the L0s to L0 state</p> <p>000 = less than 64 ns 001 = 64 ns to less than 128 ns 010 = 128 ns to less than 256 ns 011 = 256 ns to less than 512 ns 100 = 512 ns to less than 1 μs 101 = 1 μs to less than 2 μs 110 = 2 μs to 4 μs 111 = Greater than 4 μs</p>
Extended Tag Field Supported	5	RO	0	<p>This value returns the maximum supported tag field size when this function acts as a requester.</p> <p>0 = 5-bit tag field 1 = 8-bit tag field Support extended tags are supported.</p>
Phantom Functions Supported	4:3	RO	0	This value is hardwired to 0 to indicate that this device only supports a single function
Max Payload Size Supported	2:0	FW-RW	0	<p>This value returns the maximum data payload size (in bytes) that this function supports for TLPs</p> <p>0 = 128 1 = 256 2 = 512 3 = 1024 4 = 2048 5 = 4096 6, 7 = Reserved</p>

DEVICE CONTROL REGISTER (OFFSET: 0xD4)

Table 117: Device Control Register (Offset: 0xD4)

Name	Bits	Access	Default Value	Description
Reserved	15	RO	0	
Max Read Request Size	14:12	RW	2	This value controls the maximum read requests size for this device when acting as the requester.
Enable No Snoop	11	RW	0	When this bit is set, the memory accessed by this device will not be cached by the processor.
Aux Power PM Enable	10	RO	0	When this bit is set, this device is enabled to draw aux power independent of PME power.
Phantom Functions Enable	9	RO	0	This bit is hardwired to 0 because this device does not support phantom functions.
Extended Tag Field Enable	8	RW	0	When this bit is set, it enables this device to use an 8-bit Tag field as a requester.
Max Payload Size	7:5	RW	0	This value sets the maximum TLP data payload size (in bytes) for this device 0 = 128 1 = 256 2 = 512 3 = 1024 4 = 2048 5 = 4096 6, 7 = Reserved
Enabled Relaxed Ordering	4	RW	1	When this bit is set, this device is permitted to set the Relaxed Ordering bit.
Unsupported Request Reporting Enable	3	RW	0	When this bit is set, Unsupported Request reporting is enabled.
Fatal Error Reporting Enabled	2	RW	0	When this bit is set, Fatal Error reporting is enabled.
Non-fatal Error Reporting Enabled	1	RW	0	When this bit is set, non-Fatal Error reporting is enabled.
Correctable Error Reporting Enabled	0	RW	0	When this bit is set, Correctable Error reporting is enabled.

DEVICE STATUS REGISTER (OFFSET: 0xD6)*Table 118: Device Status Register (Offset: 0xD6)*

Name	Bits	Access	Default Value	Description
Reserved	15:6	RO	0	
Transaction Pending	5	RO	0	When this bit is set to 1, it indicates that this device has issued non-posted request packets which have not been completed.
Aux Power Detected	4	RO	0	When this bit is set to 1, it indicates that Aux power has been detected.
Unsupported Request Detected	3	W2C	0	When this bit is set to 1, it indicates that an Unsupported Request has been received.
Fatal Error Detected	2	W2C	0	When this bit is set to 1, it indicates that a Fatal Error has been detected.
Non-fatal Error Detected	1	W2C	0	When this bit is set to 1, it indicates that a Non-fatal Error has been detected.
Correctable Error Detected	0	W2C	0	When this bit is set to 1, it indicates that a correctable error has been detected.

LINK CAPABILITY REGISTER (OFFSET: 0xD8)

This register is reset by Hard Reset.

Table 119: Link Capability Register (Offset: 0xD8)

Name	Bits	Access	Default Value	Description
Port Number	31:24	RO	HWinit	This value indicates the port number associated with this.
Reserved	23:19	TO	0	
Clock Power Management	18	Host RO FW R/W	1 for Mobile and 0 for Non- Mobile	1: clkreq capable 0: clkreq not capable If it is mobile bonding, the default value will be 1, otherwise 0.
L1 Exit Latency	17:15	RO FW-RW	6	This value returns the L1 exit latency for this link.
L0s Exit Latency	14:12	RO FW-RW	6	This value returns the L0s exit latency for this link 0 = less than 64 ns 1 = less than 128 ns 2 = less than 256 ns 3 = less than 512 ns 4 = less than 1 μ s 5 = less than 2 μ s 6 = less than 4 μ s 7 = greater than 4 μ s

Table 119: Link Capability Register (Offset: 0xD8) (Cont.)

Name	Bits	Access	Default Value	Description
Active State power management support (For LINK)	11:10	RO FW-RW	ID3:1	This value returns the supported ASPM states 0 = reserved 1 = L0s supported 2 = reserved 3 = L0s and L1 supported
if projectLink	11:10	RO	3	3 = L0s and L1 supported
Maximum Link Width	9:4	RO FW-RW	1	This value returns the maximum link width. Allowable values are 1, 2, 4, 8, 12, 16, and 32 only. All other values are reserved
Maximum Link Speed	3:0	RO FW-RW	1	This value returns the Maximum Link Speed. 1 = 2.5Gbps. All other values reserved.

LINK CONTROL REGISTER (OFFSET: 0xDC)

This register is reset by Hard Reset or the rising edge of PERST_L.

Table 120: Link Control Register (Offset: 0xDC)

Name	Bits	Access	Default Value	Description
Reserved	15:9	RO	0	
Clock Request Enable	8	RW	0	1: clkreq is enabled 0: clkreq is disabled
Extended Synch		RW	0	When this bit is set, it forces extended sync which gives external devices (such as logic analyzers) additional time to achieve bit and symbol lock.
Common Clock Configuration		RW	0	When this bit is set, it indicates that the link partners are using a common reference clock.
Reserved (Retrain Link)	5	RO	0	The device does not support this feature.
Reserved (Link Disable)	4	RO	0	The device does not support this feature.
Read Completion Boundary	3	RW	0	This value indicates the Read Completion Boundary value (in bytes) of the upstream root port 0 = 64 1 = 128
Reserved	2	RO	0	
Active State Power Management Control	1:0	RW	0	This value control the Active State power management supported on this link. 0 = Disabled 1 = L0s entry enabled 2 = L1 entry enabled 3 = L0s and L1 entry enabled

LINK STATUS COMMAND REGISTER (OFFSET: 0xDE)

Table 121: Link Status Command Register (Offset: 0xDE)

Name	Bits	Access	Default Value	Description
Reserved	15:13	RO	0	
Slot Clock Configuration	12	RO	STRAP	This value indicates that this device uses the same physical reference clock that the platform provides on the connector.
Reserved	11:10	RO	0	
Negotiated Link Width	9:4	RO	1	This value returns the negotiated link width. The only valid values are 1, 2, 4, 8, 12, 16, 32.
Link Speed	3:0	RO	1	This value returns the negotiated link speed. 1 = 2.5 Gbps

DEVICE CAPABILITIES 2 (OFFSET: 0xF0)

This register is reset by PERST_L.

Table 122: Device Capabilities 2 (Offset: 0xF0)

Name	Bits	Access	Default Value	Description
Reserved	15:5	RO	0	
Cpl_disable_supported	4	RO FW-RW	1	Completion Timeout Disable Supported, Programmable through register space
Cpl_timeout_range_supported	3:0	RO	0xF	Completion Timeout Ranges Supported. Programmable through register space 0F- Ranges A,B,C, and D

DEVICE STATUS AND CONTROL 2 (OFFSET: 0xF4)

Table 123: Device Status and Control 2 (Offset: 0xF4)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0x0	
Cpl_timeout_disable	4	RW	0	Completion time out disable

Table 123: Device Status and Control 2 (Offset: 0xF4) (Cont.)

Name	Bits	Access	Default Value	Description
Cpl_timeout_value	3:0	RW	0x0	<p>Completion timeout value. The spec specifies a range, the device uses the max value in the range.</p> <p>Defined encodings: (HW values)</p> <p>0000b Default range: 50 us to 50 ms (50 ms)</p> <p>It is strongly recommended that the Completion Timeout mechanism not expire in less than 10 ms</p> <p>Values available if Range A (50 μs to 10 ms) programmability range is supported:</p> <p>0001b 50 μs to 100 μs (100 μs)</p> <p>0010b 1 ms to 10 ms (10 ms)</p> <p>Values available if Range B (10 ms to 250 ms) programmability range is supported:</p> <p>0101b 16 ms to 55 ms (55 ms)</p> <p>0110b 65 ms to 210 ms (210 ms)</p> <p>Values available if Range C (250 ms to 4s) programmability range is supported:</p> <p>1001b 260 ms to 900 ms (900 ms)</p> <p>1010b 1s to 3.5s (3.5s)</p> <p>Values available if the Range D (4s to 64s) programmability range is supported:</p> <p>1101b 4s to 13s (13s)</p> <p>1110b 17s to 64s (64s)</p> <p>Values not defined above are Reserved. (50 ms)</p>

LINK CAPABILITIES 2 (OFFSET: 0xF8)**Table 124: Link Capabilities 2 (Offset: 0xF8)**

Name	Bits	Access	Default Value	Description
	31:0	RO	0x0	Not yet defined.

LINK STATUS AND CONTROL 2 (OFFSET: 0xFC)**Table 125: Link Status and Control 2 (Offset: 0xFC)**

Name	Bits	Access	Default Value	Description
	31:0	RO	0x0	Not yet defined

ADVANCED ERROR REPORTING ENHANCED CAPABILITY HEADER (OFFSET: 0x100)*Table 126: Advanced Error Reporting Enhanced Capability Header (Offset: 0x100)*

Name	Bits	Access	Default Value	Description
PCI Express Extended Capability ID	15:0	RO	0x0001	Extended Capability ID for the Advanced Error Reporting Capability is 0001h
Capability Version	19:16	RO	0x1	
Next Capability Offset	31:20	RO	0x13Ch	Pointer to the Virtual Channel Capability Structure

UNCORRECTABLE ERROR STATUS REGISTER (OFFSET: 0x104)

This register is reset by Hard Reset.

Table 127: Uncorrectable Error Status Register (Offset: 0x104)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
Unsupported Request Error Status	20	RW1CS	0	This bit is set when an unsupported request error occurs.
ECRC Error Status	19	RW1CS	0	This bit is set when an ECRC error occurs.
Malformed TLP Status	18	RW1CS	0	This bit is set when a Malformed TLP error occurs.
Receiver Overflow Status	17	RW1CS	0	This bit is set when a Receiver Overflow error occurs.
Unexpected Completion Status	16	RW1CS	0	This bit is set when an Unexpected Completion error occurs.
Completer Abort Status	15	RW1CS	0	This bit is set when a completer Abort error occurs.
Completion Timeout Status	14	RW1CS	0	This bit is set when completion timeout error occurs.
Flow control Protocol Error Status	13	RW1CS	0	This bit is set when a Flow control protocol error occurs.
Poisoned TLP Status	12	RW1CS	0	This bit is set when a Poisoned TLP error occurs.
Reserved	11:5	RO	0	
Data Link Protocol Error Status	4	RW1CS	0	This bit is set when a Data Link Protocol error occurs.
Reserved	3:0	RO	0	
Training Error Status	0	RW1CS	0	This bit is set when a training error occurs

UNCORRECTABLE ERROR MASK REGISTER (OFFSET: 0x108)

This register is reset by Hard Reset.

Table 128: Uncorrectable Error Mask Register (Offset: 0x108)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
Unsupported Request Error Mask	20	RWS	0	Setting this bit will mask Unsupported Request Error
ECRC Error Mask	19	RWS	0	Setting this bit will mask ECRC error
Malformed TLP Mask	18	RWS	0	Setting this bit will mask Malformed TLP error
Receiver Overflow Mask	17	RWS	0	Setting this bit will mask Receiver overflow error
Unexpected Completion Mask	16	RWS	0	Setting this bit will mask unexpected completion error
Completer Abort Mask	15	RWS	0	Setting this bit will mask completer abort error
Completion Timeout Mask	14	RWS	0	Setting this bit will mask completion timeout error
Flow Control Protocol Error Mask	13	RWS	0	Setting this bit will mask flow control protocol error
Poisoned TLP Mask	12	RWS	0	Setting this bit will mask poisoned TLP error
Reserved	11:5	RO	0	
Data Link Protocol Error Mask 4		RWS	0	Setting this bit will mask data link protocol error
Reserved	3:1	RO	0	
Training Error Mask	0	RWS	0	Setting this bit will mask training error

UNCORRECTABLE ERROR SEVERITY REGISTER (OFFSET: 0x10C)

This register is reset by Hard Reset.

Table 129: Uncorrectable Error Severity Register (Offset: 0x10C)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
Unsupported Request Error Severity	20	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
ECRC Error Severity	19	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
Malformed TLP Severity	18	RWS	1	This bit controls the severity 0 = non-fatal 1 = fatal
Receiver Overflow Error Severity	17	RWS	1	This bit controls the severity 0 = non-fatal 1 = fatal

Table 129: Uncorrectable Error Severity Register (Offset: 0x10C) (Cont.)

Name	Bits	Access	Default Value	Description
Unexpected completion Error Severity	16	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
Completer Abort Error Severity	15	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
Completion Timeout Error Severity	14	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
Flow control Protocol Error Severity	13	RWS	1	This bit controls the severity 0 = non-fatal 1 = fatal
Poisoned TLP Severity	12	RWS	0	This bit controls the severity 0 = non-fatal 1 = fatal
Reserved	11:4	RO	0	
Surprise down error severity	5	RO	1	PCIe 1.1 specification, page 409
Data Link Protocol Error Severity	4	RWS	1	This bit controls the severity 0 = non-fatal 1 = fatal
Reserved	3:1	RO	0	
Training Error Severity	0	RWS	1	This bit controls the severity 0 = non-fatal 1 = fatal

CORRECTABLE ERROR STATUS REGISTER (OFFSET: 0x110)

Table 130: Correctable Error Status Register (Offset: 0x110)

Name	Bits	Access	Default Value	Description
Reserved	31:14	RO	0	
Advisory Non-Fatal Error Status	13	RO	0	This bit is set when an Advisory Non-Fatal error occurs.
Replay Timer Timeout Status	12	RW1CS	0	This bit is set when a Replay Timer Timeout error occurs.
Reserved	11:9	RO	0	
REPLAY_NUM Rollover Status	8	RW1CS	0	This bit is set when a REPLAY_NUM Rollover error occurs.
Bad DLLP Status	7	RW1CS	0	This bit is set when a Bad DLLP error occurs.
Bad TLP Status	6	RW1CS	0	This bit is set when a Bad TLP error occurs.
Reserved	5:1	RO	0	
Receiver Error Status	0	RW1CS	0	This bit is set when a Receiver error occurs.

CORRECTABLE ERROR MASK REGISTER (OFFSET: 0x114)

Table 131: Correctable Error Mask Register (Offset: 0x114)

Name	Bits	Access	Default Value	Description
Reserved	31:14	RO	0	
Advisory Non-Fatal Error Mask	13	RWS	1	Setting this bit will mask Advisory Non-Fatal Errors
Replay Timer Timeout Mask	12	RWS	0	Setting this bit will mask Replay Timer Timeout errors
Reserved	11:9	RO	0	
REPLAY_NUM Rollover Mask	8	RWS	0	Setting this bit will mask REPLAY_NUM Rollover errors
Bad DLLP Mask	7	RWS	0	Setting this bit will mask Bad DLLP errors
Bad TLP Mask	6	RWS	0	Setting this bit will mask Bad TLP errors
Reserved	5:1	RO	0	
Receiver Error Mask	0	RWS	0	Setting this bit will mask Receiver Errors

ADVANCED ERROR CAPABILITIES AND CONTROL REGISTER (OFFSET: 0x118)

Table 132: Advanced Error Capabilities and Control Register (Offset: 0x118)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
ECRC Check Enable	8	RWS	0	Setting this bit will enable ECRC checking.
ECRC Check Capable	7	RO	1	When this bit is set, it indicates that this device supports ECRC checking.
ECRC Generation Enable	6	RWS	0	Setting this bit will enable ECRC generation.
ECRC Generation Capable	5	RO	1	When this bit is set, it indicates that this device supports ECRC generation.
First Error Pointer	4:0	ROS	0	This value indicates the bit position within the Uncorrectable Error Status Register 0x104.

HEADER LOG REGISTER (OFFSET: 0x11C)

Table 133: Header Log Register (Offset: 0x11C)

Name	Bits	Access	Default Value	Description
Header Byte 0	31:24	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 1	23:16	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 2	15:8	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 3	7:0	ROS	–	The TLP header of the transaction that has incurred a failure.

HEADER LOG REGISTER (OFFSET: 0x120)*Table 134: Header Log Register (Offset: 0x120)*

Name	Bits	Access	Default Value	Description
Header Byte 4	31:24	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 5	23:16	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 6	15:8	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 7	7:0	ROS	–	The TLP header of the transaction that has incurred a failure.

HEADER LOG REGISTER (OFFSET: 0x124)*Table 135: Header Log Register (Offset: 0x124)*

Name	Bits	Access	Default Value	Description
Header Byte 8	31:24	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 9	23:16	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 10	15:8	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 11	7:0	ROS	–	The TLP header of the transaction that has incurred a failure.

HEADER LOG REGISTER (OFFSET: 0x128)*Table 136: Header Log Register (Offset: 0x128)*

Name	Bits	Access	Default Value	Description
Header Byte 12	31:24	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 13	23:16	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 14	15:8	ROS	–	The TLP header of the transaction that has incurred a failure.
Header Byte 15	7:0	ROS	–	The TLP header of the transaction that has incurred a failure.

VIRTUAL CHANNEL ENHANCED CAPABILITY HEADER (OFFSET: 0x13c)

Table 137: Virtual Channel Enhanced Capability Header (Offset: 0x13c)

Name	Bits	Access	Default Value	Description
Next Capability Offset	31:20	RO	0x160	—
Capability Version	19:16	RO	0x1	—
PCI Express Extended Capability ID	15:0	RO	0x0002	Extended Capability ID for the Virtual Channel Capability is 0002h

PORT VC CAPABILITY REGISTER (OFFSET: 0x140)

Table 138: Port VC Capability Register (Offset: 0x140)

Name	Bits	Access	Default Value	Description
Reserved	31:12	RO	0	
Port Arbitration Table Entry Size	11:10	RO	0	Must be set to 0 for endpoint devices
Reference Clock	9:8	RO	0	Must be set to 0 for endpoint devices
Reserved	7	RO	0	
Low Priority Extended VC Count	6:4	RO	0	Only default VC is supported.
Reserved	3	RO	0	
Extended VC Count	2:0	RO	0	Only default VC is supported.

PORT VC CAPABILITY REGISTER 2 (OFFSET: 0x144)

Table 139: Port VC Capability Register 2 (Offset: 0x144)

Name	Bits	Access	Default Value	Description
VC Arbitration Table Offset	31:24	RO	0	Table not present
Reserved	23:8	RO	0	
VC Arbitration Capability	7:0	RO	0	Field not valid when Low Priority Extended VC Count = 0

PORT VC CONTROL REGISTER (OFFSET: 0x148)

Table 140: Port VC Control Register (Offset: 0x148)

Name	Bits	Access	Default Value	Description
Reserved	15:4	RO	0	
VC Arbitration Select	3:1	RO	0	Not supported
Load VC Arbitration Table	0	RO	0	Not supported

PORT VC STATUS REGISTER (OFFSET: 0x14A)

Table 141: Port VC Status Register (Offset: 0x14A)

Name	Bits	Access	Default Value	Description
Reserved	15:1	RO	0	
VC Arbitration Table Status	0	RO	0	Not supported

VC RESOURCE CAPABILITY REGISTER (OFFSET: 0x14C)

Table 142: VC Resource Capability Register (Offset: 0x14C)

Name	Bits	Access	Default Value	Description
Port Arbitration Table Offset	31:24	RO	0	Must be set to 0 for endpoint devices
Reserved	23	RO	0	
Maximum Time Slots	22:16	RO	0	Must be set to 0 for endpoint devices
Reject Snoop Transactions	15	RO	0	Must be set to 0 for endpoint devices
Advanced Packet Switching	14	RO	0	VC may be used for non-AS packet traffic
Reserved	13:8	RO	0	
Port Arbitration Capability	7:0	RO	0	Must be set to 0 for endpoint devices

VC RESOURCE CONTROL REGISTER (OFFSET: 0x150)

Table 143: VC Resource Control Register (Offset: 0x150)

Name	Bits	Access	Default Value	Description
VC Enable	31	RO	1	Default VC is always enabled
Reserved	30:27	RO	0	
VC ID	26:24	RO	0x0	Default VC = 0
Reserved	23:20	RO	0	
Port Arbitration Select	19:17	RO	0x0	Must be set to 0 for endpoint devices
Load Port Arbitration Table	16	RO	0	Must be set to 0 for endpoint devices
Reserved	15:8	RO	0	
TC/VC Map	7:0	RW	0xff	A 1 at bit "n" indicates that TC "n" is mapped to VC0 (bit 0 is read only and is hardwired to 1)

VC RESOURCE STATUS REGISTER (OFFSET: 0x156)

Table 144: VC Resource Status Register (Offset: 0x156)

Name	Bits	Access	Default Value	Description
VC Negotiation Pending	1	RO	0	1: Flow Control Initialization for default VC still in progress (this bit always returns 0)
Port Arbitration Table Status	0	RO	0	Must be set to 0 for endpoint devices

DEVICE SERIAL NO ENHANCED CAPABILITY HEADER REGISTER (OFFSET: 0x160)

Table 145: Device Serial No Enhanced Capability Header Register (Offset: 0x160)

Name	Bits	Access	Default Value	Description
Next Capability Offset	31:20	RO	0x0	0x16C when bit 6 of register 7c04 is 1 (NIC) else 0x0 (LOM). Bit 6 of register 7c04 is 0 by default. (PCIe Pwr Budget Cap Enable)
Revision ID	19:16	RO	0x1	0x1 for PCI Express
PCIe Capability ID	15:0	RO	0x0003	0x3 for PCIe Device Serial Number Capability ID

DEVICE SERIAL NO LOWER DW REGISTER (OFFSET: 0x164)

The register is reset by PCIe Reset.

Table 146: Device Serial No Lower DW Register (Offset: 0x164)

Name	Bits	Access	Default Value	Description
Reserved	31:24	Host RO/ FW RW (bit 23 of 7c04 '1' else RO)	0xFE	0xFE when bit 23 of 7c04 is clear.
Lower MAC Address	23:0	Host RO/ FW RW (bit 23 of 7c04 '1' else RO)	0xFFFFFFF	MAC Address(23:0) when bit 23 of 7c04 is clear.

DEVICE SERIAL NO UPPER DW REGISTER (OFFSET: 0x168)

The register is reset by PCIe Reset.

Table 147: Device Serial No Upper DW Register (Offset: 0x168)

Name	Bits	Access	Default Value	Description
Upper MAC Address	31:8	Host RO/FW RW (bit 23 of 7c04 '1' else RO)	0xFFFFFFF	MAC Address(47:24) when bit 23 of 7c04 is clear.
Reserved	7:0	Host RO/FW RW (bit 23 of 7c04 '1' else RO)	0xFF	0xFF when bit 23 of 7c04 is clear.

POWER BUDGETING ENHANCED CAPABILITY HEADER REGISTER (OFFSET: 0x16C)

The register is hardwired.

Table 148: Power Budgeting Enhanced Capability Header Register (Offset: 0x16C)

Name	Bits	Access	Default Value	Description
Next Capability Offset	31:20	RO	0x000	No other PCIe capability structure
Revision ID	19:16	RO	0x1	0x1 for PCI Express
PCIe Power Budget Capability ID	15:0	RO	0x0004	0x4 for PCIe Power Budget Capability ID

POWER BUDGETING DATA SELECT REGISTER (OFFSET: 0x170)

The register is reset by PCIe Reset.

Table 149: Power Budgeting Data Select Register (Offset: 0x170)

Name	Bits	Access	Default Value	Description
Reserved	31:8	RO	0x000000	
Data Select	7:0	RW	0x00	Index Power Budgeting Data reported through the Data Register.
				Note: Bit 6 of Register 7c04 needs to be set to a 1 to allow this parameter to be R/W. Otherwise, this field is Read-Only.

POWER BUDGETING DATA REGISTER (OFFSET: 0x174)

The register is reset by PCIe Reset.

Table 150: Power Budgeting Data Register (Offset: 0x174)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0x0	
Power Rail	20:18	FW-RW	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111) Bit20 is hardwired to 0 because thermal is not supported; Bit 19:18 are programmable via Firmware.
Type	17:15	FW-RW	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)

Table 150: Power Budgeting Data Register (Offset: 0x174) (Cont.)

Name	Bits	Access	Default Value	Description
PM State	14:13	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3.
PM Sub State	12:10	RO	000	Specifies the substates of the operating condition
Data Scale	9:8	FW-RW Host-RO	0x0	Specifies the scale to apply to the base power value; 0x1 for 0.1x scale. This value depends on the PCIe Data Select and the Data Select Limit from register 7c04 bits 15:12. The Data Select Limit in register 7c04 is default to 0x4 after power up. If the Data Select is greater than or equal to the Data Select Limit, then the data scale value will be 0x0.
Base Power	7:0	FW-RW Host-RO	0x00	Specifies in Watts the base power value in a given operating conditions. This value depends on the Data Select register and the programmable firmware registers in offset 0x17C–18B.

POWER BUDGETING CAPABILITY REGISTER (OFFSET: 0x178)

Table 151: Power Budgeting Capability Register (Offset: 0x178)

Name	Bits	Access	Default Value	Description
Reserved	31:1	RO	0x0000000	
LOM Configuration	0	FW-RW Host-RO	0	Indicate that the power budget for the device is included within the system power budget. Derived from NVRAM configuration If Configured as LOM, then write 1 to bit 5 of 0x7C04 else write 0.

FIRMWARE POWER BUDGETING REGISTER 1 (OFFSET: 0x17C)

The register is reset by PCIe Reset.

Table 152: Firmware Power Budgeting Register 1 (Offset: 0x17C)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3

Table 152: Firmware Power Budgeting Register 1 (Offset: 0x17C) (Cont.)

Name	Bits	Access	Default Value	Description
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 2 (OFFSET: 0x17E)

The register is reset by PCIe Reset.

Table 153: Firmware Power Budgeting Register 2 (Offset: 0x17E)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 3 (OFFSET: 0x180)

The register is reset by PCIe Reset.

Table 154: Firmware Power Budgeting Register 3 (Offset: 0x180)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)

Table 154: Firmware Power Budgeting Register 3 (Offset: 0x180) (Cont.)

Name	Bits	Access	Default Value	Description
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 4 (OFFSET: 0x182)

The register is reset by PCIe Reset.

Table 155: Firmware Power Budgeting Register 4 (Offset: 0x182)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 5 (OFFSET: 0x184)

The register is reset by PCIe Reset.

Table 156: Firmware Power Budgeting Register 5 (Offset: 0x184)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)

Table 156: Firmware Power Budgeting Register 5 (Offset: 0x184) (Cont.)

Name	Bits	Access	Default Value	Description
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 6 (OFFSET: 0x186)

The register is reset by PCIe Reset.

Table 157: Firmware Power Budgeting Register 6 (Offset: 0x186)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 7 (OFFSET: 0x188)

The register is reset by PCIe Reset.

Table 158: Firmware Power Budgeting Register 7 (Offset: 0x188)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

FIRMWARE POWER BUDGETING REGISTER 8 (OFFSET: 0x18A)

The register is reset by PCIe Reset.

Table 159: Firmware Power Budgeting Register 8 (Offset: 0x18A)

Name	Bits	Access	Default Value	Description
Power Rail	15:13	FW-RW Host-RO	0x0	Specifies the power rail of the operating condition 12V (000) 3.3V (001) 1.8V (010) Thermal (111)
Type	12:10	FW-RW Host-RO	0x0	Specifies the type of the operating condition PME Aux (000) Auxiliary (001) Idle (010) Sustained (010) Maximum (111)
PM State	9:8	FW-RW Host-RO	0x0	Specifies the power management state of operating condition: D0, D3
Base Power	7:0	FW-RW Host-RO	0x0	Specifies in Watts the base power value in a given operating conditions

PCIe 1.1 ADVISORY NON-FATAL ERROR MASKING (OFFSET: 0x18C)

The register is reset by PCIe Reset.

Table 160: PCIe 1.1 Advisory Non-Fatal Error Masking (Offset: 0x18C)

Name	Bits	Access	Default Value	Description
Retry Poison	5	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable DMA Read Engine to retry poison completion packet 1: Enable 0: Disable
Poison Advisory Non-Fatal Enable	4	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable Poison Error to be classified as Advisory Non-Fatal Correctable Error 1: Enable 0: Disable
Unexpected Advisory Non-Fatal Enable	3	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable Unexpected Completion Error to be classified as Advisory Non-Fatal Correctable Error 1: Enable 0: Disable
Non-Posted Cfg Advisory Non-Fatal Enable	2	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable UR/CA error as a result of Non-Posted Configuration Access to be classified as Advisory Non-Fatal Correctable Error 1: Enable 0: Disable
NP Memory Read Advisory Non-Fatal Enable	1	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable UR/CA error as a result of Non-Posted Memory Read Access to be classified as Advisory Non-Fatal Correctable Error 1: Enable 0: Disable
Completion Abort Memory Read Advisory Non-Fatal Enable	0	FW-RW Host-RW via Memory Cycle Host –RO via Config cycle	0x1	Enable CA error as a result of Memory Read Access to be classified as Advisory Non-Fatal Correctable Error 1: Enable 0: Disable

RSS REGISTERS

All registers reset are core reset unless specified.

RECEIVE BD RETURN RING 0 CONSUMER INDEX (HIGH PRIORITY MAILBOX) REGISTER (OFFSET: 0x280–0x287)

The Receive BD Return Ring 0 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 0 that has been consumed. Host software writes this register whenever it updates the return ring 1. This register must be initialized to 0.

RECEIVE BD RETURN RING 1 CONSUMER INDEX (HIGH PRIORITY MAILBOX) REGISTER (OFFSET: 0x288–0x28F)

The Receive BD Return Ring 1 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 1 that has been consumed. Host software writes this register whenever it updates the return ring 1. This register must be initialized to 0.

RECEIVE BD RETURN RING 2 CONSUMER INDEX (HIGH PRIORITY MAILBOX) REGISTER (OFFSET: 0x290–0x297)

The Receive BD Return Ring 2 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 2 that has been consumed. Host software writes this register whenever it updates the return ring 2. This register must be initialized to 0.

RECEIVE BD RETURN RING 3 CONSUMER INDEX (HIGH PRIORITY MAILBOX) REGISTER (OFFSET: 0x298–0x29F)

The Receive BD Return Ring 3 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 3 that has been consumed. Host software writes this register whenever it updates the return ring 3. This register must be initialized to 0.

UART REGISTERS

All registers reset are core reset unless specified. In addition, these registers from 0x3F8–0x3FF are applicable to function 1 only. These Registers are not R/W via function 0.

TRANSMIT HOLD REGISTER (OFFSET: 0x3F8)

Table 161: Transmit Hold Register (Offset: 0x3F8)

Name	Bits	Access	Default Value	Description
Transmit Data	7:0	Host-RW APE-RO	0x0	Transmit Data

RECEIVE BUFFER REGISTER (OFFSET: 0x3F8)

Table 162: Receive Buffer Register (Offset: 0x3F8)

Name	Bits	Access	Default Value	Description
Receive Buffer	7:0	Host-RW APE-RO	0x0	Receive Data

DIVISOR LATCH LOW REGISTER (OFFSET: 0x3F8)

Table 163: Divisor Latch Low Register (Offset: 0x3F8)

Name	Bits	Access	Default Value	Description
Clock Divisor for UART	7:0	Host-RW APE-RO	0x0	Clock Divisor for UART, LSB Byte

DIVISOR LATCH HIGH REGISTER (OFFSET: 0x3F9)

Table 164: Divisor Latch High Register (Offset: 0x3F9)

Name	Bits	Access	Default Value	Description
Clock Divisor for UART	7:0	Host-RW APE-RO	0x1	Clock Divisor for UART, MSB Byte

INTERRUPT ENABLE REGISTER (OFFSET: 0x3F9)

This register enables the four types of UART interrupts. Each interrupt can individually activate the interrupt signal to the host. It is possible to totally disable the interrupt system by resetting bits [3:0] of the Interrupt Enable Register. Similarly, setting bits of this register to a 1, enables the selected interrupt(s). Disabling an interrupt prevents it from being indicated as active in the Interrupt Identification Register and from activating the interrupt output signal. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers.

UART Re-dir permits four different sources of UART interrupts (PCIE INTB#) to be enabled or disabled separately.

Table 165: Interrupt Enable Register (Offset: 0x3F9)

Name	Bits	Access	Default Value	Description
Reserved	7:4	Host-RW APE-RO	0x0	Reserved, returns 0000 on host read
Modem Status Interrupt Enable	3	Host-RW APE-RO	0x0	Whenever any of the bits[3:0] of the register 0x3FE or Modem Status Register is 1, an interrupt will be generated if this bit is 1.
Receiver Line Status Interrupt Enable	2	Host-RW APE-RO	0x0	Host may write 1 or 0 to this bit, but there will be no effect on APE.
Transmit Holding Register Empty Interrupt Enable	1	Host-RW APE-RO	0x0	If this bit is 1 and 0x3FD bit[5] is 1, the PCIE INTB# is asserted.
Receive Data Available Interrupt Enable (When DLAB == 0)	0	Host-RW APE-RO	0x0	If this bit is 1 and 0x3FD bit[0] is 1, the PCIE INTB# is asserted.

INTERRUPT IDENTIFICATION REGISTER (OFFSET: 0x3FA)

During data character transfers, the UART prioritizes interrupts into four levels and records these in the Interrupt Identification Register or IIR. The four levels of interrupt conditions in order of priority are as follows:

- Receiver Line Status (UART Re-dir function never asserts this)
- Received Data Ready
- Transmitter Holding Register Empty
- MODEM Status

When the host accesses this register as a part of the ISR, the UART must freeze all interrupts and present the highest priority pending interrupt to the host. While an ISR access is occurring, the UART records new interrupts, but does not change its current indication until the ISR access is complete. The event ISR access complete is defined as the Host CPUs reading of the associated UART register.

Table 166: Interrupt Identification Register (Offset: 0x3FA)

Name	Bits	Access	Default Value	Description
Reserved	7:3	Host-RO APE-RR	0x0	Reserved, returns 0000 on host read
Highest priority interrupt	2:1	Host-RO APE-RW	0x0	As shown in table below
Pending interrupt status	0	Host-RO APE-RW	0x1	See the table below

Interrupt Identification Reg			Interrupt Description			
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Completion Event
X	X	1	-	None	N/A	N/A
1	1	0	1st	Receiver Line Status (**)	Overrun Error or Parity Error or Framing Error or Break Interrupt	Host's reading of the Line Status Register
1	0	0	2nd	Receiver Data Available	Receiver Data Register filled – that is, UART RX Fifo is not empty or Loop-back register is valid.	Host's reading of the Receiver Buffer Register or IER[0] is 0
0	1	0	3rd	Transmit Holding Register Empty	Transmit Holding Register became empty	Host's reading of the IIR Register (if this was the source of interrupt) or Writing into the Transmit Holding Register or IER[1] is 0
0	0	0	Lowest	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Detect delta bit(s) set	Host's reading of the Modem Status Register or IER[3] is 0

Figure 56: Interrupt Identification Register (Offset: 0x3FA)

LINE CONTROL REGISTER (OFFSET: 0x3FB)

Most bits of this register controls attributes of the serial transceiver data and hence is non-relevant to the UART Re-dir function. Although, all bits will be R/W by host to give an impression that a real UART device is present. Only bit[7] has functional significance.

Table 167: Line Control Register (Offset: 0x3FB)

Name	Bits	Access	Default Value	Description
Divisor Latch Access Bit (DLAB)	7	Host-RW APE-RO	0	A value 1 or 0 determines the function of the registers 0x3F8 & 0x3F9—a value 1 allows the host to access to the Divisor Latch, a value 0 allows the host to access the Transmit Holding Reg, the Receive Buffer Reg and the Interrupt Enable Reg.
Set Break Control	6	Host-RW APE-RO	0	Host may write 1 or 0 to this bit, but there will be no effect on APE.
Sticky Parity	5	Host-RW APE-RO	0	Host may write 1 or 0 to this bit, but there will be no effect on APE.

Table 167: Line Control Register (Offset: 0x3FB) (Cont.)

Name	Bits	Access	Default Value	Description
Even Parity Select	4	Host-RW APE-RO	0	Host may write 1 or 0 to this bit, but there will be no effect on APE.
Parity Enable	3	Host-RW APE-RO	0	Host may write 1 or 0 to this bit, but there will be no effect on APE.
Number of Stop Bits per Char 2		Host-RW APE-RO	0	Host may write 1 or 0 to this bit, but there will be no effect on APE.
Number of Lines per Char	1:0	Host-RW APE-RO	0	Host may write 1 or 0 to these bits, but there will be no effect on APE.

MODEM CONTROL REGISTER (OFFSET: 0x3FC)

This register drives the control signals to the modem or transceiver. This register can also configure the UART into a loop-back mode. As far as the response to the RTS & DTR control lines are concerned, the UART re-dir turns them around to the host and acknowledge appropriately via the Modem Status Register.

Table 168: Modem Control Register (Offset: 0x3FC)

Name	Bits	Access	Default Value	Description
Reserved	7:5	Host-RO APE-RW	000	
Set Loopback mode	4	Host-RW APE-RO	0	UART re-dir supports the loop-back mode. See section for description.
Force OUT2	3	Host-RW APE-RO	0	In non Loop-back Mode, the host may write 1 or 0 to these bits, but there will be no effect on APE. In Loop-back Mode, the FSM copies the value of this bit to the DCD bit of the MSR (0x3FE[7]).
Force OUT1	2	Host-RW APE-RO	0	In non Loop-back Mode, the host may write 1 or 0 to these bits but there will be no effect on APE. In Loop-back Mode, the FSM copies the value of this bit to the RI bit of the MSR (0x3FE[6]).
Force Request To Send (RTS) to asserted level	1	Host-RW APE-RO	0	Host may write 1 or 0 to these bits.
Force Data Terminal Ready (DTR) to asserted level	0	Host-RW APE-RO	0	Host may write 1 or 0 to these bits.

LINE STATUS REGISTER (OFFSET: 0x3FD)

This register provides status of data transfer to the host. URD supports 3 bits as shown below:

Table 169: Line Status Register (Offset: 0x3FD)

Name	Bits	Access	Default Value	Description
Reserved	7	Host-RO APE-RW	0	Reserved

Table 169: Line Status Register (Offset: 0x3FD) (Cont.)

Name	Bits	Access	Default Value	Description
Transmit Holding and Shift Register Empty Status	6	Host-RO APE-RW	1	Transmit Holding Register & Transmit Shift Register are both Empty
Transmit Holding Register Empty Status	5	Host-RO APE-RW	1	This bit is the “Transmitter Holding Register Empty” indicator. It indicates that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the CPU when the “Transmit Holding Register Empty Interrupt Enable” is set to 1. This bit is set to 1 when a character is transferred from the Transmit Holding Register into the Transmitter Shift Register. The bit is reset to 0 concurrently with the loading of the Transmitter Holding Register by the Host.
Break Interrupt Indicator	4	Host-RO APE-RW	0	Always Returns 0. APE does not implement the function.
Framing Error Indicator	3	Host-RO APE-RW	0	Always Returns 0. APE does not implement the function.
Parity Error Indicator	2	Host-RO APE-RW	0	Always Returns 0. APE does not implement the function.
Overrun Error Indicator	1	Host-RO APE-RW	0	Always Returns 0. APE does not implement the function.
Receiver Data Ready	0	Host-RO APE-RW	0	

MODEM STATUS REGISTER (OFFSET: 0x3FE)

Four bits, namely [7:4], of this register provides the current state of the control lines from the Modem or transceiver to the host. In addition to this current-state information, four bits, namely [3:0] of the Modem Status Register provide change information. These bits are set to 1 whenever the respective control input line from the Modem changes state. Bits [3:0] are reset to 0 whenever the host reads the Modem Status Register.

Since the UART Re-dir function really does not feature a Modem, it asserts these signals appropriately in response to the Modem Control Register, to accomplish proper handshake with the host software.

Table 170: Modem Status Register (Offset: 0x3FE)

Name	Bits	Access	Default Value	Description
Data Carrier Detect line status	7	Host-RO APE-RO	0	In non Loop-back Mode, the Re-dir FSM sets this bit to 1 only when the UART Re-dir function is enabled. In Loop-back Mode, the Re-dir FSM copies the OUT2 bit of MCR only when the UART re-dir function is enabled.
Ring Indicator status	6	Host-RO APE-RO	0	Always Returns 0 in non Loop-back Mode. In Loop-Back Mode the FSM sets this bit to 1 whenever the OUT1 bit of MCR is 1 AND the UART Re-dir function is enabled.
Data Set Ready status	5	Host-RO APE-RO	0	The Re-dir FSM sets this bit to 1 whenever the DTR bit (bit[0]) of the “Modem Control Register” or 0x3FC is 1 AND the UART Re-dir function is enabled.

Table 170: Modem Status Register (Offset: 0x3FE) (Cont.)

Name	Bits	Access	Default Value	Description
Clear to Send (CTS) status	4	Host-RO APE-RO	0	The Re-dir FSM sets this bit to 1 whenever the RTS bit (bit[1]) of the "Modem Control Register" or 0x3FC is 1 AND the UART Re-dir function is enabled.
Delta DCD Status	3	Host-RO APE-RO	0	The FSM sets this bit whenever there is a change in bit 7. The FSM clears this bit to 0 whenever host reads this register
Delta RI Status	2	Host-RO APE-RO	0	Always Returns 0. APE does not implement the function.
Delta DTR Status	1	Host-RO APE-RO	0	The FSM sets this bit whenever there is a change in bit 4. The FSM clears this bit to 0 whenever host reads this register.
Delta DCD Status	0	Host-RO APE-RO	0	

SCRATCH REGISTER (OFFSET: 0x3FF)

This 8-bit Read/Write Register does not control the UART in anyway. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

Table 171: Scratch Register (Offset: 0x3FF)

Name	Bits	Access	Default Value	Description
Scratch Data	7:0	Host-RR APE-RO	0x0	Host may write any value to this field, but there will be no effect on APE.

ETHERNETMAC REGISTERS

All registers reset are core reset unless specified.

EMAC MODE REGISTER (OFFSET: 0x400)

Table 172: EMAC Mode Register (Offset: 0x400)

Name	Bits	Access	Default Value	Description
Reserved	31:29	RO	0	
Enable APE TX path	28	RW	0	This bit must be written a 1 for the EMAC to transmit APE packets.
Enable APE RX path	27	RW	0	This bit must be written a 1 for APE subsystem to receive packets from the EMAC
Free Running ACPI	26	RW	0	When this bit is set, the ACPI state machine will continue running when a match is found. When this bit is clear, the ACPI state machine will halt when a match is found
Halt Interesting packet PME	25	RW	0	When this bit is set, the WOL signal will not be asserted on an interesting packet match
Keep Frame in WOL	24	RW	0	
Enable FHDE	23	RW	0	Enable receive Frame Header DMA engine. Must be set for normal operation
Enable RDE	22	RW	0	Enable RDMA engine. Must be set for normal operation
Enable TDE	21	RW	0	Enable Transmit DMA engine
Reserved	20	RO	0	
ACPI Power-on Enable	19	RW	0	Enable Wake on LAN filters when in power-down mode
Magic Packet Detection Enable	18	RW	0	Enable Magic Packet detection
Send Config Command	17	RW	0	Send config commands when in TBI mode
Flush TX statistics	16	RW	0	Write transmit statistics to external memory This bit is self-clearing
Clear TX statistics	15	RW	0	Clear transmit statistics internal RAM This bit is self-clearing
Enable TX Statistics	14	RW	0	Enable transmit statistics external updates
Flush RX Statistics	13	RW	0	Write receive statistics to external memory This bit is self-clearing
Clear RX Statistics	12	RW	0	Clear receive statistics internal RAM This bit is self-clearing
Enable RX Statistics	11	RW	0	Enable receive statistics external updates
Reserved	10	RO	0	
Max Defer	9	RW	0	Enable Max Deferral checking statistic
Enable TX Bursting	8	RW	0	Enable transmit bursting in Gigabit half-duplex mode
Tagged MAC Control	7	RW	0	Allow the MAC to receive tagged MAC control packets
Reserved	6:5	RO	0	

Table 172: EMAC Mode Register (Offset: 0x400) (Cont.)

Name	Bits	Access	Default Value	Description
Loopback mode	4	RW	0	When set, an internal loopback path is enabled from the transmit MAC to the receive MAC. This bit is provided for diagnostic purposes only
Port Mode	3:2	RW	01	These bits determine what interface the port is running 11: TBI 10: GMII 01: MII 00: None (default)
Half-duplex	1	RW	0	When set, the MII/GMII interface is configured to operate in half-duplex mode and the CSMA/CD state machines in the MAC are set to half-duplex mode
Global Reset	0	RW	0	When this bit is set to 1, the MAC state machine is reset. This is a self-clearing bit

EMAC STATUS REGISTER (OFFSET: 0x404)

Table 173: EMAC Status Register (Offset: 0x404)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
IPSEC TX Offload Error	29	RO	0	Bits [6–10] of the Reg 0x460 are OR-ed to produce this bit. This bit in turn generates the interrupt
Interesting packet PME Attention	28	W2C	0	When this bit is set, the WOL signal is asserted when an interesting packet is detected
TX Statistic Overrun	27	W2C	0	Transmit Statistics block has overrun. Generates an attention when enabled
RX Statistic Overrun	26	W2C	0	Receive Statistics block has overrun. Generates an attention when enabled
ODI Error	25	RO	0	Output Data Interface block has an overrun or underrun. Will generate attention when enabled. Clear this attention using the Transmit Status register
AP Error	24	RO	0	Auto-polling interface needs service. Generates an attention when enabled. Clear this attention using the Auto-polling Status register
MII Interrupt	23	RO	0	Management interface is signaling an interrupt Generates an attention when enabled
MII Completion	22	W2C	0	Management interface transaction has completed Generates an attention when enabled
Reserved	21:13	RO	0	
Link State Changed	12	RO	0	Set when the link state has changed Generates an attention when enabled by bit 12 of the EMAC Event Enable register Clear this attention by writing 1 to Sync Changed (bit 4) and Config changed (bit 3)

Table 173: EMAC Status Register (Offset: 0x404) (Cont.)

Name	Bits	Access	Default Value	Description
Reserved	11:0	RO	0	

EMAC EVENT ENABLE REGISTER (OFFSET: 0x408)

Table 174: EMAC Event Enable Register (Offset: 0x408)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
Enable TX Offload Error Interrupt	29	R/W	0	Enables or unmasks the interrupt associated with Reg 0x404[29]
Interesting packet PME Attention Enable	28	RW	0	When this bit is set, an attention will be asserted on an interesting packet match
TX Statistics Overrun	27	RW	0	Enable attention when transmit statistics block has overrun
RX Statistics Overrun	26	RW	0	Enable attention when receive statistics block has overrun
ODI Error	25	RW	0	Enable attention when an output data interface block has an overrun or underrun
AP Error	24	RW	0	Enable attention when the auto-polling interface has an error
MII Interrupt	23	RW	0	Enable attention when the Management Interface is signaling an interrupt
MII Completion	22	RW	0	Enable attention when the Management Interface transaction has completed
Reserved	21:13	RO	0	
Link State Changed	12	RW	0	Enable attention when the link has changed state
Reserved	11:0	RO	0	

LED CONTROL REGISTER (OFFSET: 0x40C)

Table 175: LED Control Register (Offset: 0x40C)

Name	Bits	Access	Default Value	Description
Override Blink Rate	31	RW	1	If set, the blink rate for the Traffic LED is determined by the Blink Period field (bit 30 to bit 9). This bit is rest to 1. If not set, the blink rate assumes a Blink Period of 0x040, corresponding to approximately 15.9 Hz.
Blink Period	30:19	RW	000001 000000	Specifies the period of each blink cycle (on+off) for Traffic LED in milliseconds. Must be a nonzero value. This 12-bit field is reset to 0x040, giving a default blink period of approximately 15.9 Hz.
Reserved	18:16	RO	0	
Reserved	15	RO	0	

Table 175: LED Control Register (Offset: 0x40C) (Cont.)

Name	Bits	Access	Default Value	Description
Shared Traffic/Link LED mode	14	RW	1	When this bit is set, the Link LED is solid green when there is a link and blinks when there is traffic. (The LED_MODE field must be set to 00 before enabling this bit).
MAC Mode	13	RW	0	When this bit is set, the traffic LED blinks only when traffic is addressed for the device (The LED_MODE field must be set to 00 before enabling this bit).
LED Mod	12:11	RW	01	00: MAC Mode—LED signal is in active low (on) when link is established and is in high (off) when link is not established. 01: PHY Mode 1—LED signal is in active low (on) when link is established and is in tristate (off) when link is not established. LINKLEDB = Link 10 (open drain) SPD100LEDB = Link 100 (open drain) SPD1000LEDB = Link10000 (open drain) TRAFFICLEDB = PHY RCVLED or PHY XMTLED 10: PHY Mode 2—LED signal is in active low (on) when link is established and is in high (off) when link is not established. LINKLEDB = Link 10 SPD100LEDB = Link 100 and valid data or idle SPD1000LEDB = Link10000 and valid data or idle TRAFFICLEDB = PHY RCVLED or PHY XMTLED 11: Same as PHY Mode 1
Traffic LED Status	10	RO	0	
10Mbps LED Status	9	RO	0	
100Mbps LED Status	8	RO	0	
1000Mbps LED Status	7	RO	0	
Traffic LED	6	RW	0	If set along with the Override Traffic bit, the Traffic LED is turned on. If the Blink Traffic LED bit is also set, the LED will blink with blink rate specified in Override Blink Rate (bit 31) and Blink Period (bits 30-19) fields.
Blink Traffic LED	5	RW	0	If set along with the Override Traffic bit and Traffic LED bit, the Traffic LED will blink with the blink rate specified in Override Blink Rate (bit 31) and Blink Period (bits 30-19) fields.
Override Traffic LED	4	RW	0	If set, overrides hardware control of the Traffic LED. The Traffic LED will then be controlled via bit 6 and bit 5.
10 Mbps LED	3	RW	0	If set along with the LED Override bit, turns on the 10 Mbps LED.
100 Mbps LED	2	RW	0	If set along with the LED Override bit, turns on the 100 Mbps LED.
1000 Mbps LED	1	RW	0	If set along with the LED Override bit, turns on the 1000 Mbps LED.
Override Link LEDs	0	RW	0	If set, overrides hardware control of the three link LEDs. The LEDs will be controlled via bits 3-1.

EMAC MAC ADDRESSES 0 HIGH REGISTER (OFFSET: 0x410)*Table 176: EMAC MAC Addresses 0 High Register (Offset: 0x410)*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
MAC Address High	15:0	RW	0	Upper 2-bytes of this node's MAC address

EMAC MAC ADDRESSES 0 Low REGISTER (OFFSET: 0x414)*Table 177: EMAC MAC Addresses 0 Low Register (Offset: 0x414)*

Name	Bits	Access	Default Value	Description
MAC Address Low	31:0	RW	0	Lower 4-byte of this node's MAC address

EMAC MAC ADDRESSES 1 HIGH REGISTER (OFFSET: 0x418)*Table 178: EMAC MAC Addresses 1 High Register (Offset: 0x418)*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
MAC Address High	15:0	RW	0	Upper 2-bytes of this node's MAC address

EMAC MAC ADDRESSES 1 Low REGISTER (OFFSET: 0x41C)*Table 179: EMAC MAC Addresses 1 Low Register (Offset: 0x41C)*

Name	Bits	Access	Default Value	Description
MAC Address Low	31:0	RW	0	Lower 4-byte of this node's MAC address

EMAC MAC ADDRESSES 2 HIGH REGISTER (OFFSET: 0x420)*Table 180: EMAC MAC Addresses 2 High Register (Offset: 0x420)*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
MAC Address High	15:0	RW	0	Upper 2-bytes of this node's MAC address

EMAC MAC ADDRESSES 2 Low REGISTER (OFFSET: 0x424)*Table 181: EMAC MAC Addresses 2 Low Register (Offset: 0x424)*

Name	Bits	Access	Default Value	Description
MAC Address Low	31:0	RW	0	Lower 4-byte of this node's MAC address

EMAC MAC ADDRESSES 3 HIGH REGISTER (OFFSET: 0x428)

Table 182: EMAC MAC Addresses 3 High Register (Offset: 0x428)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
MAC Address High	15:0	RW	0	Upper 2-bytes of this node's MAC address

EMAC MAC ADDRESSES 3 LOW REGISTER (OFFSET: 0x42C)

Table 183: EMAC MAC Addresses 3 Low Register (Offset: 0x42C)

Name	Bits	Access	Default Value	Description
MAC Address Low	31:0	RW	0	Lower 4-byte of this node's MAC address

WOL PATTERN POINTER REGISTER (OFFSET: 0x430)

Table 184: WOL Pattern Pointer Register (Offset: 0x430)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
ACPI Pointer	8:0	RW	0	Specifies the offset into the 6-KB BD memory for frame comparison. (Bits 3:0 are ignored to align the memory address to a natural 128-bit boundary)

WOL PATTERN CONFIGURATION REGISTER (OFFSET: 0x434)

Table 185: WOL Pattern Configuration Register (Offset: 0x434)

Name	Bits	Access	Default Value	Description
Reserved	31:28	RO	0	
ACPI Offset	27:16	RW	0	Offset of a frame where the pattern comparison starts
Reserved	15:10	RO	0	
ACPI Length	9:0	RW	0	Specifies the total number of 64-bit double words inside the MISC_BD memory that are valid for ACPI. For GMII, it should have a value of 2, 4, 6, ... For MII, it should have a value of 3, 6, 9, ...

ETHERNET TRANSMIT RANDOM BACKOFF REGISTER (OFFSET: 0x438)

Table 186: Ethernet Transmit Random Backoff Register (Offset: 0x438)

Name	Bits	Access	Default Value	Description
Reserved	31:10	RO	0	
Random Backoff Seed	9:0	RW	0	For half-duplex, initialize with any nonzero seed

RECEIVE MTU SIZE REGISTER (OFFSET: 0x43C)*Table 187: Receive MTU Size Register (Offset: 0x43C)*

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
MTU	15:0	RW	05F2h	2-byte field which is the largest size frame that will be accepted without being marked as oversize

GIGABIT PCS TEST REGISTER (OFFSET: 0x440)*Table 188: Gigabit PCS Test Register (Offset: 0x440)*

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO	0	

TRANSMIT 1000BASE-X AUTO-NEGOTIATION REGISTER (OFFSET: 0x444)*Table 189: Transmit 1000Base-X Auto-Negotiation Register (Offset: 0x444)*

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO	0	

RECEIVE 1000BASE-X AUTO-NEGOTIATION REGISTER (OFFSET: 0x448)*Table 190: Receive 1000Base-X Auto-Negotiation Register (Offset: 0x448)*

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO	0	

MII COMMUNICATION REGISTER (OFFSET: 0x44C)

Table 191: MII Communication Register (Offset: 0x44C)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
Start/Busy	29	RW	0	<p>Set this bit to start a transaction</p> <p>While it is high, it indicates that the current transaction is still ongoing.</p> <p>If enabled, generates an attention via EMAC Status Register MI Completion bit (bit 22)</p>
Read Failed	28	RO	0	<p>When set, the transceiver device did not driver the bus during the attempted read transaction.</p> <p>Valid after the Start/Busy bit is cleared</p>
Command	27:26	RW	0	<p>These bits specify the transaction type:</p> <p>11: Undefined</p> <p>10: Read command</p> <p>01: Write command</p> <p>00: Undefined</p>
PHY Addr	25:21	RW	0	PHY Address
Register Address	20:16	RW	0	Address of the register to be read or written
Transaction Data	15:0	RW	0	<p>When configured for a write command, the data stored at this location is written to the PHY at the specified PHY and register address</p> <p>During a read command, the data returned by the PHY is stored at this location</p>

MII STATUS REGISTER (OFFSET: 0x450)

Table 192: MII Status Register (Offset: 0x450)

Name	Bits	Access	Default Value	Description
Reserved	31:2	RO	0	
Mode 10Mbps	1	RW	0	When read, a value of 1 indicates the transceiver device is operating in 10 Mbps mode.
Link Status	0	RW	0	<p>The bit will generate an attention if enabled.</p> <p>Indicates status of the link on the transceiver device. When read, a value of 1 indicates the transceiver is linked.</p>

MII MODE REGISTER (OFFSET: 0x454)*Table 193: MII Mode Register (Offset: 0x454)*

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
MII Clock Count	20:16	RW	0Ch	Counter to divide CORE_CLK (62.5 MHz) to generate the MI clock The formula is MI Clock = CORE_CLK/2/(MI Clock Count + 1)
Constant mdio/mdc clock speed	15	RW	0	Enable ~500-KHz constant MII management interface (mdio/mdc) frequency regardless core clock frequency. 1: Enable 0: Disable
Reserved	14:10	RO	0	
PHY Address	9:5	RW	1	This field specifies the PHY Address
Port polling	4	RW	0	Set to enable autopolling of the transceiver link information from the MII management interface. If cleared, the device will obtain the link status information from the state of the LINKRDY input signal.
Reserved	3	RO	0	
Auto_control	2	RW	0	—
Use Short Preamble	1	RW	1	Use short preamble while polling, if set
Fast_Clock	0	RW	0	—

AUTOPOLLING STATUS REGISTER (OFFSET: 0x458)*Table 194: Autopolling Status Register (Offset: 0x458)*

Name	Bits	Access	Default Value	Description
Reserved	31:1	RO	0	
Auto-polling Error	0	W2C	0	Indicates an autopolling error occurred if set

TRANSMIT MAC MODE REGISTER (OFFSET: 0x45C)*Table 195: Transmit MAC Mode Register (Offset: 0x45C)*

Name	Bits	Access	Default Value	Description
RR Weight	31:27	R/W	00000	This field may be programmed to assign a weight to the "Weighted Round Robin" arbitration mode. This field is applicable only when the appropriate arbitration mode is chosen, i.e., [19:17] of this register is equal to "001".

Table 195: Transmit MAC Mode Register (Offset: 0x45C) (Cont.)

Name	Bits	Access	Default Value	Description
Transmit FTQ Arbitration Mode	26:24	R/W	000	<p>This field determines the arbitration mode of the TCE block among LAN traffic and APE traffic as below:</p> <p>000—Simple Round Robin</p> <p>001—Weighted Round Robin</p> <p>010—Shut-off APE transmit stream</p> <p>011—Shut-off LAN transmit stream</p> <p>1xx—Reserved for future use</p> <p>Caution: This field must remain static following boot.</p>
Reserved	23:21	RO	0	
TX-MBUF Burst Size	20:17	R/W	0000	<p>This field determines the size of the MA read performed by TCE.</p> <p>0000 => burst-size 16</p> <p>0001–01111 => reserved</p> <p>1000 => burst-size 8</p> <p>1001 => burst-size 9</p> <p>.....</p> <p>1111 => burst-size 15</p>
Reserved	16:11	RO	0	
Enable TX AH Offload	10	R/W	0	A value 1 enables the TX AH offload feature—when 0, offloaded AH packet gets dropped. This value must be static.
Enable TX ESP Offload	9	R/W	0	<p>A value 1 enables the TX ESP offload feature—when 0, offloaded ESP packet gets dropped.</p> <p>This value must be static.</p>
TxMBUF corruption lockup fix enable	8	RW	0	When set, TXMBUF corruption lockup fix is enabled.
Link Aware Enable	7	RW	0	When set, transmission of packets by the MAC is enabled only when link is up.
Enable Long Pause	6	RW	0	<p>When set, the Pause time value set in the transmitted PAUSE frames is 0xFFFF.</p> <p>The default value for PAUSE time is 0x1FFF.</p>
Enable Big Backoff	5	RW	0	MAC will use larger than normal back-off algorithm.
Enable Flow Control	4	RW	0	MAC will send IEEE 802.3x flow control frames.
Reserved	3:2	RO	0	
Enable TCE	1	RW	1	Used to enable TDE in legacy (same purpose).

Table 195: Transmit MAC Mode Register (Offset: 0x45C) (Cont.)

Name	Bits	Access	Default Value	Description
Reset	0	RW	0	When this bit is set to 1, the Transmit MAC state machine will be reset. This is a self-clearing bit.

TRANSMIT MAC STATUS REGISTER (OFFSET: 0x460)

Table 196: Transmit MAC Status Register (Offset: 0x460)

Name	Bits	Access	Default Value	Description
Reserved	31:6	RO	0	
Consumer Index	22:11	RO	UUUU	The Consumer Index of the erring packet is reported by this field.
Offloaded packet Malformed	10	W2C	NA	These bits must be cleared by the ISR servicing an interrupt generated by an IPSEC event in the EMAC_MODE register
TX Offloaded SA in marked in RX direction	9	W2C	NA	
Unsupported IPV6 extension found or IPV4 Option found	8	W2C	NA	
Invalid SA encountered	7	W2C	NA	
AH/ESP Header not found	6	W2C	NA	
ODI Overrun	5	W2C	0	Output data interface has overrun
ODI Underrun	4	W2C	0	Output data interface has underrun
Link Up	3	RO	0	Link is up, if set
Sent XON	2	W2C	0	An XON flow control frame was sent
Sent XOFF	1	W2C	0	An XOFF flow control frame was sent
RX Currently XOFFed	0	RO	0	Received stopped due to flow control

TRANSMIT MAC LENGTHS REGISTER (OFFSET: 0x464)

Table 197: Transmit MAC Lengths Register (Offset: 0x464)

Name	Bits	Access	Default Value	Description
Reserved	31:14	RO	0	
Consumer Index	22:11	RO	UUUU	The Consumer Index of the erring packet is reported by this field.
IPG CRS Length	13:12	RW	0	When multiplied by 2, this field indicates the number of bytes from the end of the interpacket gap (IPG) during which incoming carrier is ignored.
IPG Length	11:8	RW	0	When multiplied by 2, this field indicates the number of bytes in the entire IPG.
Slot Time Length	7:0	RW	0	When multiplied by 2, this field indicates the number of bytes in the slot time.

RECEIVE MAC MODE REGISTER (OFFSET: 0x468)

Table 198: Receive MAC Mode Register (Offset: 0x468)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	Reserved
Disable 802.3 length check fix for VLAN Tag frames	29	R/W	0	If clear, IEEE 802.3 length check takes VLAN length into account properly.
Reset Management Filter Set	28	WO	0	Writing a 1 to this field generates a pulse to reset all Management Filter registers.
Enable RX AH Offload	27	R/W	0	A value 1 enables the RX AH offload feature—when 0, in coming packets are not CAM-ed for offload consideration.
Enable RX ESP Offload	26	R/W	0	A value 1 enables the RX ESP offload feature—when 0, in coming packets are not CAM-ed for offload consideration.
Reserved	25	RO	0	
IPv6 Enable	24	RW	0	1: Enable IPv6 RX 0: Disable IPv6 RX which includes IPv6 packet parsing, checksum offload and IPv6 RSS
RSS_enable	23	RW	1	1: Enable RSS function. 0: Disable RSS function. FHDE will ignore the RSS_valid from Frame Cracker and set RSS_valid to be 0 in frame descriptor of each packet.
RSS Hash Mask Bits	22:20	RW	0x7	These bits specify the number of hash bits that are used to offset into the indirection table. A value of one specifies that only bit 0 of the hash is used to offset into the indirection table (so only the first two entries of the table are utilized.) A value of seven specifies that bits 6:0 of the hash are used to offset into the indirection table. A value of zero will result in undefined behavior and should not be programmed.
RSS TCP/IPV6 Hash Enable	19	RW	0	When this bit is set, 4-tuple hashes are enabled for TCP over IPV6 packets. This bit should be set to 0 if IPv6 RX is disabled.
RSS IPV6 Hash Enable	18	RW	0	When this bit is set, 2-tuple hashes are enabled for IPV6 packets. This bit should be set to 0 if IPv6 RX is disabled.
RSS TCP/IPV4 Hash Enable	17	RW	0	When this bit is set, 4-tuple hashes are enabled for TCP over IPV4 packets.
RSS IPV4 Hash Enable	16	RW	0	When this bit is set, 2-tuple hashes are enabled for IPV4 packets.
Reserved	15:12	RO	0	
Filter Broadcast	11	RW	0	When set, reception of broadcast frames is disabled
Keep VLAN Tag Diag Mode	10	RW	0	If set, forces Receive MAC to keep the VLAN tag in the frame. This is for debugging purpose only and should be reset during normal operation
No CRC Check	9	RW	0	When set, no CRC check by receive MAC on incoming frames. Also, allows the reception of packets received with RXERR on MII/GMII

Table 198: Receive MAC Mode Register (Offset: 0x468) (Cont.)

Name	Bits	Access	Default Value	Description
Promiscuous Mode	8	RW	0	When set, no source address or MC hashing checking will be performed on incoming frames All frames will be accepted
Length Check	7	RW	0	If set, 802.2 length checking is done on LLC frames
Accept Runts	6	RW	0	If set, MAC accepts packets less than 64 bytes
Reserved	5	RO	0	
Keep Pause	4	RW	0	If set, MAC forwards pause frame to host buffer
Reserved	3	RO	0	
Enable Flow Control	2	RW	0	Enable automatic processing of 802.3x flow control frames This bit is orthogonal to the Keep Pause bit
Enable	1	RW	0	This bit controls whether the Receive MAC state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read.
Reset	0	RW	0	When this bit is set to 1, the Receive MAC state machine will be reset. This is a self-clearing bit.

RECEIVE MAC STATUS REGISTER (OFFSET: 0x46C)

Table 199: Receive MAC Status Register (Offset: 0x46C)

Name	Bits	Access	Default Value	Description
Reserved	31:4	RO	0	
RX FIFO Overrun	3	W2C	0	RX FIFO has encountered an overrun condition
XON received	2	W2C	0	MAC control frame with the PAUSE opcode was received with PAUSE TIME field set to zero The bit is sticky and must be written to clear
XOFF received	1	W2C	0	MAC control frame with the PAUSE opcode was received with PAUSE TIME field set to nonzero The bit is sticky and must be written to clear
Remote Transmitter XOFFFed 0		RO	0	A previously received XOFF timer has not expired yet

MAC HASH REGISTER 0 (OFFSET: 0x470)

Table 200: MAC Hash Register 0 (Offset: 0x470)

Name	Bits	Access	Default Value	Description
Hash value	31:0	RW	0	Hash value for multicast destination address matching

MAC HASH REGISTER 1 (OFFSET: 0x474)

Table 201: MAC Hash Register 1 (Offset: 0x474)

Name	Bits	Access	Default Value	Description
Hash value	31:0	RW	0	Hash value for multicast destination address matching

MAC HASH REGISTER 2 (OFFSET: 0x478)

Table 202: MAC Hash Register 2 (Offset: 0x478)

Name	Bits	Access	Default Value	Description
Hash value	31:0	RW	0	Hash value for multicast destination address matching

MAC HASH REGISTER 3 (OFFSET: 0x47C)

Table 203: MAC Hash Register 3 (Offset: 0x47C)

Name	Bits	Access	Default Value	Description
Hash value	31:0	RW	0	Hash value for multicast destination address matching

RECEIVE RULES CONTROL REGISTERS (OFFSET: 0x480 + 8*N)

BCM5761 employs eight receive rules (N = 0 to 7)

Table 204: Receive Rules Control Registers (Offset: 0x480 + 8*N)

Name	Bits	Access	Default Value	Description
Enable	31	RW	0	Corresponding Rule is enabled when set
And With Next	30	RW	0	This rule and next must both be true to match. The class fields must be the same. A disabled next rule is considered true. Processor activation bits are specified in the first rule in series
Activate Processor 1	29	RW	0	If the rule matches, the processor is activated in the queue descriptor for the Receive Queue Placement state machine
Activate Processor 2	28	RW	0	If the rule matches, the processor is activated in the queue descriptor for the Receive Queue Placement state machine
Activate Processor 3	27	RW	0	If the rule matches, the processor is activated in the queue descriptor for the Receive Queue Placement state machine
Mask	26	RW	0	IF set, specifies that the value/mask field is split into a 16-bit mask instead of a 32bit value
Discard	25	RW	0	Discard frame if it matches the rule
Map	24	RW	0	Use the masked value and map it to the class
Reserved for future use	23:18	RW	0	
Comparison Operator	17:16	RW	0	Specifies how to determine the match: 00: Equal 01: Not Equal 10: Greater Than 11: Less Than
Header Type	15:13	RW	0	Specifies which header the offset is for: 000: Start of Frame (always valid) 001: Start of IP Header (if present) 010: Start of TCP Header (if present) 011: Start of UDP Header (if present) 100: Start of Data (always valid, context sensitive)
Class	12:8	RW	0	The class this frame is place into if the rule matches. 0-16 where 0 means discard. The number of valid classes is the number of active queues divided by the Number of Interrupt Distribution Groups. Ring 1 has the highest priority
Offset	7:0	RW	0	Number of bytes offset specified by the header type

RECEIVE RULES VALUE/MASK REGISTERS (OFFSET: 0x484 + 8*N)

BCM5761 employs eight receive rules (N = 0 to 7)

Table 205: Receive Rules Value/Mask Registers (Offset: 0x484 + 8*N)

Name	Bits	Access	Default Value	Description
Mask/Value	31:16	RW	0	For each bit set, the corresponding bit in the value field is ignored during the rule match process If bit 26 of the corresponding rule control register is set, the field is used as an additional 16-bit value for rule comparison
Value	15:0	RW	0	This field specifies a 16-bit value for rule comparison.

RECEIVE RULES CONFIGURATION REGISTER (OFFSET: 0x500)

Table 206: Receive Rules Configuration Register (Offset: 0x500)

Name	Bits	Access	Default Value	Description
Reserved	31:6	RO	0	
No Rules Matches Default Class	5:3	RW	0	Specifies the default class of service for the frame if no rules are matched A value of 1 is the highest priority A value of zero will cause the frame to be discarded
Reserved	2:0	RO	0	

LOW WATERMARK MAXIMUM RECEIVE FRAME REGISTER (OFFSET: 0x504)

Table 207: Low Watermark Maximum Receive Frame Register (Offset: 0x504)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
TXFIFO Almost Empty Threshold	20:16	RW	0xC	When the remaining entries of TXFIFO are less than this threshold, TXFIFO_almost_empty will be asserted. This value is used in conjunction with Buffer Manager Mode register bit31 to prevent EMAC TXFIFO underrun.
Low Watermark Max Receive Frames	15:0	RW	0	Specifies the number of good frames to receive after RX MBUF Low Watermark has been reached. After the RX MAC receives this number of frames, it will drop subsequent incoming frames until the MBUF High Watermark is reached. Default to zero (i.e., drop frames ones RX MBUF Low Watermark is reached).

IPSEC PERFORMANCE SELECTOR REGISTER [0–5] (OFFSET: 0x508–0x51C)

The recommended method of use is to Stop the counter first, then Clear it, and only then program the Event-Selector field. The counting may be Started after that. A Clear command must be issued before starting a fresh count, else an ongoing count may be Paused and then further Resumed by using appropriate command sequences.

Table 208: IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)

Name	Bits	Access	Default Value	Description
Reserved	31:20	RO	x0000	Reserved
Counter State	19	RO	0	0 => The counter is currently in a Paused or Stopped State. 1 => The counter is currently running.
Command	18:16	WO	000	A command, as shown below, is issued by writing into this field: 000 => Program the “Event Selector” field. A valid value must be presented in [6:0] of this register along with this command. The hardware latches this value. 001 => The hardware starts or resumes counting of the event currently latched by the Event Selector field. 010 => The hardware stops or pauses counting immediately after this command is written. 011 => The pairing Counter Register (0x520–0x534) is Cleared immediately after this command is written. 100–111 => Unused - unpredictable hardware behavior.
Reserved	15:7	RO	0	Reserved
Event Selector	6:0	R/W	0	This field selects the event to be counted as shown below:

TX Events:

=====

00_00000 => TX/ESP/HMAC-SHA1 Packet Offloaded
00_00001 => TX/ESP/AES-GCM Packet Offloaded
00_00010 => TX/ESP/AES-GMAC Packet Offloaded
00_00011 => TX/AH/HMAC-SHA1 Packet Offloaded
00_00100 => TX/AH/AES-GMAC Packet Offloaded
00_00101 => TX/AES-GMAC packet Offloaded
00_00110 => TX/ESP packet Offloaded
00_00111 => TX/AH packet Offloaded
00_01000 => TX/(AH or ESP) packet Offloaded
00_01001 => Offloaded TX Packet pointed to an invalid SADB Entry

Table 208: IPSEC Performance Selector Register [0-5] (Offset: 0x508-0x51C) (Cont.)

Name	Bits	Access	Default Value	Description
Event Selector (cont.)	6:0	R/W	0	<p>00_01010 => Offloaded TX Packet did not have ESP or AH Header</p> <p>00_01011 => Offloaded TX Packet had Unsupported Header Construction</p> <p>00_01100 => Offloaded TX Packet was Malformed</p> <p>00_01101-00_11111 => Reserved</p>
RX Events:				
=====				
Event Selector (cont.)	6:0	R/W	0	<p>01_00000 => RX/ESP/HMAC-SHA1 Packet Offloaded</p> <p>01_00001 => RX/ESP/AES-GCM Packet Offloaded</p> <p>01_00010 => RX/ESP/AES-GMAC Packet Offloaded</p> <p>01_00011 => RX/AH/HMAC-SHA1 Packet Offloaded</p> <p>01_00100 => RX/AH/AES-GMAC Packet Offloaded</p> <p>01_00101 => RX/AES-GMAC Packet Offloaded</p> <p>01_00110 => RX/ESP Packet Offloaded</p> <p>01_00111 => RX/AH Packet Offloaded</p> <p>01_01000 => RX/(AH or ESP) Packet Offloaded</p> <p>01_01001 => RX/ESP/HMAC-SHA1 Offloaded Packet Failed Authentication</p> <p>01_01010 => RX/ESP/AES-GCM Offloaded Packet Failed Authentication</p> <p>01_01011 => RX/ESP/AES-GMAC Offloaded Packet Failed Authentication</p> <p>01_01100 => RX/AH/HMAC-SHA1 Offloaded Packet Failed Authentication</p> <p>01_01101 => RX/AH/AES-GMAC Offloaded Packet Failed Authentication</p>
Event Selector (cont.)	6:0	R/W	0	<p>01_01110 => RX/AES-GMAC Offloaded Packet Failed Authentication</p> <p>01_01111 => RX/ESP Offloaded Packet Failed Authentication</p> <p>01_10000 => RX/AH Offloaded Packet Failed Authentication</p> <p>01_10001 => RX/(AH or ESP) Offloaded Packet Failed Authentication</p> <p>01_10010 => RX/ESP/IPv4 Packet Missed SADB</p> <p>01_10011 => RX/AH/IPv4 Packet Missed SADB</p> <p>01_10100 => RX/ESP/IPv6 Packet Missed SADB</p> <p>01_10101 => RX/AH/IPv6 Packet Missed SADB</p> <p>01_10110 => RX/ESP Packet Missed SADB</p>

Table 208: IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C) (Cont.)

Name	Bits	Access	Default Value	Description
Event Selector (cont.)	6:0	R/W	0	01_10111 => RX/AH Packet Missed SADB 01_11000 => RX/(ESP or AH)/IPv4 Packet Missed SADB 01_11001 => RX/(ESP or AH)/IPv6 Packet Missed SADB 01_11010 => RX/IPSEC Packet Missed SADB 01_11011–01_11111 => Reserved SADB Events: ====== 10_00000 => Number of <i>Add SA</i> command executed 10_00001 => Number of <i>Delete SA</i> command executed 10_00010 => Number of <i>Delete ALL</i> command executed 10_00011 => Number of RX-CAM Look-up Performed 10_00100 => Number of RX-CAM Misses 10_00101 => Number of RX-CAM Hits 10_00110–11_11111 => Reserved

IPSEC PERFORMANCE SELECTOR REGISTER [0–5] (OFFSET: 0x508–0x51C)

Each of these Counter registers pairs with a Selector register (0x508–0x51C).

Table 209: IPSEC Performance Selector Register [0–5] (Offset: 0x508–0x51C)

Name	Bits	Access	Default Value	Description
Event Count	31:0	RO	0x00	This field reflects the present count value of the event selected by the pairing Counter register. After Event Count reaches 0xFFFFFFFF, it does not roll over.

SADB PERFORMANCE REGISTER (OFFSET: 0x538)

Fields of this register presents continuous statistics regarding the SADB.

Table 210: SADB Performance Register (Offset: 0x538)

Name	Bits	Access	Default Value	Description
Reserved	31:17	RO	0x0	reserved
SA Population	23:16	RO	0x0	Number of SAs presently valid
RX SA Population	15:8	RO	0x0	Number of presently valid SAs in RX direction
TX SA Population	7:0	RO	0x0	Number of presently valid SAs in TX direction

RSS REGISTERS

All registers reset are core reset unless specified.

INDIRECTION TABLE REGISTER 0 (OFFSET: 0x630)

Table 211: Indirection Table Register 0 (Offset: 0x630)

Name	Bits	Access	Default Value	Description
table_entry0	31:28	RW	0	The RSS_ring value for entry 0. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry1	27:24	RW	0	The RSS_ring value for entry 1. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry2	23:20	RW	0	The RSS_ring value for entry 2. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry3	19:16	RW	0	The RSS_ring value for entry 3. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry4	15:12	RW	0	The RSS_ring value for entry 4. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry5	11:8	RW	0	The RSS_ring value for entry 5. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry6	7:4	RW	0	The RSS_ring value for entry 6. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry7	3:0	RW	0	The RSS_ring value for entry 7. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 2 (OFFSET: 0x634)

Table 212: Indirection Table Register 2 (Offset: 0x634)

Name	Bits	Access	Default Value	Description
table_entry8	31:28	RW	0	The RSS_ring value for entry 8. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry9	27:24	RW	0	The RSS_ring value for entry 9. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry10	23:20	RW	0	The RSS_ring value for entry 10. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 212: Indirection Table Register 2 (Offset: 0x634) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry11	19:16	RW	0	The RSS_ring value for entry 11. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry12	15:12	RW	0	The RSS_ring value for entry 12. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry13	11:8	RW	0	The RSS_ring value for entry 13. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry14	7:4	RW	0	The RSS_ring value for entry 14. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry15	3:0	RW	0	The RSS_ring value for entry 15. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 3 (OFFSET: 0x638)**Table 213: Indirection Table Register 3 (Offset: 0x638)**

Name	Bits	Access	Default Value	Description
table_entry16	31:28	RW	0	The RSS_ring value for entry 16. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry17	27:24	RW	0	The RSS_ring value for entry 17. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry18	23:20	RW	0	The RSS_ring value for entry 18. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry19	19:16	RW	0	The RSS_ring value for entry 19. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry20	15:12	RW	0	The RSS_ring value for entry 20. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry21	11:8	RW	0	The RSS_ring value for entry 21. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry22	7:4	RW	0	The RSS_ring value for entry 22. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry23	3:0	RW	0	The RSS_ring value for entry 23. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 4 (OFFSET: 0x63C)

Table 214: Indirection Table Register 4 (Offset: 0x63C)

Name	Bits	Access	Default Value	Description
table_entry24	31:28	RW	0	The RSS_ring value for entry 24. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry25	27:24	RW	0	The RSS_ring value for entry 25. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry26	23:20	RW	0	The RSS_ring value for entry 26. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry27	19:16	RW	0	The RSS_ring value for entry 27. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry28	15:12	RW	0	The RSS_ring value for entry 28. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry29	11:8	RW	0	The RSS_ring value for entry 29. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry30	7:4	RW	0	The RSS_ring value for entry 30. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry31	3:0	RW	0	The RSS_ring value for entry 31. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 5 (OFFSET: 0x640)

Table 215: Indirection Table Register 5 (Offset: 0x640)

Name	Bits	Access	Default Value	Description
table_entry32	31:28	RW	0	The RSS_ring value for entry 32. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry33	27:24	RW	0	The RSS_ring value for entry 33. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry34	23:20	RW	0	The RSS_ring value for entry 34. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry35	19:16	RW	0	The RSS_ring value for entry 35. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry36	15:12	RW	0	The RSS_ring value for entry 36. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry37	11:8	RW	0	The RSS_ring value for entry 37. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 215: Indirection Table Register 5 (Offset: 0x640) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry38	7:4	RW	0	The RSS_ring value for entry 38. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry39	3:0	RW	0	The RSS_ring value for entry 39. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 6 (OFFSET: 0x644)**Table 216: Indirection Table Register 6 (Offset: 0x644)**

Name	Bits	Access	Default Value	Description
table_entry40	31:28	RW	0	The RSS_ring value for entry 40. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry41	27:24	RW	0	The RSS_ring value for entry 41. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry42	23:20	RW	0	The RSS_ring value for entry 42. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry43	19:16	RW	0	The RSS_ring value for entry 43. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry44	15:12	RW	0	The RSS_ring value for entry 44. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry45	11:8	RW	0	The RSS_ring value for entry 45. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry46	7:4	RW	0	The RSS_ring value for entry 46. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry47	3:0	RW	0	The RSS_ring value for entry 47. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 8 (OFFSET: 0x648)**Table 217: Indirection Table Register 8 (Offset: 0x648)**

Name	Bits	Access	Default Value	Description
table_entry48	31:28	RW	0	The RSS_ring value for entry 48. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry49	27:24	RW	0	The RSS_ring value for entry 49. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 217: Indirection Table Register 8 (Offset: 0x648) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry50	23:20	RW	0	The RSS_ring value for entry 50. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry51	19:16	RW	0	The RSS_ring value for entry 51. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry52	15:12	RW	0	The RSS_ring value for entry 52. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry53	11:8	RW	0	The RSS_ring value for entry 53. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry54	7:4	RW	0	The RSS_ring value for entry 54. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry55	3:0	RW	0	The RSS_ring value for entry 55. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 8 (OFFSET: 0x64C)**Table 218: Indirection Table Register 8 (Offset: 0x64C)**

Name	Bits	Access	Default Value	Description
table_entry56	31:28	RW	0	The RSS_ring value for entry 56. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry57	27:24	RW	0	The RSS_ring value for entry 57. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry58	23:20	RW	0	The RSS_ring value for entry 58. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry59	19:16	RW	0	The RSS_ring value for entry 59. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry60	15:12	RW	0	The RSS_ring value for entry 60. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry61	11:8	RW	0	The RSS_ring value for entry 61. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry62	7:4	RW	0	The RSS_ring value for entry 62. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry63	3:0	RW	0	The RSS_ring value for entry 63. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 9 (OFFSET: 0x650)*Table 219: Indirection Table Register 9 (Offset: 0x650)*

Name	Bits	Access	Default Value	Description
table_entry64	31:28	RW	0	The RSS_ring value for entry 64. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry65	27:24	RW	0	The RSS_ring value for entry 65. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry66	23:20	RW	0	The RSS_ring value for entry 66. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry67	19:16	RW	0	The RSS_ring value for entry 67. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry68	15:12	RW	0	The RSS_ring value for entry 68. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry69	11:8	RW	0	The RSS_ring value for entry 69. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry70	7:4	RW	0	The RSS_ring value for entry 70. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry71	3:0	RW	0	The RSS_ring value for entry 71. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 10 (OFFSET: 0x654)*Table 220: Indirection Table Register 10 (Offset: 0x654)*

Name	Bits	Access	Default Value	Description
table_entry72	31:28	RW	0	The RSS_ring value for entry 72. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry73	27:24	RW	0	The RSS_ring value for entry 73. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry74	23:20	RW	0	The RSS_ring value for entry 74. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry75	19:16	RW	0	The RSS_ring value for entry 75. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry76	15:12	RW	0	The RSS_ring value for entry 76. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry77	11:8	RW	0	The RSS_ring value for entry 77. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 220: Indirection Table Register 10 (Offset: 0x654) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry78	7:4	RW	0	The RSS_ring value for entry 78. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry79	3:0	RW	0	The RSS_ring value for entry 79. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 11 (OFFSET: 0x658)**Table 221: Indirection Table Register 11 (Offset: 0x658)**

Name	Bits	Access	Default Value	Description
table_entry80	31:28	RW	0	The RSS_ring value for entry 80. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry81	27:24	RW	0	The RSS_ring value for entry 81. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry82	23:20	RW	0	The RSS_ring value for entry 82. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry83	19:16	RW	0	The RSS_ring value for entry 83. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry84	15:12	RW	0	The RSS_ring value for entry 84. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry85	11:8	RW	0	The RSS_ring value for entry 85. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry86	7:4	RW	0	The RSS_ring value for entry 86. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry87	3:0	RW	0	The RSS_ring value for entry 87. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 12 (OFFSET: 0x65C)**Table 222: Indirection Table Register 12 (Offset: 0x65C)**

Name	Bits	Access	Default Value	Description
table_entry88	31:28	RW	0	The RSS_ring value for entry 88. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry89	27:24	RW	0	The RSS_ring value for entry 89. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 222: Indirection Table Register 12 (Offset: 0x65C) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry90	23:20	RW	0	The RSS_ring value for entry 90. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry91	19:16	RW	0	The RSS_ring value for entry 91. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry92	15:12	RW	0	The RSS_ring value for entry 92. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry93	11:8	RW	0	The RSS_ring value for entry 93. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry94	7:4	RW	0	The RSS_ring value for entry 94. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry95	3:0	RW	0	The RSS_ring value for entry 95. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 12 (OFFSET: 0x660)

Table 223: Indirection Table Register 12 (Offset: 0x660)

Name	Bits	Access	Default Value	Description
table_entry96	31:28	RW	0	The RSS_ring value for entry 96. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry97	27:24	RW	0	The RSS_ring value for entry 97. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry98	23:20	RW	0	The RSS_ring value for entry 98. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry99	19:16	RW	0	The RSS_ring value for entry 99. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry100	15:12	RW	0	The RSS_ring value for entry 100. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry101	11:8	RW	0	The RSS_ring value for entry 101. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry102	7:4	RW	0	The RSS_ring value for entry 102. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry103	3:0	RW	0	The RSS_ring value for entry 103. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 13 (OFFSET: 0x664)

Table 224: Indirection Table Register 13 (Offset: 0x664)

Name	Bits	Access	Default Value	Description
table_entry104	31:28	RW	0	The RSS_ring value for entry 104. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry105	27:24	RW	0	The RSS_ring value for entry 105. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry106	23:20	RW	0	The RSS_ring value for entry 106. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry107	19:16	RW	0	The RSS_ring value for entry 99. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry108	15:12	RW	0	The RSS_ring value for entry 100. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry109	11:8	RW	0	The RSS_ring value for entry 101. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry110	7:4	RW	0	The RSS_ring value for entry 102. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry111	3:0	RW	0	The RSS_ring value for entry 103. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 14 (OFFSET: 0x668)

Table 225: Indirection Table Register 14 (Offset: 0x668)

Name	Bits	Access	Default Value	Description
table_entry112	31:28	RW	0	The RSS_ring value for entry 112. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry113	27:24	RW	0	The RSS_ring value for entry 113. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry114	23:20	RW	0	The RSS_ring value for entry 114. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry115	19:16	RW	0	The RSS_ring value for entry 115. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry116	15:12	RW	0	The RSS_ring value for entry 116. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry117	11:8	RW	0	The RSS_ring value for entry 117. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

Table 225: Indirection Table Register 14 (Offset: 0x668) (Cont.)

Name	Bits	Access	Default Value	Description
table_entry118	7:4	RW	0	The RSS_ring value for entry 118. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry119	3:0	RW	0	The RSS_ring value for entry 119. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

INDIRECTION TABLE REGISTER 15 (OFFSET: 0x66C)

Table 226: Indirection Table Register 15 (Offset: 0x66C)

Name	Bits	Access	Default Value	Description
table_entry120	31:28	RW	0	The RSS_ring value for entry 120. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry121	27:24	RW	0	The RSS_ring value for entry 121. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry122	23:20	RW	0	The RSS_ring value for entry 122. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry123	19:16	RW	0	The RSS_ring value for entry 123. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry124	15:12	RW	0	The RSS_ring value for entry 124. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry125	11:8	RW	0	The RSS_ring value for entry 125. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry126	7:4	RW	0	The RSS_ring value for entry 126. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.
table_entry127	3:0	RW	0	The RSS_ring value for entry 127. Only the least significant 2 bits are used for Stanford. The upper 2 bits are for the future expansion purpose.

HASH KEY REGISTER 0 (OFFSET: 0x670)

Table 227: Hash Key Register 0 (Offset: 0x670)

Name	Bits	Access	Default Value	Description
Hash_key[7:0]	31:24	RW	0	The first byte of the hash_key. Bit31 is the first bit of the hash_key. It's the big endian format.
Hash_key[15:8]	23:16	RW	0	The 2 nd byte of the hash_key. The bits are in the big endian format
Hash_key[23:16]	15:8	RW	0	The 3 rd byte of the hash_key. The bits are in the big endian format

Table 227: Hash Key Register 0 (Offset: 0x670) (Cont.)

Name	Bits	Access	Default Value	Description
Hash_key[31:24]	7:0	RW	0	The 4 th byte of the hash_key. The bits are in the big endian format.

HASH KEY REGISTERS 1-8 (OFFSET: 0x674–0x693)

The rest of Hash Keys for 5th through 36th bytes. They follow the same as the previously described format.

HASH KEY REGISTER 9 (OFFSET: 0x694)

Table 228: Hash Key Register 9 (Offset: 0x694)

Name	Bits	Access	Default Value	Description
Hash_key[295:288]	31:24	RW	0	The 37 th byte of the hash_key. The bits are in the big endian format
Hash_key[303:296]	23:16	RW	0	The 38 th byte of the hash_key. The bits are in the big endian format
Hash_key[311:304]	15:8	RW	0	The 39 th byte of the hash_key. The bits are in the big endian format
Hash_key[319:312]	7:0	RW	0	The 40 th byte of the hash_key. The bits are in the big endian format

RECEIVE MAC PROGRAMMABLE IPv6 EXTENSION HEADER REGISTER (OFFSET: 0x6A0)

Table 229: Receive MAC Programmable IPv6 Extension Header Register (Offset: 0x6A0)

Name	Bits	Access	Default Value	Description
Programmable Extension Header Type #2 Enable	31	R/W	0	This bit enables programmable extension header #1. If this bit is clear, then the value programmed in bits [15:8] of this register will be ignored. If this bit is set, then extension headers will be checked for a type matching the value in bits [15:8]. This bit should be set to 0 if IPv6 RX is disabled.
Programmable Extension Header Type #1 Enable	30	R/W	0	This bit enables programmable extension header #1. If this bit is clear, then the value programmed in bits [7:0] of this register will be ignored. If this bit is set, then extension headers will be checked for a type matching the value in bits [7:0]. This bit should be set to 0 if IPv6 RX is disabled.
Reserved	29:16	RO	0	Reserved bits
Programmable Extension Header Type #2	15:8	R/W	0	These bits contain the programmable extension header value for programmable header #2.
Programmable Extension Header Type #1	7:0	R/W	0	These bits contain the programmable extension header value for programmable header #1.

STATISTICS REGISTERS

TRANSMIT MAC STATIC COUNTERS

ifHCOutOctets (Offset: 0x800)

The number of octets transmitted out of the interface, including frame characters.

etherStatsCollisions (Offset: 0x808)

The number of collisions experienced.

outXonSent (Offset: 0x80C)

Sent Xon.

outXoffSent (Offset: 0x810)

Sent Xoff.

dot3StatsInternalMacTransmitErrors (Offset: 0x818)

A count of frames for which transmission on a particular interface fails due to an internal MAC sublayer transmit error.

dot3StatsSingleCollisionFrames (Offset: 0x81C)

A count of successfully transmitted frames on a particular interface for which transmission is inhibited by exactly one collision.

dot3StatsMultipleCollisionFrames (Offset: 0x820)

A count of successfully transmitted frames on a particular interface for which transmission is inhibited by more than one collision.

DOT3STATSDEFERREDTRANSMISSIONS (OFFSET: 0x824)

A count of frames for which the first transmission attempt on a particular interface is delayed because of the medium is busy.

dot3StatsExcessiveTransmissions (Offset: 0x82C)

A count of frames for which transmission on a particular interface fails due to excessive collisions.

dot3StatsLateCollisions (Offset: 0x830)

The number of times that a collision is detected on a particular interface later than 512 bit-times into the transmission of a packet.

iHCOOutUcastPkts (Offset: 0x86C)

The number of packets that higher-level protocols requested be transmitted, and that were not addressed to a multicast or broadcast address at this sublayer, including those that were discarded or not sent.

iHCOOutMulticastPkts (Offset: 0x870)

The number of packets that higher-level protocols requested be transmitted, and that were addressed to a multicast address at this sublayer, including those that were discarded or not sent.

iHCOOutBroadcastPkts (Offset: 0x870)

The number of packets that higher-level protocols requested be transmitted, and that were addressed to a broadcast address at this sublayer, including those that were discarded or not sent.

RECEIVE MAC STATIC COUNTERS

ifHCOOutOctets (Offset: 0x880)

The number of octets received on the interface, including frame characters.

etherStatsFragments (Offset: 0x888)

A frame size that is less than 64 bytes with a bad FCS.

ifHCInUcastPkts (Offset: 0x88C)

The number of packets delivered by this sublayer to a higher sublayer, which were not addressed to a multicast or broadcast address at this sublayer.

ifHCInMulticastPkts (Offset: 0x890)

The number of packets delivered by this sublayer to a higher sublayer, which were addressed to a multicast address at this sublayer.

ifHCInBroadcastPkts (Offset: 0x894)

The number of packets delivered by this sublayer to a higher sublayer, which were addressed to a broadcast address at this sublayer.

dot3StatsFCSErrors (Offset: 0x898)

A count of frames received on a particular interface that are an integral number of octets in length and do not pass the FCS check.

dot3StatsAlignmentErrors (Offset: 0x89C)

A count of frames received on a particular interface that are not an integral number of octets in length and do not pass the FCS check.

xonPauseFrameReceived (Offset: 0x8A0)

MAC control frames with pause command and length equal to zero.

xoffPauseFrameReceived (Offset: 0x8A4)

MAC control frames with pause command and length greater than zero.

macControlFramesReceived (Offset: 0x8A8)

MAC control frames with no pause command.

xoffStateEntered (Offset: 0x8AC)

Transmitting is disabled.

dot3StatsFramesTooLongs (Offset: 0x8B0)

A count of frames received on a particular interface that exceeds the maximum permitted frame size.

etherStatsJabbers (Offset: 0x8B4)

Frames exceed jabber time.

etherStatsUndersizePkts (Offset: 0x8B8)

Frames with a size less than 64 bytes.

SEND DATA INITIATOR REGISTERS

All registers reset are core reset unless specified.

SEND DATA INITIATOR MODE REGISTER (OFFSET: 0xC00)

Table 230: Send Data Initiator Mode Register (Offset: 0xC00)

Name	Bits	Access	Default Value	Description
Reserved	31:6	RO	0	
Multiple Segment Enable	5	RW	0	Enable RDMA to read multi-segment (up to four segments) in one DMA request during TCP segmentation
Pre-DMA Debug	4	RW	0	When this bit is set, Send Data Initiator state machine will be halted if the pre-DMA bit of the Send BD is set
Hardware Pre-DMA Enable	3	RW	0	Enable HW LSO pre-DMA processing
Stats Overflow Attn Enable	2	RW	0	Enable attention for statistics overflow
Enable	1	RW	1	This bit controls whether the Send Data Initiator state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read
Reset	0	RW	0	When this bit is set to 1, Send Data Initiator state machine is reset This is a self-clearing bit

SEND DATA INITIATOR STATUS REGISTER (OFFSET: 0xC04)

Table 231: Send Data Initiator Status Register (Offset: 0xC04)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Stats Overflow Attention	2	RO	0	A statistics managed by Send Data Initiator has overflowed
Reserved	1:0	RO	0	

SEND DATA INITIATOR STATISTICS CONTROL REGISTER (OFFSET: 0xC08)

Table 232: Send Data Initiator Statistics Control Register (Offset: 0xC08)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Zap Statistic	4	RW	0	
Flush Statistic	3	RW	0	
Statistics Clear	2	RW	0	If set, resets local statistics counters to zero Clears only masked statistics Self-clearing when done

Table 232: Send Data Initiator Statistics Control Register (Offset: 0xC08) (Cont.)

Name	Bits	Access	Default Value	Description
Faster Update	1	RW	0	
Statistics Enable	0	RW	0	When set, allows the local statistics counters to increment. When reset, counters hold their values until next update to NIC memory Enables only masked statistics

SEND DATA INITIATOR STATISTICS MASK REGISTER (OFFSET: 0xC0C)**Table 233: Send Data Initiator Statistics Mask Register (Offset: 0xC0C)**

Name	Bits	Access	Default Value	Description
Reserved	31:1	RO	0	
Counters Enable Mask	0	RW	0	Controls whether Class of Service 0 statistics can be updated, cleared, or flushed

SEND DATA INITIATOR STATISTICS INCREMENT MASK REGISTER (OFFSET: 0xC10)**Table 234: Send Data Initiator Statistics Increment Mask Register (Offset: 0xC10)**

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
Counters Increment Mask	23:19	WO	0	Writing 1 to the bit position forces the corresponding statistics counters to increment by 1. Not affected by Statistics Enable Mask. Bits 16:23 correspond to Set Send Producer Index, Status Updated, Interrupts, Avoided Interrupts, Send Threshold Hit, respectively.
Reserved	18:16	RO	0	
Counters Increment Mask	15:0	WO	0	Writing 1 to the bit position forces the corresponding statistics counters to increment by 1. Not affected by Statistics Enable Mask. Bits 15:0 correspond to statistics for Class of Service 16:1

LOCAL STATISTICS REGISTER (OFFSET: 0xC80–0xCDF)**Table 235: Local Statistics Register (Offset: 0xC80–0xCDF)**

Name	Bits	Access	Default Value	Description
Reserved	31:10	RO	0	
Counter Value	9:0	RO	0	The current counter value for statistics kept by the Send Data Initiator

TCP SEGMENTATION CONTROL REGISTERS

All registers reset are core reset unless specified.

LOWER HOST ADDRESS REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCE0)

Table 236: Lower Host Address Register for TCP Segmentation (Offset: 0xCE0)

Name	Bits	Access	Default Value	Description
Lower Host Address	31:0	RW	0	Specifies the lower 32bits of the starting address in host memory where the transmit data buffer resides

UPPER HOST ADDRESS REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCE4)

Table 237: Upper Host Address Register for TCP Segmentation (Offset: 0xCE4)

Name	Bits	Access	Default Value	Description
Upper Host Address	31:0	RW	0	Specifies the upper 32 bits of the starting address in host memory where the transmit data buffer resides.

LENGTH/OFFSET REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCE8)

Table 238: Length/Offset Register for TCP Segmentation (Offset: 0xCE8)

Name	Bits	Access	Default Value	Description
Reserved	31:23	RO	0	
MBUF Offset	22:16	RW	0	MBUF offset It specifies the offset of the first TXMBUF at where DMA starts putting data. The valid value is between 48 and 128.
Length	15:0	RW	0	Specifies the length of data to be transmitted. Although FW can specify up to 64 KB, it should not attempt to program more than 8 KB because it would exceed the size of TXMBUF.

DMA FLAG REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCEC)

Table 239: DMA Flag Register for TCP Segmentation (Offset: 0xCEC)

Name	Bits	Access	Default Value	Description
Reserved	31:26	RO	–	
Ipsec_sa	25:21	RW	–	
Ipsec_en	20	RW	–	
MBUF offset valid	19	RW	–	MBUF offset valid When this bit is set, the RDMA engine will DMA the data into the TXMBUF starting at an offset specified in the Length/Offset register

Table 239: DMA Flag Register for TCP Segmentation (Offset: 0xCEC) (Cont.)

Name	Bits	Access	Default Value	Description
Last Fragment	18	RW	–	Last fragment. This bit is passed transparently to the SDC. When this bit is set, the SDC will inform the HC to increment the Send Ring Consumer Index. The bit is always set by HW if no FW assisted TCP segmentation occurs Otherwise, FW sets it at the end of fragmentation
No Word Swap	17	RW	–	No Word Swap Set to disable endian word swap on data from PCIe bus
Status_dma	16	RW	–	
MAC source address Select	15:14	RW	–	This 2-bit field determines which of the four MAC addresses should be inserted into the frame.
MAC source address insertion	13	RW	–	Indicates that the predetermined source address is inserted into the Ethernet header of the frame
TCP/UDP checksum enable	12	RW	–	TCP/UDP Checksum enable
IP Checksum enable	11	RW	–	IP checksum enable
Force RAW checksum enable	10	RW	–	Force RAW checksum enable
Data_only	9	RO	–	
Header	8	RW	–	
VLAN Tag Present	7	RW	–	VLAN Tag present Indicates that the VLAN tag should be copied to the Frame Header by the DMA engine
Force Interrupt	6	RW	–	Following the completion of this DMA, a host interrupt is generated
Last BD in Frame	5	RW	–	Last BD in frame
Coalesce Now	4	RW	–	Pass through Send Buffer Descriptor flag
mbuf	3	RW	–	
Invoke Processor	2	RW	–	Clears the Pass bit of the entry queued to the SDCQ, so that SDC will invoke CPU *If the packet is created by HW, this bit will be the same as bit 9 of the flag field in Send BD *If the packet is created by FW, it will be up to CPU whether it needs to post-process the data
Don't Generate CRC	1	RW	–	Do not generate CRC Pass through Send Buffer Descriptor flag
No Byte Swap	0	RW	–	Set to disable endian byte swap on data from PCIe bus

VLAN TAG REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCF0)

Table 240: VLAN Tag Register for TCP Segmentation (Offset: 0xCF0)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	
VLAN Tag	15:0	RW	0	VLAN Tag to be inserted into the Frame Header if bit 7 of DMA Flags register is set

PRE-DMA COMMAND EXCHANGE REGISTER FOR TCP SEGMENTATION (OFFSET: 0xCF4)

Table 241: Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0xCF4)

Name	Bits	Access	Default Value	Description
READY	31	RW	0	The CPU sets this bit to tell SDI that DMA address, length, flags, and VLAN tag are valid and request is read to go. The CPU polls this bit to be clear for the completion of request 0xCF4.31 is writable only if 0xCE8.15:0 is non-zero
PASS Status	30	RO	1	If this bit is set to 0, the CPU will be responsible for processing the buffer descriptor
SKIP Status	29	RW	0	The CPU sets this bit to 1 to inform the SDI that the TCP Segmentation is completed, and the BD_Index can be incremented
Unsupported_Mss Status	28	RO	0	
Reserved	27:7	RO	0	
BD Index	6:0	RO	0	The internal current buffer descriptor pointer that the HW/FW is servicing

SEND DATA COMPLETION CONTROL REGISTERS

All registers reset are core reset unless specified.

SEND DATA COMPLETION MODE REGISTER (OFFSET: 0x1000)

Table 242: Send Data Completion Mode Register (Offset: 0x1000)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Disable Delayed Host Coalescing	4	RW	0	A value 1 disables the Delayed HC feature introduced in BCM5761
Reserved	3:2	RO	0	
Enable	1	RW	1	This bit controls whether Send Data Completion state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read
Reset	0	RW	0	When this is set to 1, the Send Data Completion state machine is reset This is a self-clearing bit

PRE-DMA COMMAND EXCHANGE REGISTER FOR TCP SEGMENTATION (OFFSET: 0x1008)

Table 243: Pre-DMA Command Exchange Register for TCP Segmentation (Offset: 0x1008)

Name	Bits	Access	Default Value	Description
PASS	31	RW	1	If this bit is set to 0, the CPU will be invoked to process TXMBUF data. It is same as SDCQ bit 143.
SKIP	30	RW	0	CPU Sets this bit to 1 to inform the SDC that the post-processing is completed and hardware can resume operation
End of Fragmentation	29	RW	1	If this bit is set to 1, SDC will request the HC to increment Send Ring Consumer Index when CPU sets the SKIP bit. It is same as SDCQ bit 12
Reserved	28:12	RO	0	
Head TXMBUF pointer	11:6	RW	0	Head TXMBUF Pointer They are same as SDCQ bits 11:6
Tail TXMBUF pointer	5:0	RW	0	Tail TXMBUF Pointer They are same as SDCQ bits 5:0

SEND BD SELECTOR CONTROL REGISTERS

All registers reset are core reset unless specified.

SEND BD RING SELECTOR MODE REGISTER (OFFSET: 0x1400)

Table 244: Send BD Ring Selector Mode Register (Offset: 0x1400)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs
Enable	1	RW	0	This bit controls whether Send BD Ring Selector state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read
Reset	0	RW	0	When this is set to 1, the Send BD Ring Selector State machine is reset This is a self clearing bit

SEND BD RING SELECTOR STATUS REGISTER (OFFSET: 0x1404)

Table 245: Send BD Ring Selector Status Register (Offset: 0x1404)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Error	2	RO	0	Send BD Ring Selector error status
Reserved	1:0	RO	0	

SEND BD RING SELECTOR HARDWARE DIAGNOSTICS REGISTER (OFFSET: 0x1408)

Table 246: Send BD Ring Selector Hardware Diagnostics Register (Offset: 0x1408)

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO	0	

SEND BD RING SELECTOR LOCAL NIC SEND BD CONSUMER INDEX REGISTER (OFFSET: 0x1440–0x147C)

Table 247: Send BD Ring Selector Local NIC Send BD Consumer Index Register (Offset: 0x1440–0x147C)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
Index	8:0	RO		These bits contain the current NIC send BD index

SEND BD INITIATOR CONTROL REGISTERS

All registers reset are core reset unless specified.

SEND BD INITIATOR MODE REGISTER (OFFSET: 0x1800)

Table 248: Send BD Initiator Mode Register (Offset: 0x1800)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Pass_bit status	4	R/W	0	Always return 1 when read
Sbdi_rupd_enable	3	RW	0	
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	1	This bit controls whether the Send BD Initiator state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read.
Reset	0	RW	0	When this is set to 1, the Send BD Initiator State machine is reset. This is a self-clearing bit.

SEND BD INITIATOR STATUS REGISTER (OFFSET: 0x1804)

Table 249: Send BD Initiator Status Register (Offset: 0x1804)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Error	2	RO	0	Send BD Initiator Error
Reserved	1:0	RO	0	

SEND BD DIAGNOSTIC INITIATOR LOCAL NIC BD N PRODUCER INDEX REGISTERS (OFFSET: 0x1808–0x1844)

This set of registers is used to keep track of the current DMAs queued to move send BDs from the host to the NIC.

SEND BD COMPLETION CONTROL REGISTERS

All registers reset are core reset unless specified.

SEND BD INITIATOR MODE REGISTER (OFFSET: 0x1C00)

Table 250: Send BD Initiator Mode Register (Offset: 0x1C00)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	1	This bit controls whether the Send BD Completion state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read.
Reset	0	RW	0	When this is set to 1, the Send BD Completion State machine is reset. This is a self-clearing bit.

RECEIVE LIST PLACEMENT REGISTERS

All registers reset are core reset unless specified.

RECEIVE LIST PLACEMENT MODE REGISTER (OFFSET: 0x2000)

Table 251: Receive List Placement Mode Register (Offset: 0x2000)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Stats Overflow Attention Enable	4	RW	–	Enable attention for statistics overflow
Mapping out of Range Attention Enable	3	RW	–	Enable attention for mapping out of range error
Class Zero Attention Enable	2	RW	–	Enable attention for zero class field
Enable	1	RW	1	This bit controls whether the Receive List Placement state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read
Reset	0	RW	0	When this bit is set to 1, the Receive List Placement state machine is reset. This is a self-clearing bit.

RECEIVE LIST PLACEMENT STATUS REGISTER (OFFSET: 0x2004)

Table 252: Receive List Placement Status Register (Offset: 0x2004)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Stats Overflow Attention	4	RO	–	A statistics managed by Receive List Placement has overflowed
Mapping out of Range Attention	3	RO	–	Class of service mapping is out of the range of the active queue number
Class Zero Attention	2	RO	–	Class field extracted from frame descriptor is zero
Reserved	1:0	RO	0	

RECEIVE SELECTOR NON-EMPTY BITS REGISTER (OFFSET: 0x200C)

This 32-bit register is used by the RISCs to quickly determine the status of the receive selector. Bit 0 refers to receive selector list 1. Bit 15 refers to receive selector list 16. If this register is nonzero the receive selector non-empty bit is set in the RXCPU event register.

Table 253: Receive Selector Non-Empty Bits Register (Offset: 0x200C)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0	

Table 253: Receive Selector Non-Empty Bits Register (Offset: 0x200C) (Cont.)

Name	Bits	Access	Default Value	Description
List non-empty bits	15:0	RO	–	If set, the bit indicates that the associated list is not empty (that is the counter is nonzero).

RECEIVE LIST PLACEMENT CONFIGURATION REGISTER (OFFSET: 0x2010)

Table 254: Receive List Placement Configuration Register (Offset: 0x2010)

Name	Bits	Access	Default Value	Description
Reserved	31:15	RO	0	
Default Interrupt Distribution Queue	14:13	RW	0	Default interrupt distribution queue. Number within a class of service group when the frame has errors, is truncated, or is a non-IP frame.
Bad Frames Class	12:8	RO	1	Default class for error or truncated frames. These frames are placed in this class of service group when the Allow Bad Frame bit (bit 11) is set in the Mode Control Register.
Number of Active Lists	7:3	RW	0	The total number of active receive lists. The value must be between 1 and 16. This value must be an integer multiple of the Number of Lists per Distribution Group value.
Number of Lists per Distribution Group	2:0	RW	0	Specifies the number of lists per interrupt distribution group. This register must always be a power of 2.
				Example: If the system wants four classes of service and four interrupt distribution lists per class of service, this value is set to four and the Number of Active Lists value is set to 16.

RECEIVE LIST PLACEMENT CONFIGURATION REGISTER (OFFSET: 0x2010)

Table 255: Receive List Placement Configuration Register (Offset: 0x2010)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Statistics Clear	2	RW	0	When set, resets local statistics counters to zero. Clears only masked statistics. Self-clearing when done.
Reserved	1	RO	0	
Statistics Enable	0	RW	0	When set, allow the local statistics counters to increment. When reset, counters hold their values until the next update to the NIC memory. Enables only masked statistics.

RECEIVE LIST PLACEMENT STATISTICS ENABLE MASK REGISTER (OFFSET: 0x2018)*Table 256: Receive List Placement Statistics Enable Mask Register (Offset: 0x2018)*

Name	Bits	Access	Default Value	Description
Reserved	31:26	RO	0	
RSS_Priority	25	RW	0x0	This bit enables the receive packet to choose receive return ring in terms of RSS hash value instead of RC class when both RSS and RC rules are matched. Default is to give priority to RC.
RC Return Ring Enable	24	RW	0x0	1: Enable receive packet to use RC rule class as return ring number if RC rule is matched. This bit will be used in conjunction with bit25 to derive the final receive return ring. 0: Disable receive packet to use RC rule class as return ring number. Receive packet only uses RSS hash to select the receive return ring. If no RSS hash types are applied, the default ring 0 will be used.
CPU MACTQ Priority Disable	23	RW	0x0	1: Disable CPU priority over SDC when arbitrating the MACTQ write requests. 0: Enable CPU priority over SDC when arbitrating the MACTQ write requests.
Reserved	22:19	RO	0	
Reserved	17:2	RO	N/A	N/A
Reserved	0	RO	0	

RECEIVE LIST PLACEMENT STATISTICS INCREMENT MASK REGISTER (OFFSET: 0x201C)*Table 257: Receive List Placement Statistics Increment Mask Register (Offset: 0x201C)*

Name	Bits	Access	Default Value	Description
Reserved	31:22	RO	0	
Counters Increment Mask	21:16	WO	0	Writing a 1 to a Counters Increment Mask bit forces the corresponding statistics counter to increment by 1. Not affected by Statistics Enable Mask. Bits 16-21 correspond to statistics for Drop due to filter, DMA Write Queue Full, DMA High Priority Write Queue Full, No More Receive BD, ifInDiscards, and ifInErrors.
Reserved	15:1	RO	0	
Counters Increment Mask	0	WO	0	Writing a 1 to a Counters Increment Mask bit forces the corresponding statistics counter to increment by 1. Not affected by Statistics Enable Mask. Bit 0 corresponds to statistics Class of Service 1.

RECEIVE SELECTOR LIST HEAD & TAIL POINTERS (OFFSET: 0x2100)

The 16 receive selector lists head and tail pointers are MBUF cluster pointers. The selector list head pointer is the MBUF cluster pointer of the first frame queued in the associated selector list. Similarly, the selector list tail pointer is the MBUF cluster pointer of the last frame queued in that selector list.

RECEIVE SELECTOR LIST COUNT REGISTERS (OFFSET OF LIST N: 0X2108 + 16*[N-1])

These registers indicate how many frames are currently queued to the associated selector list.

LOCAL STATISTICS COUNTER REGISTERS (OFFSET: 0x2200–0x2258)

Table 258: Local Statistics Counter Registers (Offset: 0x2200–0x2258)

Name	Bits	Access	Default Value	Description
Reserved	31:10	RO	0	
Counters Value	9:0	RO	–	The current counter value for statistics kept by the Receive List Placement

RECEIVE DATA AND RECEIVE BD INITIATOR CONTROL REGISTERS

All registers reset are core reset unless specified.

RECEIVE DATA AND RECEIVE BD INITIATOR MODE REGISTER (OFFSET: 0x2400)

Table 259: Receive Data and Receive BD Initiator Mode Register (Offset: 0x2400)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Illegal Return Ring Size	4	RW	–	Enables illegal return ring size attention
Frame Size is too large to fit into one Receive BD	3	RW	–	Enables frame size is too large to fit into one Receive BD attention
Reserved	2	RO	0	
Enable	1	RW	1	This bit controls whether the Receive Data and Receive BD Initiator state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the Receive Data and Receive BD Initiator state machine is reset. This is a self-clearing bit.

RECEIVE DATA AND RECEIVE BD INITIATOR STATUS REGISTER (OFFSET: 0x2404)

Table 260: Receive Data and Receive BD Initiator Status Register (Offset: 0x2404)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
Illegal Return Ring Size	4	RO	–	One of the return rings contains illegal ring size (e.g., only contains 1024 entries)
Frame size is too large to fit into one Receive BD	3	RO	–	The received frame size is too big for the selected Receive BD.
Reserved	2:0	RO	0	

STANDARD RECEIVE BD RING RCB REGISTERS

Receive Producer Ring Host Address High Register (Offset: 0x2450)

Table 261: Receive Producer Ring Host Address High Register (Offset: 0x2450)

Name	Bits	Access	Default Value	Description
Host Address High	31:0	RW	0	The host ring address is the host address of the first ring element. The host ring address is in host address format.

Receive Producer Ring Host Address Low Register (Offset: 0x2454)**Table 262: Receive Producer Ring Host Address Low Register (Offset: 0x2454)**

Name	Bits	Access	Default Value	Description
Host Address Low	31:0	RW	0	The host ring address is the host address of the first ring element. The host ring address is in host address format.

Receive Producer Length/Flags Register (Offset: 0x2458)**Table 263: Receive Producer Length/Flags Register (Offset: 0x2458)**

Name	Bits	Access	Default Value	Description
Max Length	31:16	RW	0	Unused for jumbo rings; otherwise, specifies the maximum size of an Ethernet packet plus VLAN tag
Reserved	15:2	RO	0	
Disable Ring	1	RW	0	Set to disable the use of the ring.
Reserved	0	RO	0	Set to use the extended receive buffer descriptors.

Receive Producer Ring NIC Address Register (Offset: 0x245C)**Table 264: Receive Producer Ring NIC Address Register (Offset: 0x245C)**

Name	Bits	Access	Default Value	Description
NIC Address	31:0	RW	0	The NIC ring address is the NIC address of the first ring element.

**RECEIVE DIAGNOSTIC DATA AND RECEIVE BD RING INITIATOR LOCAL NIC STANDARD
RECEIVE BD CONSUMER INDEX (OFFSET: 0x2474)**

This set of registers keeps track of the current DMAs queued to move receive data from the NIC to the host. The Receive Data and Receive BD Initiator maintains the state of the indices by keeping two local copies, a copy of the NIC's return ring producer index, and a copy of the NIC's receive BD consumer index. The local return ring producer index is set to the value placed in the DMA descriptor. The local NIC receive return consumer index is also set to the value placed in the DMA descriptor.

RECEIVE DATA AND RECEIVE BD INITIATOR HARDWARE DIAGNOSTIC REGISTER (OFFSET: 0x24C0)**Table 265: Receive Data and Receive BD Initiator Hardware Diagnostic Register (Offset: 0x24C0)**

Name	Bits	Access	Default Value	Description
Diagnostics	31:0	RO	0	Hardware Diagnostics

RECEIVE DATA COMPLETION CONTROL REGISTERS

All registers reset are core reset unless specified.

RECEIVE DATA COMPLETION MODE REGISTER (OFFSET: 0x2800)

Table 266: Receive Data Completion Mode Register (Offset: 0x2800)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	1	This bit controls whether the Receive Data Completion state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the Receive Data Completion state machine is reset. This is a self-clearing bit.

RECEIVE BD INITIATOR CONTROL REGISTERS

All registers reset are core reset unless specified.

RECEIVE BD INITIATOR MODE REGISTER (OFFSET: 0x2C00)

Table 267: Receive BD Initiator Mode Register (Offset: 0x2C00)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Receive BDs available on a disabled Receive BD Ring	2	RW	0	Attention enable for Receive BDs available on a disabled Receive BD ring.
Enable				
Enable	1	RW	1	This bit controls whether the Receive BD Initiator state machine is active or not. When set to 0, it completes the current operation and cleanly halts. It remains one when read until it is completely halted.
Reset	0	RW	0	When this bit is set to 1, the Receive BD Initiator state machine is reset. This is a self-clearing bit.

RECEIVE BD INITIATOR STATUS REGISTER (OFFSET: 0x2C04)

Table 268: Receive BD Initiator Status Register (Offset: 0x2C04)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Receive BDs available on a disabled Receive BD Ring	2	RO	0	Host requests to DMA Receive BDs to a disabled ring.
status				
Reserved	1:0	RO	0	

RECEIVE BD INITIATOR LOCAL NIC RECEIVE BD PRODUCER INDEX REGISTER (OFFSET: 0x2C08–0x2C13)

This set of registers is used to keep track of the current DMAs queued to move receive BDs from the host to the NIC.

STANDARD RECEIVE BD PRODUCER RING REPLENISH THRESHOLD REGISTER (OFFSET: 0x2C18)*Table 269: Standard Receive BD Producer Ring Replenish Threshold Register (Offset: 0x2C18)*

Name	Bits	Access	Default Value	Description
Reserved	31:10	RO	0	
BD Number	9:0	RW	0	Number of buffer descriptors indicated by the receive producer index for the DMA engine to initiate a transfer of buffer descriptors for replenishing the ring

RECEIVE BD COMPLETION CONTROL REGISTERS

All registers reset are core reset unless specified.

RECEIVE BD COMPLETION MODE REGISTER (OFFSET: 0x3000)

Table 270: Receive BD Completion Mode Register (Offset: 0x3000)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	1	This bit controls whether the Receive BD Completion state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the Receive BD Completion state machine is reset. This is a self-clearing bit.

RECEIVE BD COMPLETION STATUS REGISTER (OFFSET: 0x3004)

Table 271: Receive BD Completion Status Register (Offset: 0x3004)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Error	2	RO	0	Receive BD Completion Error Status
Reserved	1:0	RO	0	

NIC STANDARD RECEIVE BD PRODUCER INDEX REGISTER (OFFSET: 0x300C)

Table 272: NIC Standard Receive BD Producer Index Register (Offset: 0x300C)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Standard Receive BD Producer Index	8:0	RW	—	—

HOST COALESCING CONTROL REGISTERS

The Host Coalescing Control Registers are responsible for pacing the rate at which the NIC updates the host's transmit and receive buffer descriptor ring indices. Although the host produces and receives frames in one or more buffer descriptors, the Host Coalescing state machine always updates the host on frame boundaries. Additionally, the Host Coalescing state machine regulates the rate at which the statistics are updated in host memory.

All registers reset are core reset unless specified.

HOST COALESCING MODE REGISTER (OFFSET: 0x3C00)

Table 273: Host Coalescing Mode Register (Offset: 0x3C00)

Name	Bits	Access	Default Value	Description
Reserved	31:13	RO	0	
No Interrupt on Force update	12	RW	–	When set, writing the Coalesce Now bit will cause a status without a corresponding interrupt event.
No Interrupt on DMAD Force	11	RW	–	When set, the COAL_NOW bit of the buffer descriptor may be set to force a status block update without a corresponding interrupt
Reserved	10	RO	0	When set, the TX Host Coalescing Tick counter initializes to the idle state and begins counting only after a transmit BD event is detected.
Clear Ticks Mode on Rx	9	RW	–	When set, the RX Host Coalescing Tick counter initializes to the idle state and begins counting only after a receive BD event is detected.
Status Block Size	8:7	RW	–	Status Block Size for partial status block updates <ul style="list-style-type: none">• 00: Full status block• 01: 64 byte• 10: 32 byte• 11: Undefined
MSI Bits	6:4	RW	1	The least significant MSI 16-bit word is overwritten by these bits. Defaults to 0.
Coalesce Now	3	RW	0	If set, Host Coalescing updates the Status Block immediately and sends an interrupt to host. This is a self-clearing bit. (For debug purpose only.)
Attn Enable	2	RW	–	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	–	This bit control whether the Host Coalescing state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	–	When this bit is set to 1, the Host Coalescing state machine is reset. This is a self-clearing bit.

HOST COALESCING STATUS REGISTER (OFFSET: 0x3C04)

Table 274: Host Coalescing Status Register (Offset: 0x3C04)

Name	Bits	Access	Default Value	Description
Reserved	31:3	RO	0	
Error	2	RO	–	Host Coalescing Error Status
Reserved	1:0	RO	0	

RECEIVE COALESCING TICKS REGISTER (OFFSET: 0x3C08)

The value in this register can be used to control how often the status block is updated (and how often interrupts are generated) due to receiving packets. The value in this register controls how many ticks, in units of 1 μ s each, get loaded in an internal receive tick timer register. The timer will be reset to the value of this register and will start counting down after every status block update (regardless of the reason for the status block update). The timer is only reset after status block updates, and is not reset after any given packet is received. When the timer reaches 0, it will be considered to be in the expired state. After the counter is in the expired state, a status block update will occur if a packet had been received and copied to host memory (via DMA) since the last status block update.

This register must be initialized by host software. A value of 0 in this register disables the receive tick coalescing logic. In this case, status block updates will occur for receive event only if the Receive Max Coalesced BD value is reached. Status block updates for other reasons (e.g., transmit events) will also include any updates to the receive indices. By setting the value in this register to a high number, a software device driver can reduce the number of status block updates and interrupts that occur due to receiving packets. This will generally increase performance in hosts that are under a high degree of stress and whose RISCs are saturated due to handling a large number of interrupts from the network controller. For host environments where receive interrupt latency must be very low, and the host is not close to be saturated, it is recommended that this register be set to 1.

SEND COALESCING TICKS REGISTER (OFFSET: 0x3C0C)

The value in this register can be used to control how often the status block is updated (and how often interrupts are generated) according to the completion of transmit events. The value in this register controls how many ticks, in units of 1 μ s each, get loaded in an internal transmit tick timer register. The timer will be reset to the value of this register and will start counting down, after every status block update (regardless of the reason for the status block update). The timer is only reset after status block updates, and is not reset after a transmit event completes. When the timer reaches 0, it will be considered to be in the expired state. Once the counter is in the expired state, a status block update will occur if a transmit event has occurred since the last status block update. In this case, a transmit event is defined by an update to one of the device's Send BD Consumer Indices. A Send Consumer Index increments whenever the data associated with a particular packet has been successfully moved (via DMA) across the bus, rather than when the packet is actually transmitted over the Ethernet wire.

This register must be initialized by host software. A value of 0 in this register disables the transmit tick coalescing logic. In this case, status block updates will occur for transmit events only if the Send Max Coalesced BD value is reached, or if the BD_FLAG_COAL_NOW bit is set in a send BD. Status block updates for other reasons (e.g., receive events) will also include any updates to the send indices. By setting the value in this register to a high number, a software device driver can reduce the number of status block updates, and interrupts, that occur due to transmit completions. This will generally increase performance in hosts that do not require their send buffers to be freed quickly. For host environments that do require their send buffers to be recovered quickly, it is recommended that this register be set to 0.

RECEIVE MAX COALESCED BD COUNT REGISTER (OFFSET: 0x3C10)

This register contains the maximum number of receive return ring BDs that must be filled in by the device before the device will update the status block due to a receive event. Whenever the device completes the reception of a packet, it will fill in a receive return ring BD, and then increment an internal receive coalesce BD counter. When this internal counter reaches the value in this register, a status block update will occur. This counter will be reset (i.e., zeroed) whenever a status block update occurs regardless of the reason for the status block update. This register must be initialized by host software. A value of 0 in this register disables the receive max BD coalescing logic. In this case, status block updates will occur for receive packets only via the Receive Coalescing Ticks mechanism. Status block updates for other reasons (e.g., transmit events) will also include any updates to the receive indices. For simplicity, if a host wanted to get a status block update for every received packet, the host driver should just set this register to a value of 1. On the other hand, by setting the value in this register to a high number, a software device driver can reduce the number of status block updates and interrupts that occur due to receiving packets. This can increase performance in hosts that are under a high degree of stress and whose RISCs are saturated due to handling a large number of interrupts from the network controller. However, in lower traffic environments, there is no guarantee that consecutive packets will be received in a timely manner. Therefore, for those environments, it is recommended that the Receive Coalescing Ticks register are used to make sure that status block updates due to receiving packets are not delayed for an infinite amount of time.

SEND MAX COALESCED BD COUNT REGISTER (OFFSET: 0x3C14)

This register contains the maximum number of send BDs that must be processed by the device before the device will update the status block due to the transmission of packets. Whenever the device completes the DMA of transmit packet buffer, it increments an internal send coalesce BD counter. When this internal counter reaches the value in this register, a status block update will occur. This counter will be reset (i.e. zeroed) whenever a status block update occurs regardless of the reason for the status block update. This register must be initialized by host software. A value of 0 in this register disables the send max BD coalescing logic. In this case, status block updates will occur for receive packets only via the Send Coalescing Ticks mechanism. Of course, status block updates for other reasons (e.g., receive events) will also include any updates to the send indices. For simplicity, if a host wanted to get a status block update for every transmitted packet, the host driver could just set this register to a value of 1. On the other hand, by setting the value in this register to a high number, a software device driver can reduce the number of status block updates and interrupts that occur due to transmitting packets. This can increase performance in hosts that are under a high degree of stress and whose RISCs are saturated due to handling a large number of interrupts from the network controller. However, in lower traffic environments, there is no guarantee that consecutive packets will be transmitted in a timely manner. Therefore, for those environments, it is recommended that the Send Coalescing Ticks register are used to make sure that status block updates due to transmitting packets are not delayed for an infinite amount of time.

STATUS BLOCK HOST ADDRESS REGISTER (OFFSET: 0x3C38)

This 64-bit register is in host address format and tells the NIC where to DMA the status block.

STATUS BLOCK BASE ADDRESS REGISTER (OFFSET: 0x3C44)

This 32-bit register is the location of the status block structure in NIC memory.

FLOW ATTENTION REGISTER (OFFSET: 0x3C48)

The Flow attention register reports attentions from the various transmit and receive state machines, flow-through queues and the MBUF allocator. Whenever one of these blocks detects an attention situation, it sets the appropriate bit in the Flow attention register. Refer to the state machine causing the attention to determine the exact cause. The attention bits are cleared by writing a one to the bit (W2C). If a bit is marked as fatal, it means that the associated state machine is halted, and that corrective action must be taken by a CPU.

Table 275: Flow Attention Register (Offset: 0x3C48)

Name	Bits	Access	Default Value	Description
Send BD Initiator	31	W2C	–	The Send BD Initiator state machine has caused an attention.
Send BD Completion	30	W2C	–	The Send BD Completion state machine has caused an attention.
Send BD Ring Selector	29	W2C	–	The Send BD Ring Selector state machine has caused an attention.
Send Data Initiator	28	W2C	–	The Send Data Initiator state machine has caused an attention.
Send Data Completion	27	W2C	–	The Send Data Completion state machine has caused an attention.
Reserved	26:24	RO	0	
Recv BD Initiator	23	W2C	–	The Recv BD Initiator state machine has caused an attention.
Recv BD Completion	22	W2C	–	The Recv BD Completion state machine has caused an attention.
Recv List Placement	21	W2C	–	The Recv List Placement state machine has caused an attention.
Recv List Selector	20	W2C	–	The Recv List Selector state machine has caused an attention.
Recv Data and Recv BD Initiator	19	W2C	–	The Recv Data and Recv BD Initiator state machine has caused an attention.
Recv Data Completion	18	W2C	–	The Recv Data Completion state machine has caused an attention.
RCB Incorrectly Configured	17	W2C	–	Set if one of the RCBs is incorrectly configured based on the whole configuration.
DMA Completion Discard	16	W2C	–	The DMA Completion Discard state machine has caused an attention.
Host Coalescing	15	W2C	–	The Host Coalescing state machine has caused an attention.
Reserved	14:8	RO	0	
Memory Arbiter	7	W2C	–	The Memory Arbiter has caused an attention.
MBUF Low Water	6	W2C	–	The MBUF allocation state machine has reached the mbuf low water threshold.
Reserved	5:0	RO	0	

NIC RECEIVE BD CONSUMER INDEX REGISTER (OFFSET: 0x3C50–0x3C58)

These three registers are shared by the Receive BD Completion and the Receive Data and Receive BD Initiator state machines. They are used to keep track of the receive BDs that have been DMAed to the NIC.

NIC DIAGNOSTIC RETURN RING 0 PRODUCER INDEX REGISTER (OFFSET: 0x3C80)

This register contains NIC Diagnostic Return Ring 0 Producer Index.

Table 276: NIC Diagnostic Return Ring 0 Producer Index Register (Offset: 0x3C80)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Return Ring Producer Index	8:0	RW	–	NIC Return Ring 0 Producer Index

NIC DIAGNOSTIC RETURN RING 1 PRODUCER INDEX REGISTER (OFFSET: 0x3C84)

This register contains the Receive Return Ring 1 Producer Index.

Table 277: NIC Diagnostic Return Ring 1 Producer Index Register (Offset: 0x3C84)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Return Ring Producer Index	8:0	RW	–	NIC Return Ring 1 Producer Index

NIC DIAGNOSTIC RETURN RING 2 PRODUCER INDEX REGISTER (OFFSET: 0x3C88)

This register contains the Receive Return Ring 2 Producer Index.

Table 278: NIC Diagnostic Return Ring 2 Producer Index Register (Offset: 0x3C88)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Return Ring Producer Index	8:0	RW	–	NIC Return Ring 2 Producer Index

NIC DIAGNOSTIC RETURN RING 3 PRODUCER INDEX REGISTER (OFFSET: 0x3C8C)

This register contains the Receive Return Ring 3 Producer Index.

Table 279: NIC Diagnostic Return Ring 3 Producer Index Register (Offset: 0x3C8C)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Return Ring Producer Index	8:0	RW	–	NIC Return Ring 3 Producer Index

NIC DIAGNOSTIC SEND BD CONSUMER INDEX REGISTER (OFFSET: 0x3CC0)

The register keeps track of the NIC local copy of the send BD ring consumer (not the host copy which is DMAed by the Host Coalescing engine to the host). It is shared between the Send BD Initiator and the Host Coalescing state machines.

Table 280: NIC Diagnostic Send BD Consumer Index Register (Offset: 0x3CC0)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
NIC Send BD Consumer Index	8:0	RW	–	NIC Send BD Consumer Index

MEMORY ARBITER CONTROL REGISTERS

All registers reset are core reset unless specified.

MEMORY ARBITER MODE REGISTER (OFFSET: 0x4000)

Table 281: Memory Arbiter Mode Register (Offset: 0x4000)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
CPU pipeline Request Disable	29	RW	0	When set to 1, the write/read requests from the internal CPU will be processed sequentially
Low Latency Enable	28	RW	0	<ul style="list-style-type: none"> When set to 1, the read from the CPU to the RXMBUF will take the original MA protocol, where data_rd_valid always goes after cmd_ack. If set to 0, the data_rd_valid overlaps at the same clock cycle as the cmd_ack.
Fast Path Read Disable	27	RW	0	Fast Path Read Disable. When set to 1, the read from the CPU to the RXMBUF will take the slow path that goes through the original memory arbitration logic
Reserved	26:21	RO	0	
DMAW2 Addr Trap	20	RW	0	DMA Write 2 Memory Arbiter request trap enable
Reserved	19:17	RO	0	
SDI Addr Trap Enable	16	RW	0	Send Data Initiator Memory Arbiter request trap enable
Reserved	15:13	RO	0	
RDI2 Addr Trap Enable	12	RW	0	Receive Data Initiator 2 Memory Arbiter request trap enable
RDI1 Addr Trap Enable	11	RW	0	Receive Data Initiator 1 Memory Arbiter request trap enable
RQ Addr Trap Enable	10	RW	0	Receive List Placement Memory Arbiter request trap enable
Reserved	9	RO	0	
PCI Addr Trap Enable	8	RW	0	PCI Memory Arbiter request trap enable
Reserved	7	RO	0	
RX RISC Addr Trap Enable	6	RW	0	RX RISC Memory Arbiter request trap enable
DMAR1 Addr Trap Enable	5	RW	0	DMA Read 1 Memory Arbiter request trap enable
DMAW1 Addr Trap Enable	4	RW	0	DMA Write 1 Memory Arbiter request trap enable
RX-MAC Addr Trap Enable	3	RW	0	Receive MAC Memory Arbiter request trap enable
TX-MAC Addr Trap Enable	2	RW	0	Transmit MAC Memory Arbiter request trap enable
Enable	1	RW	1	This bit controls whether the Memory Arbiter is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read.
Reset	0	RW	0	When this bit is set to 1, the Memory Arbiter state machine is reset. This is a self-clearing bit.

MEMORY ARBITER STATUS REGISTER (OFFSET: 0x4004)

Table 282: Memory Arbiter Status Register (Offset: 0x4004)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
DMAW 2 Addr Trap	20	W2C	0	DMA Write 2 Memory Arbiter request trap
Reserved	19:17	RO	0	
SDI Addr Trap	16	W2C	0	Send Data Initiator Memory Arbiter request trap
Reserved	15:13	RO	0	
RDI2 Addr Trap	12	W2C	0	Receive Data Initiator 2 Memory Arbiter request trap
RDI1 Addr Trap	11	W2C	0	Receive Data Initiator 1 Memory Arbiter request trap
RQ Addr Trap	10	W2C	0	Receive List Placement Memory Arbiter request trap
Reserved	9	RO	0	
PCI Addr Trap	8	W2C	0	PCI Memory Arbiter request trap
Reserved	7	RO	0	
RX RISC Addr Trap	6	W2C	0	RX RISC Memory Arbiter request trap
DMAR1 Addr Trap	5	W2C	0	DMA Read 1 Memory Arbiter request trap
DMAW1 Addr Trap	4	W2C	0	DMA Write 1 Memory Arbiter request trap
RX-MAC Addr Trap	3	W2C	0	Receive MAC Memory Arbiter request trap
TX-MAC Addr Trap	2	W2C	0	Transmit MAC Memory Arbiter request trap
Reserved	1:0	RO	0	

MEMORY ARBITER TRAP ADDRESS LOW REGISTER (OFFSET: 0x4008)

Table 283: Memory Arbiter Trap Address Low Register (Offset: 0x4008)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
MA Trap Addr Low	20:0	RW	—	Memory Arbiter Trap Address Low

MEMORY ARBITER TRAP ADDRESS HIGH REGISTER (OFFSET: 0x400C)

Table 284: Memory Arbiter Trap Address High Register (Offset: 0x400C)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
MA Trap Addr High	20:0	RW	—	Memory Arbiter Trap Address High

BUFFER MANAGER REGISTERS

All registers reset are core reset unless specified.

BUFFER MANAGER MODE REGISTER (OFFSET: 0x4400)

Table 285: Buffer Manager Mode Register (Offset: 0x4400)

Name	Bits	Access	Default Value	Description
TXFIFO Underrun Prevention Enable	31	RW	0x1	1: Enable the EMAC TXFIFO underrun prevention during LSO offload operation. It will change the arbitration algorithm of TXMBUF read requests to round-robin among CPU, PCIe, RDMA, and TXMAC. When TXFIFO is almost empty, RDMA will hold its request till TXFIFO is not almost empty. 0: Disable the EMAC TXFIFO underrun prevention during LSO offload operation. The arbitration algorithm of TXMBUF read requests will be priority-based among CPU, PCIe, RDMA and TXMAC. RDMA will ignore TXFIFO almost empty alert.
Reserved	30:6	RO	0	
Reset RXMBUF Pointer	5	R/WC	0	When this bit is set, it will cause the RXMBUF allocation and deallocation pointer to reset back to the RXMBUF base. It will also cause the RXMAC to drop the preallocated MBUF and request a new MBUF.
MBUF Low Attn Enable	4	RW	0	MBUF Low Attn Enable MBUF low attention enable.
BM Test Mode	3	RW	0	Buffer Manager Test Mode. Must be set to 0 for normal operation.
Attention Enable	2	RW	0	When this bit is set to 1, an internal attention is generated when an error occurs.
Enable	1	RW	1	This bit controls whether the Buffer Manager is active or not. When set to 0 it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the Buffer Manager state machine is reset. This is a self-clearing bit.

BUFFER MANAGER STATUS REGISTER (OFFSET: 0x4404)

Table 286: Buffer Manager Status Register (Offset: 0x4404)

Name	Bits	Access	Default Value	Description
BM Test Mode	31:5	RO	—	
MBUF Low Attention	4	RO	—	MBUF Low Attention Status
Reserved	3	RO	0	
Error	2	RO	—	Buffer Manager Error Status
Reserved	1:0	RO	0	

MBUF POOL BASE ADDRESS REGISTER (OFFSET: 0x4408)

The MBUF Pool Base Address specifies the beginning of the MBUF.

Table 287: MBUF Pool Base Address Register (Offset: 0x4408)

Name	Bits	Access	Default Value	Description
Reserved	31:23	RO	0	
MBUF Base Address	22:0	RW	10000h	Specifies beginning of the MBUF for receive packet. The base address will ignore the lower seven bits, thus aligning the beginning of the MBUF pool on a 128-byte boundary.

MBUF POOL LENGTH REGISTER (OFFSET: 0x440C)

The register specifies the length of MBUF.

Table 288: MBUF Pool Length Register (Offset: 0x440C)

Name	Bits	Access	Default Value	Description
Reserved	31:23	RO	0	
MBUF Length	22:0	RW	8000h	Specifies the length of MBUF assigned for receive packet. The default is 32 KB. The lower seven bits should be ignored to align the MBUF pool on a 128-byte boundary.

READ DMA MBUF Low WATERMARK REGISTER (OFFSET: 0x4410)

This 6-bit register indicates the number of free MBUFs that must be available for the Read DMA Engine to dequeue a descriptor from the normal priority FTQ. If the free MBUF count drops below this mark, it must go above the high watermark to resume normal operation.

MA MBUF Low WATERMARK REGISTER (OFFSET: 0x4414)

This 9-bit register indicates the number of free MBUFs that must be available for the RX MAC to accept a frame. If the free MBUF count drops below this mark, it must go above the high watermark to resume normal operation.

MBUF HIGH WATERMARK REGISTER (OFFSET: 0x4418)

This 9-bit register indicates the number of free MBUFs that must be available before normal operation is restored to the Read DMA Engine and/or the RX MAC.

RX RISC MBUF CLUSTER ALLOCATION REQUEST REGISTER (OFFSET: 0x441C)

The RX RISC MBUF Cluster Allocation Request register contains two fields:

- A requested size field which can be up to 64-KB long
- An allocation bit

The allocation bit is used to control the access to the response register. Use this register to set the size and allocation bit and then poll the register until the allocation bit is cleared. When the allocation bit is cleared, it is safe to read from the RX RISC MBUF Cluster Allocation Response register.

Table 289: RX RISC MBUF Cluster Allocation Request Register (Offset: 0x441C)

Name	Bits	Access	Default Value	Description
Allocation Bit	31	RW	0	Set this bit to 1 to request for the MBUF. When this bit is read as 0, then read the MBUF location Response register for the TXMBUF pointer.
Reserved	30:0	RO	0	

RX RISC MBUF ALLOCATION RESPONSE REGISTER (OFFSET: 0x4420)

This register returns the MBUF cluster pointer of the specified size when the Allocation bit is cleared. If a second MBUF cluster allocation request is made before this register is read, an MBUF memory leak may occur.

This register is hardwired to 61, or 0x0000003D. The TXMBUF that is dedicated for ASF is the uppermost 384 bytes. The CPU should use 0x00009E80 as the starting address for ASF.

BM HARDWARE DIAGNOSTIC 1 REGISTER (OFFSET: 0x444C)

This 32-bit register provides debug information on the TXMBUF pointer.

Table 290: BM Hardware Diagnostic 1 Register (Offset: 0x444C)

Name	Bits	Access	Default Value	Description
Reserved	31:26	RO	0	
Last TXMBUF Deallocation Head Pointer	25:20	RO	0	Captures the last deallocation head pointer of the TXMBUF
Reserved	19:16	RO	0	
Last TXMBUF Deallocation Tail Pointer	15:10	RO	0	Captures the last deallocation tail pointer of the TXMBUF
Reserved	9:6	RO	0	
Next TXMBUF Allocation Pointer	5:0	RO	0	The value of the next TXMBUF allocation pointer (should be between 0 and 60)

BM HARDWARE DIAGNOSTIC 2 REGISTER (OFFSET: 0x4450)

This 32-bit register provides debug information on the TXMBUF and RXMBUF counts.

Table 291: BM Hardware Diagnostic 2 Register (Offset: 0x4450)

Name	Bits	Access	Default Value	Description
Reserved	31:25	RO	0	
RXMBUF Count	24:16	RO	0	The number of RXMBUFs that were allocated
Reserved	15	RO	0	
TXMBUF Count	14:9	RO	0	The number of TXMBUFs that were allocated
RXMBUF Left	8:0	RO	0	The number of free RXMBUFs

BM HARDWARE DIAGNOSTIC 3 REGISTER (OFFSET: 0x4454)

This 32-bit register provides debug information on the RXMBUF pointer.

Table 292: BM Hardware Diagnostic 3 Register (Offset: 0x4454)

Name	Bits	Access	Default Value	Description
Reserved	31:25	RO	0	
Next RXMBUF Deallocation pointer	24:16	RO	0	The next RXMBUF that is to be deallocated
Reserved	15:9	RO	0	
Next RXMBUF Allocation pointer	14:9	RO	0	The next RXMBUF that is to be allocated

RECEIVE FLOW THRESHOLD REGISTER (OFFSET: 0x4458)

Table 293: Receive Flow Threshold Register (Offset: 0x4458)

Name	Bits	Access	Default Value	Description
Reserved	31:9	RO	0	
MBUF Threshold	8:0	RW	0	Defines the integer number of MBUFs remaining before the receive MAC will drop received frames.

RDMA REGISTERS

All registers reset are core reset unless specified.

READ DMA MODE REGISTER (OFFSET: 0x4800)

Table 294: Read DMA Mode Register (Offset: 0x4800)

Name	Bits	Access	Default Value	Description
Reserved	31:29	RO	0	
Hardware IPv6 Post-DMA Processing Enable	28	RW	0	Enables hardware processing of LSO IPv6 packets. This bit has no effect on Post-DMA processing of IPv4 packets. This is a new bit in Stanford.
Hardware IPv4 Post-DMA Processing Enable	27	RW	0	Enables hardware processing of LSO IPv4 packets. This bit has no effect on Post-DMA processing of IPv6 packets. The functionality of this bit in Stanford is identical to Baxter and Shasta.
Post-DMA Debug Enable	26	RW	0	When this bit is set, the Send Data Completion State Machine will be halted if the Post-DMA bit of the Send BD is set.
Address Overflow Error Logging Enable	25	RW	0	This bit when set, enables the address overflow error to be generated when the DMA Read Engine performs a DMA operation that crosses a 4G boundary. This error is reported in bit 3 of the DMA Read Status Register. Subsequently, this will generate an internal event to interrupt the internal CPU and the DMA Read Engine will lock up after detecting this error. It is recommended that this bit should not be set by firmware or software. 1: Enable Address Overflow Error Logging 0: Disable Address Overflow Error Logging.
Reserved	24:18	RO	0	
PCI Request Burst Length	17:16	RW	0	The two bits define the burst length that the RDMA read engine would request to the PCI block. <ul style="list-style-type: none">• 00 = FIFO available• 01 = 64• 10 = 128• 11 = 256
Reserved	15:11	RO	0	
Read DMA PCI-X Split Transaction Timeout Expired Attention Enable	10	RW	0	Enable read DMA PCI-X split transaction timeout expired attention.
Read DMA Local Memory Write Longer Than DMA Length Attention Enable	9	RW	0	Enable Read DMA Local Memory Write Longer Than DMA Length Attention.
Read DMA PCI FIFO Overread Attention Enable	8	RW	0	Enable Read DMA PCI FIFO Overread Attention (PCI read longer than DMA length.)
Read DMA PCI FIFO Underrun Attention Enable	7	RW	0	Enable Read DMA PCI FIFO Underrun Attention
Read DMA PCI FIFO Overrun Attention Enable	6	RW	0	Enable Read DMA PCI FIFO Overrun Attention

Table 294: Read DMA Mode Register (Offset: 0x4800) (Cont.)

Name	Bits	Access	Default Value	Description
Read DMA PCI Host Address Overflow Error Attention Enable	5	RW	0	Enable Read DMA PCI Host Address Overflow Error Attention. A host address overflow occurs when a single DMA read begins at an address below 4 GB and ends on an address above 4 GB. This is a fatal error.
Read DMA PCI Parity Error Attention Enable	4	RW	0	Enable Read DMA PCI Parity Error Attention
Read DMA PCI Master Abort Attention Enable	3	RW	0	Enable Read DMA PCI Master Abort Attention
Read DMA PCI Target Abort Attention Enable	2	RW	0	Enable Read DMA PCI Target Abort Attention
Enable	1	RW	1	This bit controls whether the Read DMA state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the Read DMA state machine is reset. This is a self-clearing bit.

READ DMA STATUS REGISTER (OFFSET: 0x4804)

Table 295: Read DMA Status Register (Offset: 0x4804)

Name	Bits	Access	Default Value	Description
Reserved	31:11	RO	0	
Read DMA PCI-X Split Transaction Timeout Expired	10	W2C	0	Read DMA PCI-X split transaction timeout expired.
Read DMA Local Memory Write Longer Than DMA Length Error	9	W2C	0	Read DMA Local Memory Write Longer Than DMA Length Error.
Read DMA PCI FIFO Overread Error	8	W2C	0	Read DMA PCI FIFO Overread Error (PCI read longer than DMA length.)
Read DMA PCI FIFO Underrun Error	7	W2C	0	Read DMA PCI FIFO Underrun Error
Read DMA PCI FIFO Overrun Error	6	W2C	0	Read DMA PCI FIFO Overrun Error
Read DMA PCI Host Address Overflow Error	5	W2C	0	Read DMA PCI Host Address Overflow Error. A host address overflow occurs when a single DMA read begins at an address below a multiple of 4 GB and ends at an address above the same multiple of 4 GB (i.e., the host memory address transitions from 0xXXXXXXXXX_FFFFFFFF to 0xFFFFFFFF_00000000 in a single read). This is a fatal error.
Read DMA PCI Parity Error	4	W2C	0	Read DMA PCI Parity Error
Read DMA PCI Master Abort Error	3	W2C	0	Read DMA PCI Master Abort Error
Read DMA PCI Target Abort Error	2	W2C	0	Read DMA PCI Target Abort Error
Reserved	1:0	RO	0	

READ DMA PROGRAMMABLE IPv6 EXTENSION HEADER REGISTER (OFFSET: 0x4808)**Table 296: Read DMA Programmable IPv6 Extension Header Register (Offset: 0x4808)**

Name	Bits	Access	Default Value	Description
Programmable Extension Header Type #2 Enable	31	R/W	0	This bit enables programmable extension header #1. If this bit is clear, then the value programmed in bits [15:8] of this register will be ignored. If this bit is set, then extension headers will be checked for a type matching the value in bits [15:8].
Programmable Extension Header Type #1 Enable	30	R/W	0	This bit enables programmable extension header #1. If this bit is clear, then the value programmed in bits [7:0] of this register will be ignored. If this bit is set, then extension headers will be checked for a type matching the value in bits [7:0].
Reserved	29:16	RO	0	Reserved bits
Programmable Extension Header Type #2	15:8	R/W	0	These bits contain the programmable extension header value for programmable header #2.
Programmable Extension Header Type #1	7:0	R/W	0	These bits contain the programmable extension header value for programmable header #1.

SECURITY ASSOCIATION DATABASE REGISTERS

All registers reset are core reset unless specified.

WDMA REGISTERS

All registers reset are core reset unless specified.

WRITE DMA MODE REGISTER (OFFSET: 0x4C00)

Table 297: Write DMA Mode Register (Offset: 0x4C00)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
Reserved	28:19	RO	0	
Swap Test Enable	18	RW	0	When this bit is set, swap test mode will be enabled and bits 17 to 12 can be used to test different byte/word swap settings.
HC Byte Swap	17	RW	0	Byte swap control for status words.
HC Word Swap	16	RW	0	Word swap control for status words.
BD Byte Swap	15	RW	0	Byte swap control for return BDs
BD Word Swap	14	RW	0	Word swap control for return BDs
Data Byte Swap	13	RW	0	Byte swap control for data
Data Word Swap	12	RW	0	Word swap control for data
Software Byte Swap Control	11	RW	0	To override byte enables with all 1's
Receive Accelerate Mode	10	RW	0	The write DMA-to-PCI request length is the available data size in the PCI RX FIFO. Set to 1: The write DMA-to-PCI request length is the maximum length of the current transaction, regardless of the available data size in PCI RX FIFO. This mode cannot be used in slow core clock environment. Disable this mode before switching to slow core clock mode.
Write DMA Local Memory	9	RW	0	Attention Enable. Enable Write DMA Local Memory Read Longer Than DMA Length Attention.
Write DMA PCI FIFO Overwrite Attention Enable	8	RW	0	Enable Write DMA PCI FIFO Overwrite Attention (PCI write longer than DMA length).
Write DMA PCI FIFO Underrun Attention Enable	7	RW	0	Enable Write DMA PCI FIFO Underrun Attention.
Write DMA PCI FIFO Overrun Attention Enable	6	RW	0	Enable Write DMA PCI FIFO Overrun Attention.
Write DMA PCI Host Address Overflow Error Attention Enable	5	RW	0	Enable Write DMA PCI Host Address Overflow Error Attention.
Write DMA PCI Parity Error Attention Enable	4	RW	0	Enable Write DMA PCI Parity Error Attention.
Write DMA PCI Master Abort Attention Enable	3	RW	0	Enable Write DMA PCI Master Abort Attention.
Write DMA PCI Target Abort Attention Enable	2	RW	0	Enable Write DMA PCI Target Abort Attention.
Enable	1	RW	1	This bit controls whether the Write DMA state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains 1 when read.

Table 297: Write DMA Mode Register (Offset: 0x4C00) (Cont.)

Name	Bits	Access	Default Value	Description
Reset	0	RW	0	When this bit is set to 1, the Write DMA state machine is reset. This is a self-clearing bit.

WRITE DMA STATUS REGISTER (OFFSET: 0x4C04)**Table 298: Write DMA Status Register (Offset: 0x4C04)**

Name	Bits	Access	Default Value	Description
Reserved	31:10	RO	0	
Write DMA Local Memory Read Longer than DMA Length Error	9	W2C	0	Write DMA Local Memory Read Longer Than DMA Length Error
Write DMA PCI FIFO Overwrite Error	8	W2C	0	Write DMA PCI FIFO Overwrite Error (PCI write longer than DMA length).
Write DMA PCI FIFO Underrun Error	7	W2C	0	Write DMA PCI FIFO Underrun Error.
Write DMA PCI FIFO Overrun Error	6	W2C	0	Write DMA PCI FIFO Overrun Error.
Write DMA PCI Host Address Overflow Error	5	W2C	0	Write DMA PCI Host Address Overflow Error.
Write DMA PCI Parity Error	4	W2C	0	Write DMA PCI Parity Error Error.
Write DMA PCI Master Abort Error	3	W2C	0	Write DMA PCI Master Abort Error.
Write DMA PCI Target Abort Error	2	W2C	0	Write DMA PCI Target Abort Error.
Reserved	1:0	RO	0	

RX-CPU REGISTERS

All registers reset are core reset unless specified.

RX RISC MODE REGISTER (OFFSET: 0x5000)

Table 299: RX RISC Mode Register (Offset: 0x5000)

Name	Bits	Access	Default Value	Description
Reserved	31:15	RO	0	
Enable register address trap halt	14	RW	0	When set, if the GRC raises the trap signal to this processor, it will halt. Cleared on reset and Watchdog interrupt.
Enable memory address trap halt	13	RW	0	When set, if the MA raises the trap signal to this processor, it will halt. Cleared on reset and Watchdog interrupt.
Enable Invalid Instruction Fetch halt	12	RW	0	When set, the condition that causes RX RISC state bit 6 to be set, also halts the RX RISC. Set by reset. Cleared by Watchdog interrupt.
Enable Invalid Data access halt	11	RW	0	When set, the condition that causes RX RISC state bit 5 to be set, also halts the RX RISC. Set by reset. Cleared by Watchdog interrupt.
Halt RX RISC	10	RW	0	Set by TX RISC or the host to halt the RX RISC. Cleared on reset and Watchdog interrupt.
Flush Instruction Cache	9	WO	0	Self-clearing bit which forces the instruction cache to flush.
Enable Instruction Cache prefetch	8	RW	0	Enables prefetch logic within the instruction cache. When disabled only a single cache line is read on a cache miss. Cleared on reset.
Enable Watchdog	7	RW	0	Enables watchdog interrupt state machine. Used in conjunction with Watchdog Clear register, Watchdog Saved PC register and Watchdog Vector register. Cleared on reset and Watchdog interrupt.
ROM Fail	6	RW	1	Asserted on reset. Cleared by ROM code after it successfully loads code from NVRAM. Afterwards, this bit can be used by software for any purpose.
Enable Data Cache	5	RW	0	Enables the data cache. Cleared on reset.
				Note: Firmware developers should take care to clear this bit before polling internal SRAM memory locations, because the RX RISC processor uses a two-element LRU caching algorithm, which is not affected by writes from the PCI interface.
Enable Write Post Buffers	4	RW	0	Enables absorption of multiple SW operations for SRAM and register writes. When this bit is disabled, only one write at a time will be absorbed by the write post buffers. Cleared on reset.
				Note: Setting this bit on the BCM5705, BCM5721, and BCM5751 may cause unpredictable behavior.

Table 299: RX RISC Mode Register (Offset: 0x5000) (Cont.)

Name	Bits	Access	Default Value	Description
Enable Page 0 Instr Halt	3	RW	0	When set, instruction references to the first 256 bytes of SRAM force the RX RISC to halt and cause bit 4 in the RX RISC state register to be latched. Cleared on reset and Watchdog interrupt.
Enable Page 0 Data Halt	2	RW	0	When set, data references to the first 256 bytes of SRAM force the RX RISC to halt and cause bit 3 in the RX RISC state register to be latched. Cleared on reset and Watchdog interrupt.
Single-Step RX RISC	1	RW	0	Advances the RX RISC's PC for one cycle. If halting condition still exists, the RX RISC will again halt; otherwise, it will resume normal operation.
Reset RX RISC	0	WO	0	Self-clearing bit which resets only the RX RISC.

RX RISC STATUS REGISTER (OFFSET: 0x5004)

The RX RISC State register reports the current state of the RX RISC and, if halted, gives reasons for the halt. There are four categories of information; informational (read-only), informational (write-to-clear), disable-able halt conditions (write-to-clear), and non-disable-able halt conditions (write-to-clear).

Table 300: RX RISC Status Register (Offset: 0x5004)

Name	Bits	Access	Default Value	Description
Blocking Read	31	RO	0	A blocking data cache miss occurred, causing the RX RISC to stall while data is fetched from external (to the RX RISC) memory. This is intended as a debugging tool. No state is saved other than the fact that the miss occurred.
MA Request FIFO overflow	30	W2C	0	MA_req_FIFO overflowed. The RX RISC is halted on this condition.
MA data/bytemask FIFO overflow	29	W2C	0	MA_datamask_FIFO overflowed. The RX RISC is halted on this condition.
MA outstanding read FIFO overflow	28	W2C	0	MA_rd_FIFO overflowed. The RX RISC is halted on this condition.
MA outstanding write FIFO overflow	27	W2C	0	MA_wr_FIFO overflowed. The RX RISC is halted on this condition.
Reserved	26:16	RO	0	
Instruction fetch stall		RO	0	The processor is currently stalled due to an instruction fetch.
Data access stall		RO	0	The processor is currently stalled due to a data access.
Reserved	13:11	RO	0	
RX RISC Halted	10	RO	0	The RX RISC was explicitly halted via bit 10 in the RX RISC Mode register.
Register Address Trap	9	W2C	0	A signal was received from the Global Resources block indicating that this processor accessed a register location that triggered a software trap. The GRC registers are used to configure register address trapping.

Table 300: RX RISC Status Register (Offset: 0x5004) (Cont.)

Name	Bits	Access	Default Value	Description
Memory Address Trap	8	W2C	0	A signal was received from the Memory Arbiter indicating that some BCM5700 block, possibly this processor, accessed a memory location that triggered a software trap. The MA registers are used to configure memory address trapping.
Bad Memory Alignment	7	W2C	0	Load or Store instruction was executed with the least significant two address bits not valid for the width of the operation (e.g., Load word or Load Half-word from an odd byte address).
Invalid Instruction Fetch	6	W2C	0	Program Counter (PC) is set to invalid location in processor address space.
Invalid Data Access	5	W2C	0	Data reference to illegal location.
Page 0 Instruction Reference	4	W2C	0	When enabled in mode register, indicates the address in the PC is within the lower 256 bytes of SRAM.
Page 0 Data Reference	3	W2C	0	When enabled in mode register, indicates data reference within lower 256 bytes of SRAM.
Invalid Instruction	2	W2C	0	Invalid instruction fetched.
Halt Instruction Executed	1	W2C	0	A halt-type instruction was executed by the RX RISC.
Hardware Breakpoint	0	W2C	0	When enabled in mode register, indicates hardware breakpoint has been reached.

RX RISC PROGRAM COUNTER (OFFSET: 0x501C)

The program counter register can be used to read or write the current Program Counter of the each CPU. Reads can occur at any time, however writes can only be performed when the CPU is halted. Writes will also clear any pending instruction in the decode stage of the pipeline. Bits 31-2 are implemented. 1s written to bits 1-0 are ignored.

RX RISC HARDWARE BREAKPOINT REGISTER (OFFSET: 0x5034)

This register is used to set a hardware breakpoint based on the RISC's program counter (PC). If the PC equals the value in this register, and the hardware breakpoint is enabled, the RISC is halted and the appropriate stopping condition is indicated in the RISC State Register. To enable the hardware breakpoint, simply write the byte address of the instruction to break on and clear the Disable Hardware Breakpoint bit.

Table 301: RX RISC Hardware Breakpoint Register (Offset: 0x5034)

Name	Bits	Access	Default Value	Description
Hardware Breakpoint	31:2	RW	0	Word address to break on
Reserved	1	RO	0	
Disable Hardware Breakpoint 0	RW	1		When this bit is set, the Hardware Breakpoint is disabled

LOW PRIORITY MAILBOXES

This is a 512-byte region that contains 64 registers. These registers are called low-priority mailbox registers (or low-priority mailboxes). When a value is stored in the least significant 32 bits of these registers, an event (known as a Mailbox Event) is generated to the RX RISC.

INTERRUPT MAILBOX 0 REGISTER (OFFSET: 0x5800)

This register is same as Stanford.

OTHER INTERRUPT MAILBOX REGISTER (OFFSET: 0x5808–0x5818)

This register is same as Stanford.

GENERAL MAILBOX REGISTERS 1-8 (OFFSET: 0x5820–0x5858)

This register is same as Stanford.

RECEIVE BD STANDARD PRODUCER RING INDEX REGISTER (OFFSET: 0x5868)

This register is same as Stanford.

RECEIVE BD RETURN RING 0 CONSUMER INDEX (LOW PRIORITY MAILBOX) REGISTER (OFFSET: 0x5880–0x5887)

This register is same as Stanford.

RECEIVE BD RETURN RING 1 CONSUMER INDEX (LOW PRIORITY MAILBOX) REGISTER (OFFSET: 0x5888–0x588F)

The Receive BD Return Ring 1 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 1 that has been consumed. Host software writes this register whenever it updates the return ring 1. This register must be initialized to 0.

RECEIVE BD RETURN RING 2 CONSUMER INDEX (LOW PRIORITY MAILBOX) REGISTER (OFFSET: 0x5890–0x5897)

The Receive BD Return Ring 2 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 2 that has been consumed. Host software writes this register whenever it updates the return ring 2. This register must be initialized to 0.

**RECEIVE BD RETURN RING 3 CONSUMER INDEX (LOW PRIORITY MAILBOX) REGISTER
(OFFSET: 0x5898–0x589F)**

The Receive BD Return Ring 3 Consumer Index Register contains the index of the last buffer descriptor for Receive Return Ring 3 that has been consumed. Host software writes this register whenever it updates the return ring 3. This register must be initialized to 0.

SEND BD RING CONSUMER INDEX (LOW PRIORITY MAILBOX) REGISTER (OFFSET: 0x5900)

This register is same as Stanford.

FLOW THROUGH QUEUES

All registers reset are core reset unless specified.

FTQ RESET REGISTER (OFFSET: 0x5C00)

Table 302: FTQ Reset Register (Offset: 0x5C00)

Name	Bits	Access	Default Value	Description
Reserved	31:17	RO	0	
Reset Receive Data Completion FTQ	16	RW	0	Set this bit to reset the Receive Data Completion flow through queue. When set to 0, this FTQ is ready for use. This is a self-clearing bit.
Reserved	15	RO	0	
Reset Receive List Placement FTQ	14	RW	0	Set this bit to reset the Receive List. This bit self-clearing placement flow through queue. When set to 0, this FTQ is ready for use. This is a self-clearing bit.
Reset Receive BD Complete FTQ	13	RW	0	Set this bit to reset the Receive BD Complete flow through queue. When set to 0, this FTQ is ready for use. This is a self-clearing bit.
Reserved	12	RO	0	
Reset MAC TX FTQ	11	RW	0	Set this bit to reset the MAC TX flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reset Host Coalescing FTQ	10	RW	0	Set this bit to reset the Host Coalescing flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reset Send Data Completion FTQ	9	RW	0	Set this bit to reset the Send Data Completion flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reserved	8	RO	0	
Reset DMA High Priority Write FTQ	7	RW	0	Set this bit to reset the DMA High Priority Write flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reset DMA Write FTQ	6	RW	0	Set this bit to reset the DMA Write flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reserved	5	RO	0	
Reset Send BD Completion FTQ	4	RW	0	Set this bit to reset the Send BD Completion flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reserved	3	RO	0	
Reset DMA High Priority Read FTQ	2	RW	0	Set this bit to reset the DMA High Priority Read flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.

Table 302: FTQ Reset Register (Offset: 0x5C00) (Cont.)

Name	Bits	Access	Default Value	Description
Reset DMA Read Queue FTQ	1	RW	0	Set this bit to reset the DMA Read Queue flow through queue. When set to 0, this flow through queue is ready for use. This is a self-clearing bit.
Reserved	0	RO	0	

MAC TX FIFO ENQUEUE REGISTER (OFFSET: 0x5CB8)

A write to this register will add a transmit packet to the tail of the MACTQ FTQ. The host CPU uses this register to send an ASF message out.

The TXMBUF cluster for the ASF message is defaulted to the uppermost three TXMBUFs.

Table 303: MAC TX FIFO Enqueue Register (Offset: 0x5CB8)

Name	Bits	Access	Default Value	Description
Reserved	31	WO	0	Must Write 1 to transmit a packet
Reserved	30:12	WO	0	Must Write 0
Head TXMBUF Pointer	11:6	WO	0	Specifies the first MBUF of the TXMBUF cluster for the transmit packet.
Tail TXMBUF Pointer	5:0	WO	3Fh	Specifies the last MBUF of the TXMBUF cluster for the transmit packet.

RXMBUF CLUSTER FREE ENQUEUE REGISTER (OFFSET: 0x5CC8)

A write to this register will free a cluster of RXMBUFs. The host CPU uses this register to deallocate RXMBUFs after it has processed the received ASF message.

Table 304: RXMBUF Cluster Free Enqueue Register (Offset: 0x5CC8)

Name	Bits	Access	Default Value	Description
Reserved	31:18	RO	0	
Head RXMBUF Pointer	17:9	WO	00h	Specifies the first MBUF of the RXMBUF cluster for the received packet to be freed.
Tail RXMBUF Pointer	8:0	WO	00h	Specifies the last MBUF of the TXMBUF cluster for the received packet to be freed.

RDIQ FTQ WRITE/PEAK REGISTER (OFFSET: 0x5CFC)

The host CPU uses this register to get the RXMBUF cluster pointers if the received packet requires the attention of the This could be an ASF or ACPI packet.

- A write to this register will modify the head of the RDIQ FTQ entry.
- A read of this register will peek at the head of the RDIQ FTQ entry.
- When the Valid bit is 1 and the Pass bit is 0, the CPU can take the RXMBUF cluster pointers to access the received Packet.
- When the CPU writes a 1 to the Skip bit, the hardware will pop the head of the queue entry.

Table 305: RDIQ FTQ Write/Peak Register (Offset: 0x5CFC)

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
Valid Bit	20	RW	0	Set only if the head of RDIQ entry is valid.
Skip Bit	19	RW	0	If this bit is set, the head of RDIQ entry will be popped.
Pass Bit	18	RW	0	This bit is 0 if RDIQ head entry is intended for the CPU. It prevents the entry to be serviced by WDMA.
Head RXMBUF Pointer	17:9	RO	0	Specifies the first MBUF of the RXMBUF cluster for the received packet.
Tail RXMBUF Pointer	8:0	RO	0	Specifies the last MBUF of the RXMBUF cluster for the received packet.

MESSAGE SIGNALLED INTERRUPT REGISTERS

All registers reset are core reset unless specified.

MSI MODE REGISTER (OFFSET: 0x6000)

Table 306: MSI Mode Register (Offset: 0x6000)

Name	Bits	Access	Default Value	Description
Priority	31:30	RW	0	Sets the priority of the MSI engine relative to the DMA read engine and DMA Write engine. Equal settings result in fair round robin arbitration. 00: Lowest 01: Low 10: High 11: Highest
Reserved	29:11	RO	0	
MSI Message	10:8	RW	0	This register sets the MSI message data bottom bits to the value programmed here. This register exists only for testing purposes and should always be programmed to zero.
Reserved	7:5	RO	0	
PCI Parity Error Attn	4	RW	0	PCI parity error attention enable.
PCI Master Abort Attn	3	RW	0	PCI master abort attention enable.
PCI Target Abort Attn	2	RW	0	PCI target abort attention enable.
Enable	1	RW	1	This bit controls whether the MSI state machine is active or not. When set to 0, it completes the current operation and cleanly halts. Until it is completely halted, it remains one when read.
Reset	0	RW	0	When this bit is set to 1, the MSI state machine is reset. This is a self-clearing bit.

MSI STATUS REGISTER (OFFSET: 0x6004)

Table 307: MSI Status Register (Offset: 0x6004)

Name	Bits	Access	Default Value	Description
Reserved	31:5	RO	0	
PCI Parity Error	4	W2C	0	PCI parity error status
PCI Master Abort	3	W2C	0	PCI master abort status
PCI Target Abort	2	W2C	0	PCI target abort status
Reserved	1	RO	0	
MSI PCI Request	0	RW	0	Reading this bit returns the current status of the request to PCI to send an MSI. If a value of 1 is read, then the request is currently asserted. Writing this bit with a value of one will cause the request to be asserted. Writing this bit with a value of 0 has no effect.

DMA COMPLETION REGISTERS

All registers reset are core reset unless specified.

GRC REGISTER

All registers reset are core reset unless specified.

MODE CONTROL REGISTER (OFFSET: 0x6800)

Table 308: Mode Control Register (Offset: 0x6800)

Name	Bits	Access	Default Value	Description
Reserved	31:29	RO	0	
Interrupt on Flow Attention	28	RW	0	Cause a host interrupt when an enabled flow attention occurs
Interrupt on DMA Attention	27	RW	0	Cause a host interrupt when an enabled DMA attention occurs
Interrupt on MAC Attention	26	RW	0	Cause a host interrupt when an enabled MAC attention occurs
Interrupt on RX RISC Attention	25	RW	0	Cause a host interrupt when an enabled RX-RISC attention occurs
Reserved	24	RO	0	
Receive No Pseudo-header checksum	23	RW	0	Do not include the pseudo-header in the TCP or UDP checksum calculations. To obtain the correct checksum, the driver must add the TCP/UDP checksum field to the pseudo-header checksum.
Reserved	22	RO	0	
NVRAM Write Enable	21	RW	0	The host must set this bit before attempting to update the Flash or SEEPROM.
Send No Pseudo-header checksum	20	RW	0	Do not include the pseudo-header in the TCP or UDP checksum calculations. To obtain the correct checksum, the driver must seed the TCP/UDP checksum field with the pseudo-header checksum.
Reserved	19:18	RO	0	
Host Send BDs	17	RW	0	Use host-based BD rings instead of NIC-based BD rings.
Host Stack Up	16	RW	0	The host stack is ready to receive data from the NIC.
Reserved	15	RO	0	
Don't Interrupt on Receives	14	RW	0	Never cause an interrupt on receive return ring producer updates.
Don't Interrupt on Sends	13	RW	0	Never cause an interrupt on send BD ring producer updates.
Reserved	12	RO	0	

Table 308: Mode Control Register (Offset: 0x6800) (Cont.)

Name	Bits	Access	Default Value	Description
Allow Bad Frames	11	RW	0	The RX MAC forwards illegal frames to the NIC and marks them as such instead of discarding them. The frames are queued based on default class and interrupt distribution queue number.
Reserved	10	RO	0	
No Frame Cracking	9	RW	0	Turn off all frame cracking functionality in both the read DMA engine and the MAC receive engine. On receive, the TCP/UDP checksum field is replaced by raw checksum for the whole frame except the Ethernet header. On transmit, IP and TCP/UDP checksum generation is always disabled when this bit is set. Also, the raw checksum is calculated over the entire frame except the Ethernet header and CRC.
Reserved	8	RO	0	
Byte Swap SA Context during DMA	7	R/W	0	This bit must be 1 for proper SADB operation in case of Little-Endian Host machines.
Word Swap SA Context During DMA	6	R/W	0	This bit must be 0 for proper SADB operation in case of Little-Endian Host machines.
Word Swap Data	5	Host-RW NIC-R	0	Word swap data when DMAing it across the PCIe bus.
Byte Swap Data	4	Host-RW NIC-R	0	Byte swap data when DMAing it across the PCIe bus.
Reserved	3	RO	0	
Word Swap BD	2	Host-RW NIC-R	0	Word swap BD structure when DMAing them across the PCIe bus.
Byte Swap BD	1	Host-RW NIC-R	0	Byte swap BD structure when DMAing them across the PCIe bus.
Reserved	0	RO	0	

MISCELLANEOUS CONFIGURATION REGISTER (OFFSET: 0x6804)

Table 309: Miscellaneous Configuration Register (Offset: 0x6804)

Name	Bits	Access	Default Value	Description
ID7	31	RO	ID7	Bond ID 7
ID6	30	RO	ID6	Bond ID 6
Disable GRC Reset on PCIe block	29	RW	0	Setting this bit will prevent reset to PCIe block.
ID5	28	RO	ID5	Bond ID 5
ID4	27	RO	ID4	Bond ID 4
GPHY Power-Down Override	26	RW	0	When this bit is set, the GPHY will be left powered up when in the D0 uninitialized state.
DDQ_DLL Enable	25	RW	0	When this bit is set, the handshake with the GPHY to power down the DLL is disabled. The IDDQ_DLL_Enable will always be 1.
RAM Power-Down	24	RW	0	When this bit is set, all of the RAMs are powered down.

Table 309: Miscellaneous Configuration Register (Offset: 0x6804) (Cont.)

Name	Bits	Access	Default Value	Description
VREG Standby Current Mode	23	RW	0	When this bit is set, both vreg1 and vreg2 will be put into standby current mode (which consumes < 1 mA).
BIAS IDDQ	22	RW	0	When this bit is set, the BIAS will be powered down.
GPHY IDDQ	21	RW	0	When this bit is set, the GPHY will be powered down.
Power-Down	20	RW	0	Setting this bit will power-down the device (power consumption is ~20 mW). This bit is cleared by PCI reset.
PME EN State	19	RO	1	State of PME Enable for this device.
Power State	18:17	RO	0	Indicates the current power state of the device. 00b: D0 01b: D1 02b: D2 03b: D3 This PowerState mirrors the PMSCR register.
Bond ID	16:13	RO	ID 3:0	Bond ID
Reserved	12:8	RO	0	
Timer Prescaler	7:1	RW	1111111b	Local Core clock frequency in megahertz, minus 1, which should correspond to each advance of the timer. Reset to all 1.
GRC Reset	0	RW	0	Write 1 to this bit resets the CORE_CLK blocks in the device. This is a self-clearing bit.

MISCELLANEOUS LOCAL CONTROL REGISTER (OFFSET: 0x6808)

The Miscellaneous Local Control register is used to control various functions within the device. All bits are set to zero (i.e., disabled) during reset.

Table 310: Miscellaneous Local Control Register (Offset: 0x6808)

Name	Bits	Access	Default Value	Description
Enable Wake On Link Up	31	RW	0	When set, the chip drives the PME when the link is up.
Enable Wake On Link Down	30	RW	0	When set, the chip drives the PME when the link is down.
Reserved	28:27	RO	0	
PME Assert	26	RW	0	When set, the PME Status bit in the PMSCR register is forced high. If PME Enable is also set, the PME signal will activate. This register bit is write-only and self-clearing after write.
Reserved	25	RO	0	
Auto EEPROM Access	24	RW	0	If set, access to serial EEPROM goes through the serial EEPROM address and data registers. Otherwise, serial EEPROM control register should be used.
APE_GPIO IN(6:0)	23:17	RO	APE GPIO default setting	APE GPIO Status Holds the value of APE GPIO (6:0) pins
GPIO(2:0) Output	16:14	RW	0	Outputs which are defined by board level design.
GPIO(2:0) Output Enable	13:11	RW	0	When asserted, the device drives miscellaneous pin outputs.

Table 310: Miscellaneous Local Control Register (Offset: 0x6808) (Cont.)

Name	Bits	Access	Default Value	Description
GPIO(2:0) Input	10:8	RO	0	Input from bidirectional miscellaneous pin.
GPIO(3) Output	7	RW	0	GPIO3 Output value
GPIO(3) Output Enable	6	RW	0	When set to 1, GPIO3 pin will be enabled as an output pin.
GPIO(3) Input	5	RW	0	Input value of GPIO3
Reserved	4	RO	0	
Interrupt on Attention	3	RW	0	If set, the host will be interrupted when any of the attention bits in the CPU event register are asserted.
Set Interrupt	2	WO	0	If Interrupt Mailbox 0 contains a nonzero value, setting this bit does nothing. If Interrupt Mailbox 0 is zero, then setting this bit will cause the internal unmasked interrupt state to be asserted. The external interrupt state (INTA pin) will also be asserted immediately if interrupts are not masked by the Mask Interrupts bit. If interrupts are masked, INTA will be asserted once interrupts are unmasked, so long as interrupts are not first cleared. This bit is not operational in MSI mode.
Clear Interrupt	1	WO	0	This bit provides the same functionality as the Clear Interrupt bit in the Miscellaneous Host Control register. This bit is not operational in MSI mode
Interrupt State	0	RO	0	This bit reflects the state of the PCI INTA pin. This bit is not operational in MSI mode.

TIMER REGISTER (OFFSET: 0x680C)

The Timer register is a 32-bit free-running counter. This counter increments when the Prescale Counter hits the Timer Prescaler limit as specified by the Miscellaneous Configuration register. This counter is used by the CPU to keep track of relative time in microseconds. A write to the Timer register will load the counter value written.

Table 311: Timer Register (Offset: 0x680C)

Name	Bits	Access	Default Value	Description
Timer Value	31:0	RW	0	32-bit free-running counter

RX-CPU EVENT REGISTER (OFFSET: 0x6810)

Table 312: RX-CPU Event Register (Offset: 0x6810)

Name	Bits	Access	Default Value	Description
SW Event 13	31	RO	0	SW Event 13 is set; This bit is Flash Attention;
SW Event 12	30	RO	0	SW Event 12 is set; This bit is VPD Attention
Timer	29	RW	0	Timer Reference reached
SW Event 11	28	RW	0	SW Event 11 is set
Flow Attention	27	RO	0	Flow Attention
RX CPU Attention	26	RW	0	RX CPU needs attention.
MAC Attention	25	RO	0	MAC needs attention.

Table 312: RX-CPU Event Register (Offset: 0x6810) (Cont.)

Name	Bits	Access	Default Value	Description
Reserved	24	RO	0	
SW Event 10	23	RW	0	SW Event 10 is set
High Priority Mailbox	22	RO	0	First 32 Mailbox registers have been updated.
Low Priority Mailbox	21	RO	0	Last 32 Mailbox registers have been updated.
DMA Attention	20	RO	0	A DMA channel needs attention.
SW Event 9	19	RW	0	SW Event 9 is set
High DMA RD	18	RO	0	High Priority DMA read FTQ has stalled
High DMA WR	17	RO	0	High Priority DMA write FTA has stalled
SW Event 8	16	RW	0	SW Event 8 is set
Host Coalescing	15	RO	0	The host coalescing FTQ has stalled.
SW Event 7	14	RW	0	SW Event 7 is set.
Receive Data Comp (Post DMA)	13	RO	0	Receive data completion FTQ has stalled
SW Event 6	12	RW	0	SW Event 6 is set
RX SW Queue Event	11	RO	0	Receive Software Queue Event
DMA RD	10	RO	0	Normal Priority DMA read FTQ has stalled.
DMA WR	9	RO	0	Normal Priority DMA write FTQ has stalled.
Read DMA Init (Pre DMA)	8	RO	0	Receive Data and Receive BD Initiator FTQ has stalled.
SW Event 5	7	RW	0	SW Event 5 is set.
Recv BD Comp	6	RO	0	Receive BD Completion FTQ has stalled.
SW Event 4	5	RW	0	SW Event 4 is set.
Recv List Selector	4	RO	0	Receive List Selector is nonzero.
SW Event 3	3	RW	0	SW Event 3 is set.
Recv List Placement	2	RO	0	Receive List Placement FTQ has stalled.
SW Event 1	1	RW	0	SW Event 1 is set.
SW Event 0	0	RW	0	SW Event 0 is set.

RX-CPU TIMER REFERENCE REGISTER (OFFSET: 0x6814)

The Timer Reference register allows the RX-RISC to receive an event when the free-running Timer register counts up to this value.

Table 313: RX-CPU Timer Reference Register (Offset: 0x6814)

Name	Bits	Access	Default Value	Description
RX-CPU Timer Reference	31:0	RW	0	RX-RISC Timer Event when time stamp = RX-RISC Timer Reference

RX-CPU SEMAPHORE REGISTER (OFFSET: 0x6818)

The RX-RISC Semaphore register allows access to both internal RISC processors to a hardware semaphore mechanism. Writes to the register indicates the preference to toggle the own/not own states of a single semaphore bit. Reads of this register provide a 1 if that register owns the semaphore, and a 0 otherwise. To obtain the semaphore, the normal operation

is a loop containing a write 0 followed by a read. Exit the loop when the read returns nonzero. The following values release the semaphore.

Table 314: RX-CPU Semaphore Register (Offset: 0x6818)

Name	Bits	Access	Default Value	Description
Reserved	31:1	RO	0	
RX-CPU Semaphore	0	RW	0	RX-CPU Semaphore

SERIAL EEPROM ADDRESS REGISTER

This 32-bit register is used by the RISCs in conjunction with the Serial EEPROM Data Register to read and/or write serial EEPROM data. The address register specifies the address and the direction of the transfer. When the transfer is complete (for either a read or a write), the complete bit is set.

To use this register pair to read the serial EEPROM, set the address and ensure the read/write bit is set in the address register. Loop reading the address register until the complete bit is set. When it is read the data from the data register. Clear the complete bit by writing the bit. No other transfer will occur when the complete bit is set. The Device ID must be programmed to select the appropriate device (A2 must be 0 for 128K/256Kx8 device).

To use this register pair to write the serial EEPROM, place the data into the data register. Then write the address into the address register ensuring that the write bit is clear. Loop reading the address register until the complete bit is set. When it is, the write is complete. Clear the complete bit by writing the bit. No other transfer will occur when the complete bit is set. It is the responsibility of software to control the timing between successive read/write access to the serial EEPROM.

All registers reset are core reset unless specified.

MDI CONTROL REGISTER (OFFSET: 0x6844)

Table 315: MDI Control Register (Offset: 0x6844)

Name	Bits	Access	Default Value	Description
Reserved	31:4	RO	0	
MDI Clock	3	RW	0	When enabled, controls the clock signal at the MDC pin.
MDI Select	2	RW	0	When set, the MDI interface is controlled by this register.
MDI Enable	1	RW	0	When set, the MDI Data Pin is enabled as an output driver.
MDI Ddata	0	RW	0	When read, returns the value at the MDIO pin. When written, and the MDI Enable bit is also set, the value is driven to the MDIO pin.

SERIAL EEPROM DELAY REGISTER (OFFSET: 0x6848)

This 32-bit R/W register specifies the delay between the EEPROM access in an 15-ns interval and is used for VPD access. Since the requirement of back-to-back write for Serial EEPROMs is 10 ms, firmware currently programs this register to 0xA2C2A.

RX CPU EVENT ENABLE REGISTER (OFFSET: 0x684C)

Setting a bit in this register enables an interrupt to the CPU or the Event.

Table 316: RX CPU Event Enable Register (Offset: 0x684C)

Name	Bits	Access	Default Value	Description
Flash	31	RW	0	—

Table 316: RX CPU Event Enable Register (Offset: 0x684C) (Cont.)

Name	Bits	Access	Default Value	Description
VPD	30	RW	0	—
Timer Reference Reached	29	RW	0	—
ROM	28	RW	0	—
HC Module	27	RW	0	—
RX CPU Module	26	RW	0	—
EMAC Module	25	RW	0	—
Memory Map Enable Bit	24	RW	0	Set by HW, Cleared by SW
Reserved	23	RW	0	—
High Priority Mailbox	22	RW	0	—
Low Priority Mailbox	21	RW	0	—
DMA	20	RW	0	—
Reserved	19	RW	0	—
Reserved	18	RW	0	—
Reserved	17	RW	0	—
ASF Location 15	16	RW	0	—
TPM Interrupt Enable	15	RW	0	—
ASF Location 14	14	RW	0	—
Reserved	13	RW	0	—
ASF Location 13	12	RW	0	—
Unused SDI	11	RW	0	—
SDC (Post TCP segmentation)	10	RW	0	—
SDI (Pre TCP segmentation)	9	RW	0	—
RDIQ FTQ (Received an ASF)	8	RW	0	—
ASF Location 12	7	RW	0	—
Reserved	6	RW	0	—
ASF Location 11	5	RW	0	—
Reserved	4	RW	0	—
ASF Location 10	3	RW	0	—
Reserved	2	RW	0	—
ASF Location 9	1	RW	0	—
ASF Location 8	0	RW	0	—

MISCELLANEOUS CONTROL REGISTERS

MISCELLANEOUS CONTROL REGISTER (OFFSET: 0x6890)

Table 317: Miscellaneous Control Register (Offset: 0x6890)

Name	Bits	Access	Default Value	Description
Reserved	31	RW	0	Reserved
Reserved	29	RW	0	Reserved
GRC_Clkreq_Disable	27	RW	0	<p>This bit, when set, disables the Clock Request Feature.</p> <p>0: Enable Clock Request</p> <p>1: Disable Clock Request</p> <p>This bit is reset by Hard_Reset (POR, Exit Low Power Mode, Lost of Vmain while in D0).</p>
Energy_det_sel	26	RW	0	<p>1: Select energy_det_raw and generate energy_det output using MAC digital debouncer.</p> <p>0: Select energy_det_apd to generate energy_det output.</p> <p>This bit is reset by hard_reset only</p>
CableSense_enable	25	R/W	0	<p>Define how the LOW_POWER_MODE behaves.</p> <p>1: CableSense Mode Enable</p> <p>0: Normal LOWER_POWER_MODE</p> <p>This bit is reset by hard_reset only</p>
MISC2 Bit	24	RW	0	Reserved R/W bit that gets reset by Power-On-Reset
MISC 1 Bits	23:1	RW	0	Reserved R/W bits that get reset by GRC Reset
Reserved	0	RO	0	

FAST BOOT PROGRAM COUNTER REGISTER (OFFSET: 0x6894)*Table 318: Fast Boot Program Counter Register (Offset: 0x6894)*

Name	Bits	Access	Default Value	Description
Fastboot Enable	31	RW	0	This bit is used by the CPU to keep track of whether or not there is valid phase 1 boot code stored in the RX MBUF. If the bit is set, then RXMBUF contains valid boot code. Otherwise, it is assumed that RXMBUF does not contain valid boot code. This bit is reset only by a power-on reset. The state of this bit has no effect on state machines within the device. It is used by the CPU to track boot codestatus.
Fastboot Program Counter	30:0	RW	0	This field is used by the CPU to keep track of the location of the phase 1 boot code in RX MBUF. These bits behave identical to bit 31 in that they have no effect on state machine operation and they are cleared only by a power-on reset.

CABLESENSE CONTROL REGISTER (OFFSET: 0x689C)

All bits are reset to Core Reset.

Table 319: CableSense Control Register (Offset: 0x689C)

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO	0	Reserved bits

MISCELLANEOUS CLOCK CONTROL REGISTER (OFFSET: 0x68A0)

Some of the bit in this register is initialized by hard_reset and GRC Reset.

Table 320: Miscellaneous Clock Control Register (Offset: 0x68A0)

Name	Bits	Access	Default Value	Description
Reserved	31:6	RO	0	Reserved bits
TPM Clock Shutoff Enable	5	R/W	1	<p>This bit is used to enable the TPM clock shutoff when TPM is in IDDQ. When TPM is enabled (i.e. not in IDDQ), this bit has no impact with the TPM clock</p> <p>This parameter is reset by POR, Exit Low Power Mode, and Lost of Vmain while in D0-u (hard_reset)</p>
Disable Fast ACQ	4	R/W	0	<p>This bit is used to disable Fast Acquisition Logic</p> <p>1: Disable</p> <p>0: Enable</p> <p>This parameter is reset by POR</p>
APD Slow Clock Enable	3	R/W	0	<p>1: Enable LAN core clock slowdown in auto-power down mode</p> <p>0: Disable LAN core clock slowdown in auto-power down mode</p> <p>This parameter is reset by POR, Exit Low Power Mode, and Lost of Vmain while in D0-u (hard_reset)</p>

Table 320: Miscellaneous Clock Control Register (Offset: 0x68A0) (Cont.)

Name	Bits	Access	Default Value	Description
TPM Power-Saving Enable	2	R/W	0	1: Enable TPM core clock slowdown if TPM is idle. 0: Disable TPM core clock slowdown if TPM is idle. This parameter is reset by POR, Exit Low Power Mode, and Lost of Vmain while in D0-u (hard_reset).
Frequency multiplier Enable	1	R/W	0	1: Enable Frequency multiplier to generate 62.5-MHz clock from XTAL clock 0: Disable Frequency multiplier. This parameter is reset by POR.
TPM Clock Select	0	R/W	0	1: Select frequency multiplier clock 0: Select GPHY DLL clock This parameter is reset by POR.

POWER MANAGEMENT DEBUG REGISTER (OFFSET: 0x68A4)

Some of the bit in this register is initialized by hard_reset and GRC Reset.

Table 321: Power Management Debug Register (Offset: 0x68A4)

Name	Bits	Access	Default Value	Description
Power-Down Restart PCIe PLL Enable	31	R/W	0	1: Enable restart PCIe PLL when PCIe PLL is locked up in the power-down mode, or IDDQ mode, or during POR, or any combination. 0: Disable restart PCIe PLL in power-down mode. This is not a self-clearing bit. Software must generate a pulse by writing a 1 followed by a 0 in order to restart the PLL. This is for debug purposes only.
Normal Restart PCIe PLL Enable	30	R/W	0	1: Enable restart PCIe PLL in normal mode. Firmware needs to write 1 and then write 0 to restart it (pulse restart). 0: Disable restart PCIe PLL in normal mode. This bit is not self-clearing. Software must generate a pulse by writing a 1 followed by a 0 in order to restart the PLL. This is for debug purposes only.
Select Core Clock Override	29	R/W	0	1: Enable switching of core clock to be used for PCIe block clocks. 0: Disable switching of core clock to be used for PCIe block clocks. This bit is the same as bit 16 in the PCIe Data Link Layer Register 0x7D00.
Reserved	28:18	RO	0	Reserved bits
Reserved	17	R/W	0	Reserved

Table 321: Power Management Debug Register (Offset: 0x68A4) (Cont.)

Name	Bits	Access	Default Value	Description
PERST Override	16	R/W	0	This bit is used to override the PERSTN so that the internal cpu can access the PCIe register when perstn is asserted 1: Override Perstn Reset 0: No Override Reset by Hard Reset
Reserved	15:10	RO	0	Reserved bits
iresfse1o	9	RO	X	PCIe Reference Select 0: PCIe 100-MHz Reference Clock 1: Local 25-MHz Crystal
irxFastAcq	8	RO	X	PCIe PLL Fast Acquisition Select 0: Disable Fast Acquisition 1: Enable Fast Acquisition
irxSeqStart	7	RO	X	PCIe RX Sequence Start
ipllSeqStart	6	RO	X	PCIe PLL Sequence Start
irxpowerdown	5	RO	X	RX Power Down Status
itxpowerdown	4	RO	X	TX Power Down Status
ipllpowerdown	3	RO	X	PLL Power Down Status
lclkreq_oe_l	2	RO	X	Clock Request Output Enable
obsvElecldle	1	RO	X	Observe Electrical Idle Status
PLLisUp	0	RO	X	PCIe PLL Status

LAN & TPM PROGRAMMABLE DLL LOCK TIMER REGISTER (OFFSET: 0x68A8)

This register is reset only by POR.

Table 322: LAN & TPM Programmable DLL Lock Timer Register (Offset: 0x68A8)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W	0	Reserved

E-SWITCH CONTROL & STATUS REGISTERS

These registers are reset by POR Only.

E-SWITCH STATUS REGISTER 1 (OFFSET: 0x68B4)

Table 323: E-Switch Status Register 1 (Offset: 0x68B4)

Name	Bits	Access	Default Value	Description
egphy power control status	31:28	RO	0x0	For debugging purposes [28] lowpwr pin going into egphy_core [29] force_dll_on pin going into egphy_core [30] iddq_bias pin going into egphy_core [31] iddq_act pin going out of egphy_core
Max_Switch_Count reached	27	RO	0x0	For debugging purposes This bit is set when the switch count rolls over and it stays asserted until E-switch Control register bit 23 is set.
Switch count	26:13	RO	0x0	For debugging purposes Count the number of times e-switch has switched to a different port. Rollovers when maxed, reach count. Use E-switch Control register bit 23 to clear this counter.
E-Switch Controller State	12:9	RO	0x0	For debugging purposes [9] port_a_state (Laptop Port) [10] switching_to_port_b_state (Docking State) [11] port_b_state (Docking State) [12] switching_to_port_a_state (Laptop State)
E-Switch Controller Output Signals	8:2	RO	0x14	For debugging purposes [2] egphy switch output [3] force_switch output [4] power_down_a output (Laptop) [5] power_down_b output (Docking) [6] power_down_reg output [7] E-Switch select input pin [8] switch_to_port_b signal
Port Status	1	RO	0x0	This bit indicates which current egphy_core port is active. This bit is valid only if Done Status bit is 1. 0x0 = original egphy_core port (laptop) 0x1 = new egphy_core port (docking)

Table 323: E-Switch Status Register 1 (Offset: 0x68B4) (Cont.)

Name	Bits	Access	Default Value	Description
Done Status	0	RO	0x1	<p>This bit indicates the hardware has already finished halting the command or when hardware is not in busy state. This bit is invalid within 4 XTALI clock and 4 core clock cycles after setting halting commands due to synchronization. This bit is also invalid within 4 XTALI clock and 4 core clock cycles after change override value reg or override mode reg in override mode due to synchronization.</p> <p>0x0 = Not done. Hardware is busy.</p> <p>0x1 = Done. Hardware is idle.</p>

E-SWITCH STATUS REGISTER 2 (OFFSET: 0x68B8)

Table 324: E-Switch Status Register 2 (Offset: 0x68B8)

Name	Bits	Access	Default Value	Description
E-Switch Controller State Machine Timer	31:0	RO	0x0	For Debugging Purposes

E-SWITCH CONTROL REGISTER (OFFSET: 0x68BC)

Table 325: E-Switch Control Register (Offset: 0x68BC)

Name	Bits	Access	Default Value	Description
Smart (Link/energy-aware) switching mode (Test/Prototype Feature)	31:30	RW	0x0	<p>These bits enable smart switching mode where port switching is based on link state or gphy energy detection instead of eswitch input pin. When link is lost, E-Switch Controller State Machine would continuously switch between docking port or laptop port until link is detected or energy is detected. Debounce timer in this mode is used as the amount of time eswitch would wait before switching to the other port. This is a test/prototype feature only.</p> <p>0: Disable smart switching</p> <p>1: Use link signal from the GPHY to search for active link and lock into the port that has link.</p> <p>2: Use energy_detected_adp signal from the GPHY to search for energy and lock into the port that has Energy (Cable Plugged in).</p> <p>3: Use Link signal or Energy_Detect_APD signal to search for active port and lock into the port that has link or Energy.</p>
Override Power_Down_Reg Output Signal (Debug Feature)	29	RW	0x0	<p>This bit enables software to control the state of the Power_Down_Reg output signal of the E-Switch Controller. This is a debug feature only.</p> <p>1: Drive Power_Down_Reg signal high</p> <p>0: Drive Power_Down_Reg signal low</p>

Table 325: E-Switch Control Register (Offset: 0x68BC) (Cont.)

Name	Bits	Access	Default Value	Description
Override Power_Down_B Output Signal (Debug Feature)	28	RW	0x0	<p>This bit enables software to control the state of the Power_Down_B output signal of the E-Switch Controller. This is a debug feature only.</p> <p>1: Drive Power_Down_B signal High 0: Drive Power_Down_B signal Low</p>
Override Power_Down_A Output Signal (Debug Feature)	27	RW	0x0	<p>This bit enables software to control the state of the Power_Down_A output signal of the E-Switch Controller. This is a debug feature only.</p> <p>1: Drive Power_Down_A signal High 0: Drive Power_Down_A signal Low</p>
Override Force_Switch Output Signal (Debug Feature)	26	RW	0x0	<p>This bit enables software to control the state of the Force_Switch output signal of the E-Switch Controller. This is a debug feature only.</p> <p>1: Drive Force Switch signal high 0: Drive Force Switch signal low</p>
Override Switch_to_A_n_B Output Signal (Debug Feature)	25	RW	0x0	<p>This bit enables software to control the state of the Switch_to_A_n_B output signal of the E-Switch Controller.</p> <p>1: Drive Switch_to_A_n_B high 0: Drive Switch_to_A_n_B low</p>
E-Switch Controller Output Override Enable (Debug Feature)	24	RW	0x0	<p>SW needs to set the Halt bit before entering this mode. This bit when set will enable the output of the E-Switch Controller to be overridden by the software.</p> <p>1: Enable Overriding of E-Switch Output Signals 0: Disable Overriding of E-Switch Output Signals</p>
E-Switch Counter Clear Enable	23	SC	0x0	<p>This bit when set will clear the E-Switch Counter. This bit is also self-cleared. The E-Switch Counter keeps track of the number of times the E-Switch Controller Switches from the Laptop Port to the Docking Port and vice versa.</p> <p>1: Clear Switch Counter 0: Don't Clear Switch Counter</p> <p>The bit is used in conjunction with the E-Switch Counter Register to determine the number of times the E-Switch controller switches. This is used by DVT when running some overnight stress tests to validate the functionality of the switch controller logic.</p>
Reserve	22:9	RW	0x0	Reserved
E-Switch Disable LED Gate-Off	8	RW	0x0	<p>This bit when set will disable gate-off of the LED during switching.</p> <p>1: Disable Gate-Off 0: Enable Gate-Off to prevent Spurious LED Activity during Switch</p>
E-Switch State Changed	7	W1C	0x0	<p>This bit is set when the E-Switch state has changed and bit 6 is enabled. In addition, this bit is mapped directly to bit 2 of the RXCPU Event Register. This will generate an attention when enabled (bit 6 = 1). Clear this attention by writing '1' to this bit.</p> <p>This register is reset by GRC Reset.</p>

Table 325: E-Switch Control Register (Offset: 0x68BC) (Cont.)

Name	Bits	Access	Default Value	Description
E-Switch State Changed Event Enable	6	RW	0x0	<p>Enable attention when the E-Switch state has changed state</p> <p>1: Enable E-Switch Event 0: Disable E-Switch Event</p> <p>This register is reset by GRC Reset.</p> <p>This bit when set will enable the E-Switch Event Bit, bit 2 of the RXCPU Event Register to be set, upon a dock/undock event. In addition, it will generate interrupt to the Host CPU by sending a Status Block with the E-Switch Event Flag, bit 3 of the Status Word set, upon a dock/undock event if bit 29 of Register 6800 is set. If Bit 29 of Register 6800 is clear and this E-Switch State Change Event Enable bit is set, then NO Interrupt will be generated to the host upon a dock/undock event. Furthermore, Bit 3 of the Status Word in the Status Block will be zero in this scenario.</p>
E-Switch Enable Gate-Off (Debug/Test Feature)	5	RW	0x0	<p>This bit when clear will disable the E-Switch Event Bit to be set in the RXCPU Event Register upon a dock/undock event. In addition, this bit when clear will prevent the device from generating any interrupt to the Host CPU upon a dock/undock event.</p> <p>This bit when set by SW enables the E-Switch Controller to gate-off the GMII Interface signals {data, control} to prevent any unstable data coming to the MAC during the port switching.</p> <p>0x0 = disable Gate-Off. 0x1 = enable Gate-Off.</p>
E-Switch Override Enable (Debug/Test Feature)	4	RW	0x0	<p>This bit when set by SW enables it to override the state of the E-Switch Select pin and commands the Hardware to switch to either the Laptop egphy_core port or Docking Egphy_Core Port based on the state of the E-Switch Override Value</p> <p>0x0 = disable override and use E-Switch select pin. 0x1 = enable E-Switch override.</p>
E-Switch Override Value	3	RW	0x0	<p>For Debugging Purposes</p> <p>This bit, when set by SW along with the E-Switch Override Enable bit, will override the state of the E-Switch Select pin and select the Docking Port as the primary port. This is used in testing and the debugging mode. Inverse Polarity has no effect on this bit. De-bounce timer has no effect on this bit.</p> <p>0x0 = switch to laptop egphy_core port 0x1 = switch to docking egphy_core port</p>

Table 325: E-Switch Control Register (Offset: 0x68BC) (Cont.)

Name	Bits	Access	Default Value	Description
Inverse Polarity	2	RW	0x0	<p>For Debugging Purposes</p> <p>Inverse the polarity of the E-Switch Select pin. This bit has no effect when the Override Mode bit is enabled. This is used for debugging purposes.</p> <p>0x0 = no polarity inverse. If E-Switch select pin = 0 original egphy_core port (laptop) is selected. If E-Switch select pin = 1 new egphy_core port (docking) is selected.</p> <p>0x1 = inverse polarity. If E-Switch select pin = 0 new egphy_core port (docking) is selected. If E-Switch select pin = 1 original egphy_core port (laptop) is selected.</p>
Reset	1	SC	0x0	<p>For Debugging Purposes</p> <p>This bit when asserted will reset E-Switch Control module. This is used for debugging purposes. Use halt instead of resetting unless absolutely needed. This is a self-clear bit.</p>
Halt	0	RW	0x0	<p>Gracefully halt the E-Switch Control module. This bit needs to be set by SW whenever it needs to access the GPHY Registers 0x15, 0x16, or 0x17. In addition, this bit needs to be set whenever SW needs to change the Programmable Timers in the E-Switch Controller registers. The software must wait for the amount of time specified (1 μs) in the Done Bit Description before reading the done bit to determine whether the halt command was successfully executed.</p> <p>This bit is reset by GRC Reset.</p>

E-SWITCH TIMER REGISTER 1 (OFFSET: 0x68C0)

Table 326: E-Switch Timer Register 1 (Offset: 0x68C0)

Name	Bits	Access	Default Value	Description
Time to assert Switch_to_A_n_B signal (Tsw)	31:16	RW	0x400	<p>This parameter controls the amount of time in nanoseconds starting from the debouncing of the E-Switch Select pin to the assertion of the Switch_to_A_n_B signal. Each unit represents 40 ns.</p> <p>0x400 = 40.960 μs</p>
E-Switch Select Pin De-bounce Time (Tdb)	15:0	RW	0x8	<p>This programmable parameter is used to control the De-bounce limit for E-Switch Select pin. This limit is used for both the low to high and High to low transition of the E-Switch Select Pin. Each unit represents 2.621 ms.</p> <p>0x8 = 20.971 ms</p>

E-SWITCH TIMER REGISTER 2 (OFFSET: 0x68C4)*Table 327: E-Switch Timer Register 2 (Offset: 0x68C4)*

Name	Bits	Access	Default Value	Description
Time to power-down old port (Tas-pwrdrn)	31:16	RW	0x600	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the assertion (Logic 1) of the Power_Down_A/B signals. Each unit represents 40 ns. 0x400 = 40.960 μ s. Each unit represents 40 ns. 0x600 = 61.44 μ s
Time to power-up new port (Tde-pwrdrn)	15:0	RW	0x0	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the deassertion (Logic 0) of the Power_Down_A/B signals. Each unit represents 40 ns. 0x0 = 0 ns

E-SWITCH TIMER REGISTER 3 (OFFSET: 0x68C8)*Table 328: E-Switch Timer Register 3 (Offset: 0x68C8)*

Name	Bits	Access	Default Value	Description
Force_Switch De-Assertion Limit (Tde-fsw)	31:16	RW	0x600	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the de-assertion (Logic 1) of the Force_Switch signal. This is used in case egphy_core is in power down mode. If Force_Switch De-Assertion Limit = Force_Switch Assertion Limit then the Force_Switch signal would not toggle at all. Each unit represents 40 ns. 0x600 = 61.44 μ s
Force_Switch Assertion Limit (Tas-fsw)	15:0	RW	0x500	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the assertion (Logic 0) of the Force_Switch signal. This is used in case egphy_core is in power down mode. If Force_Switch De-Assertion Limit = Force_Switch Assertion Limit then the Force_Switch signal would not toggle at all. Each unit represents 40 ns. 0x500 = 51.2 μ s

E-SWITCH TIMER REGISTER 4 (OFFSET: 0x68CC)

Table 329: E-Switch Timer Register 4 (Offset: 0x68CC)

Name	Bits	Access	Default Value	Description
Power_Down_Reg De-Assertion Limit (Tde-pwrreg)	15:0	RW	0x900	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the de-assertion (Logic 1) of the Power_Down_Reg signal. If Power_Down_Reg De-assertion Limit = Power_Down_Reg Assertion Limit then the Power_Down_Reg signal would not toggle at all. Each unit represents 40 ns. 0x900 = 92.16 μ s
Power_Down_Reg Assertion Limit (Tas-pwrreg)	31:16	RW	0x700	This parameter controls the amount of time starting from the debouncing of the E-Switch Select pin to the assertion (Logic 1) of the Power_Down_Reg signal. If Power_Down_Reg De-assertion Limit = Power_Down_Reg Assertion Limit then the Power_Down_Reg signal would not toggle at all. Each unit represents 40 ns. 0x700 = 71.68 μ s

E-SWITCH TIMER REGISTER 5 (OFFSET: 0x68D0)

Table 330: E-Switch Timer Register 5 (Offset: 0x68D0)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RO	0x0	Reserved
Done Assertion Limit (Tdone)	15:0	RW	0xD00	Time to assert done signal after E-Switch select pin has been de-bounced. Each unit represents 40 ns. 0xD00 = 133.12 μ s

E-SWITCH ARBITRATION REGISTER (OFFSET: 0x68D4)

Table 331: E-Switch Arbitration Register (Offset: 0x68D4)

Name	Bits	Access	Default Value	Description
Reserved	31:14	RW	0x0	Reserved
E-Switch Request 1 Pending	13	RO	0x0	This bit is set when SW write a 1 to bit 1. 1: Request Pending 0: Request Not Pending
E-Switch Request 0 Pending	12	RO	0x0	This bit is set when SW write a 1 to bit 0 1: Request Pending 0: Request Not Pending
Reserved	11:10	RO	0x0	Reserved

Table 331: E-Switch Arbitration Register (Offset: 0x68D4) (Cont.)

Name	Bits	Access	Default Value	Description
E-Switch Grant 1	9	RO	0x0	Allows either Boot Code/Driver to poll on this bit to determine whether it has won Arbitration before accessing the E-Switch Controller Control/Timer Registers 1: Won Arbitration 0: Lost Arbitration
E-Switch Grant 0	8	RO	0x0	Allows either Boot Code/Driver to poll on this bit to determine whether it has won Arbitration before accessing the E-Switch Controller Control/Timer Registers 1: Won Arbitration 0: Lost Arbitration
Reserved	7:6	RO	0x0	Reserved
E-Switch Clear Request 1	5	R/W	0x0	Allows either Boot Code/Driver to set this bit whenever it finishes accessing the E-Switch Controller Control Registers 1: Write 1 to clear Request 0: Write 0 has no impact
E-Switch Clear Request 0	4	R/W	0x0	Allows either Boot Code/Driver to set this bit whenever it finishes accessing the E-Switch Controller Control Registers 1: Write 1 to clear Request 0: Write 0 has no impact
Reserved	3:2	RO	0x0	Reserved
E-Switch Set Request 1	1	R/W	0x0	Allows either Boot Code/Driver to set this bit whenever it wants to access the E-Switch Controller Control Registers 1: Write 1 to set Request 0: Write 0 has no impact
E-Switch Set Request 0	0	R/W	0x0	Allows either Boot Code/Driver to set this bit whenever it wants to access the E-Switch Controller Control Registers 1: Write 1 to set Request 0: Write 0 has no impact

MEMORY TM CONTROL1 (OFFSET: 0x68E0)

Table 332: Memory TM Control1 (Offset: 0x68E0)

Name	Bits	Access	Default Value	Description
Reserved	31:24	RW	0x0	Reserved
Memory TM control retrybuf	23:16	RW	0x00	TM control of retry buffer
Memory TM control txmbuf	15:8	RW	0x00	TM control for txmbuf
Memory TM control rxmbuf	7:0	RW	0x00	TM control for rxmbuf

MEMORY TM CONTROL2 (OFFSET: 0x68E4)*Table 333: Memory TM Control2 (Offset: 0x68E4)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RW	0x0	Reserved

MEMORY TM CONTROL3 (OFFSET: 0x68E8)*Table 334: Memory TM Control3 (Offset: 0x68E8)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RW	0x0	Reserved

MEMORY TM CONTROL4 (OFFSET: 0x68EC)*Table 335: Memory TM Control4 (Offset: 0x68EC)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RW	0x0	Reserved

ASF/LEGACY SMBUS REGISTERS

All registers are core reset unless specified

ASF CONTROL REGISTER (OFFSET: 0x6C00)

Table 336: ASF Control Register (Offset: 0x6C00)

Name	Bits	Access	Default Value	Description
SMB Early Attention	31	RW	0	When set, the SMB interface sets the ASF_GRC_ATTN bit as soon as slave activity is detected. When cleared, the attention bit is not set until an address match occurs.
SMB Enable Addr 0	30	RW	0	When set, the SMB interface accepts all incoming messages with an address of zero.
NIC SMB Address 2	29:23	RW	0	Second NIC SMB address for matching incoming messages.
NIC SMB Address 1	22:16	RW	0	First NIC SMB address for matching incoming messages.
SMB Autoread	15	RW	0	When set, the SMB_IN_RDY bit in the SMB Input register will clear automatically whenever the register is read. Otherwise, the bit must be cleared by SW.
SMB ADDR Filter	14	RW	0	When clear, enables incoming SMBus message address filtering using the addresses specified in the NIC SMB Address 1 and NIC SMB Address 2 fields.
SMB Bit Bang Enable	13	RW	0	When set, the SMBus bit-bang interface is enabled in the SMBus Output register.
SMB Enable	12	RW	0	When set, the SMBus block is enabled.
ASF Attention Location	11:8	RW	0	Controls which event bit in the Event Register the ASF Attention maps into. <ul style="list-style-type: none"> • 0 = Disabled • 1 = TXCPU event bit 1 • 2 = TXCPU event bit 2 • 3 = TXCPU event bit 3 • 4 = TXCPU event bit 5 • 5 = TXCPU event bit 7 • 6 = TXCPU event bit 12 • 7 = TXCPU event bit 14 • 8 = RXCPU event bit 0 • 9 = RXCPU event bit 1 • 10 = RXCPU event bit 3 • 11 = RXCPU event bit 5 • 12 = RXCPU event bit 7 • 13 = RXCPU event bit 12 • 14 = RXCPU event bit 14 • 15 = RXCPU event bit 16
SMB Attention	7	W2C	0	Set for incoming slave mode message.

Table 336: ASF Control Register (Offset: 0x6C00) (Cont.)

Name	Bits	Access	Default Value	Description
Retransmission Timer Expired	6	W2C	0	Set when the retransmission timer has timed out.
Poll Legacy Timer Expired	5	W2C	0	Set when the Poll Legacy timer has timed out.
Poll ASF Timer Expired	4	W2C	0	Set when the Poll ASF timer has timed out.
Heartbeat Timer Expired	3	W2C	0	Set when the Heartbeat timer has timed out.
Watchdog Timer Expired	2	W2C	0	Set when the Watchdog timer has timed out.
Timestamp Counter Enable	1	W2C	0	Set to enable the time stamp counter.
ASF Reset	0	W2C	0	Soft reset bit for the ASF and SMBus interface blocks. When set, the blocks will be reset. The bit is self clearing.

SMBUS INPUT REGISTER (OFFSET: 0x6C04)

Table 337: SMBus Input Register (Offset: 0x6C04)

Name	Bits	Access	Default Value	Description
Reserved	31:14	RW	0	
SMB Input Status	13:11	RW	0	Value is set by the SMBus interface when the SMB Input Done bit is set. The value is encoded to the following: <ul style="list-style-type: none"> • 000: Reception OK. • 001: PEC error during reception. • 010: SMBus Input FIFO overflowed during reception. • 011: SMBus stopped unexpectedly during reception. • 100: SMBus timed out during reception.
SMBus In FirstByte	10	RW	0	Set by the SMBus interface block for the first byte received in the transfer.
SMBus In Done	9	W2C	0	Set by the SMBus block when the Data Input field has the last data byte of the transfer.
SMBus In Ready	8	RW	0	Set by the SMBus interface block when the Data Input field is valid.
SMBus Data In	7:0	RW	0	Input data from the SMBus interface.

SMBUS OUTPUT REGISTER (OFFSET: 0x6C08)

Table 338: SMBus Output Register (Offset: 0x6C08)

Name	Bits	Access	Default Value	Description
Reserved	31:29	RW	0	
SMB Clock Input	28	RW	0	Value on the SMB Clock pin when the SMBus interface is in bit-bang mode.
SMB Clock Enable	27	RW	0	When set, the SMBus Clock signal is driven low when the SMBus interface bit-bang mode is also set. When clear, the SMBus Clock signal is tristated.
SMB Data Input Value	26	RW	0	Value on the SMB Data pin when the SMBus interface is in bit-bang mode.

Table 338: SMBus Output Register (Offset: 0x6C08) (Cont.)

Name	Bits	Access	Default Value	Description
SMB Data Enable	25	RW	0	When set, the SMBus Data signal is driven low when the SMBus interface bit-bang mode is also set. When clear, the SMBus Data signal is tristated.
SMB Slave Mode	24	RW	0	Set when the SMBus interface is operating in slave mode.
SMB Output Status	23:20	RW	0	Set by SMBus interface when the SMB Output Start bit is cleared with the following encoded value that indicates the status of the preceding transfer: <ul style="list-style-type: none"> • 0000: Transmission OK. • 0001: SMBus was NACKed on the first byte of transmission. • 1001: SMBus was NACKed after the first byte of transmission. • 0010: SMBus Output FIFO underflowed during transmission. • 0011: SMBus stopped unexpectedly during transmission. • 0100: SMBus timed out during transmission. • 0101: SMBus Master lost arbitration during the first byte of transmission. • 1101: SMBus Master lost arbitration after the first byte of transmission. • 0110: Remote Master ACKed on what should have been the last byte.
SMB Read Length	19:14	RW	0	Number of bytes in the read portion of the transaction.
Get Receive Length	13	RW	0	When set, the receive length is taken from the first byte of the read data. When cleared, the SMB Read Length field is used.
Enable PEC	12	RW	0	When set, the packet error check byte is enabled for the command.
SMB Access Type	11	RW	0	When set, the SMBus interface will execute a read command. When cleared, the write command will be executed.
SMB Output Last	10	RW	0	Set to indicate when the SMB Data Output field contains the last byte of the command.
SMB Output Start	9	RW	0	Set to indicate the start of a SMBus master transaction. Cleared by the SMBus interface block when the transaction is complete.
SMB Output Ready	8	RW	0	Set to indicate the SMB Data Output field has valid data. Cleared by the SMBus interface block when the byte is transferred to the internal FIFO.
SMB Data Output	7:0	RW	0	Outgoing data byte for the SMB transaction.

ASF WATCHDOG TIMER REGISTER (OFFSET: 0x6C0C)

Table 339: ASF Watchdog Timer Register (Offset: 0x6C0C)

Name	Bits	Access	Default Value	Description
Reserved	31:8	RW	0	
Watchdog Timer	7:0	RW	0	A countdown timer which decrements at the rate of one tick per second. When the counter reaches a value of zero, the corresponding timeout bit is set in the ASF Control Register. The timer stops decrementing when it reaches the zero value.

ASF HEARTBEAT TIMER REGISTER (OFFSET: 0x6C10)

Table 340: ASF Heartbeat Timer Register (Offset: 0x6C10)

Name	Bits	Access	Default Value	Description
Reserved	31:16	RW	0	
Watchdog Timer	15:0	RW	0	A countdown timer which decrements at the rate of one tick per second. When the counter reaches a value of zero, the corresponding timeout bit is set in the ASF Control Register. The timer stops decrementing when it reaches the zero value.

POLL ASF TIMER REGISTER (OFFSET: 0x6C14)

Table 341: Poll ASF Timer Register (Offset: 0x6C14)

Name	Bits	Access	Default Value	Description
Reserved	31:8	RW	0	
Poll Timer	7:0	RW	0	A countdown timer which decrements at the rate of one tick per 5 ms. When the counter reaches a value of zero, the corresponding timeout bit is set in the ASF Control Register. The timer stops decrementing when it reaches the zero value.

POLL LEGACY TIMER REGISTER (OFFSET: 0x6C18)

Table 342: Poll Legacy Timer Register (Offset: 0x6C18)

Name	Bits	Access	Default Value	Description
Reserved	31:8	RW	0	
Poll Legacy Timer	7:0	RW	0	A countdown timer which decrements at the rate of one tick per 250 ms. When the counter reaches a value of zero, the corresponding timeout bit is set in the ASF Control Register. The timer stops decrementing when it reaches the zero value.

RETRANSMISSION TIMER REGISTER (OFFSET: 0x6C1C)*Table 343: Retransmission Timer Register (Offset: 0x6C1C)*

Name	Bits	Access	Default Value	Description
Reserved	31:8	RW	0	
Poll Timer	7:0	RW	0	A countdown timer which decrements at the rate of one tick per second. When the counter reaches a value of zero, the corresponding timeout bit is set in the ASF Control Register. The timer stops decrementing when it reaches the zero value.

TIME STAMP COUNTER REGISTER (OFFSET: 0x6C20)*Table 344: Time Stamp Counter Register (Offset: 0x6C20)*

Name	Bits	Access	Default Value	Description
Timestamp Counter	31:0	RW	0	A count-up timer which increments at the rate of one tick per second. The counter starts when the Time Stamp Counter Enable bit is set in the ASF Control register.

SM BUS DRIVER SELECT REGISTER (OFFSET: 0x6C24)

This is a new register added to select the driver for SM_DATA between the 2 ASF modules.

Table 345: SM Bus Driver Select Register (Offset: 0x6C24)

Name	Bits	Access	Default Value	Description
Reserved	31	RO	0	
Reserved	29:1	RO	0	
Driver Select	0	RW	0	When '1', SM_DATA_OUT and SM_CLK_OUT are driven by new SM bus module.

ASF RNG COMMAND REGISTER (OFFSET: 0x6C30)*Table 346: ASF RNG Command Register (Offset: 0x6C30)*

Name	Bits	Access	Default Value	Description
Debug_reg_address [3:0]	31:28	RW	0	Debug register address. SW should always write 0 to this field, other values are reserved for HW debug purpose.
Rng_warm[19:0]	27:8	RW	0	RNG warm count. The random number generator increments this register for each bit generated during the warm up cycle. The CP can speed up the warm-up cycles by writing a higher value to this register. The warm-up cycle is complete when these bits are all one.
Warm_done	7	RO	0	The random number generator initialization is completed. It normally (depends on the Warm Ini value) takes 2^{20} core clocks after setting load_warm (bit 2).

Table 346: ASF RNG Command Register (Offset: 0x6C30) (Cont.)

Name	Bits	Access	Default Value	Description
Rnd_valid	6	RO	0	The 32-bit random number in ASF_RNG Data Register (at OFFSET 0X6C34) is ready. Clear this bit by writing 1 to Upd_rnd (bit 5)
Upd_rnd	5	W1C	0	Update the 32-bit random data. Writing 1 to this bit triggers the random number generator to start generating a new 32-bit random number. This signal is self-cleared.
Attn_msk	4	RW	0	Attention Mask. Writing 1 to this bit disables the attention signaling when Rnd_valid (bit 6) is set.
Div2	3	RW	0	When configured low, the random number generation is twice as fast as high.
Load_warm	2	W1C	0	Load warm up timer initial value. Writing 1 to this bit clears the Warm_done (bit 7) and the internal initialization timer starts incrementing based on the rng_warm (bit 27-8) value until the Warm_done is set. This signal is self-cleared.
Rng_enable	1	RW	0	Random number generator enable.
Rng_RST	0	W1C	0	Random number generator reset. Write '0' to clear this reset.

ASF_RNG DATA REGISTER (OFFSET: 0x6C34)

Table 347: ASF_RNG Data Register (Offset: 0x6C34)

Name	Bits	Access	Default Value	Description
Rnd[31:0]	31:0	RO	0	This is a 32-bit random number.

NON-VOLATILE MEMORY (NVM) INTERFACE REGISTERS

NVM COMMAND REGISTER (OFFSET: 0x7000H)

Table 348: NVM Command Register (Offset: 0x7000h)

Name	Bits	Access	Default Value	Description
Policy Error	31:28	RO	0	Reports Address Lockout Policy Error violations
Atmel page size setting	27	RO	0	
Reserved	26:20	RO	0	
Reserved-WRSR	19	RO	0	The write status register command bit. Set '1' will make the Flash interface state machine generate wrsr_comd (0x1) to the Flash device to set the status register of the Flash device to be written with sr data. For SST25VF512 only.
Reserved - EWSR	18	RO	0	The enable write status register command bit. Set '1' will make the Flash interface state machine generate ewsr_cmd (0x50) to the Flash device to set the status register for the Flash device to be write enabled. For SST25VF512 only.
Reserved - Write Disable Command	17	RO	0	The write disable command bit. Set '1' will make the Flash interface state machine generate a write disable command cycle to the Flash device to clear the write enable bit in the device status register. This command is used for devices with a write protection function.
Reserved - Write Enable Command	16	RO	0	The write enable command bit. Set '1' will make the Flash interface state machine generate a write enable command cycle to the Flash device to set the write enable bit in the device status register. This command is used for devices with a write protection function.
Reserved	15:11	RO	0	
Atmel power of 2 page size config	10	RW	0	Program the page size of Atmel D device to be power of 2. Note: A power cycle must be issued for this configuration to take effect.
Atmel page size read	9	RW	0	Read Atmel page size setting, the result is posted in bit 27 of the command register. Issuing this command will effect the content of the read register (0x7010).
Last	8	RW	0	When this bit is set, the next command sequence is interpreted as the last one of a burst and any cleanup work is done. This means that the buffer is written to Flash memory if needed on a write.
First	7	RW	0	This bit is passed to the SEE_FSM or SPI_FSM if the pass_mode bit is set.
Erase	6	RW	0	The erase command bit.
				Set high to execute an erase. This bit is ignored if the wr is clear.
Wr	5	RW	0	The write/not read command bit
				Set to execute write or erase.
Doit	4	RW	0	Command from software to start the defined command. The done bit must be clear before setting this bit. This is a self-clearing bit and will remain set while the command is active.

Table 348: NVM Command Register (Offset: 0x7000h) (Cont.)

Name	Bits	Access	Default Value	Description
Done	3	WTC	0	Sequence completion bit that is asserted when the command requested by assertion of the doit bit has completed. The done bit will be cleared while the command is in progress. The done bit will stay asserted until doit is reasserted or the done bit is cleared by writing a 1 to the done bit. The done bit is the FLSH_ATTN signal
Reserved	2:1	RO	0	
Reset	0	RW		When set, the entire NVM state machine is reset. This bit is self clearing.

NVM STATUS REGISTER (OFFSET: 0x7004H)**Table 349: NVM Status Register (Offset: 0x7004h)**

Name	Bits	Access	Default Value	Description
SPI_AT_RD_FSM State	31:27	RO	0	Atmel SPI Read Interface State Machine values
SPI_AT_WR_FSM State	26:22	RO	0	Atmel SPI Write Interface State Machine values
SPI_ST_RD_FSM State	21:18	RO	0	ST SPI Read Interface State Machine values
SPI_ST_WR_FSM State	17:13	RO	0	ST SPI Write Interface State Machine values
Reserved	12	RO	0	
SEQ_FSM State	11:8	RO	0	Command Sequence State Machine values
Reserved	7:6	RO	0	
SEE_FSM State	5:0	RO	0	SEEPROM State Machine values

NVM WRITE REGISTER (OFFSET: 0x7008H)**Table 350: NVM Write Register (Offset: 0x7008h)**

Name	Bits	Access	Default Value	Description
Write Data	31:0	RW	0	32 bits of write data are used when write commands are executed. When bitbang_mode is set, bits 0 to 3 control the drive value of the SCK, CS_L, SO, and SI pins respectively

NVM ADDRESS REGISTER (OFFSET: 0x700Ch)*Table 351: NVM Address Register (Offset: 0x700Ch)*

Name	Bits	Access	Default Value	Description
ADDR Conversion Enable	31	RW	0	This bit indicates whether the address conversion logic for AT45DBXX devices is enabled. (phy_addr/264 * 0x200 + (phy_addr%264)). Note: This feature will be enabled by default if the strapping value or the auto-config logic indicates the attached NVRAM is a AT45DBXX device.
Reserved	30:24	RO	0	
Write Address	23:0	RW	0	24bit address value When bitbang_mode is set, bits 0 to 3 control the OE value of the SCK, CS_L, SO, and SI pins, respectively. Note: SCL, SDA, SI are active high, and SCK, CS_L, and SO are active low

NVM READ REGISTER (OFFSET: 0x7010H)*Table 352: NVM Read Register (Offset: 0x7010h)*

Name	Bits	Access	Default Value	Description
Read Data	31:0	RW	0	32 bits of read data are used when read commands are executed. When bitbang_mode is set, bits 0 to 3 reflect the current input value of SCK, CS_L, SO, and SI pins, respectively.

NVM CONFIG 1 REGISTER (OFFSET: 0x7014H)*Table 353: NVM Config 1 Register (Offset: 0x7014h)*

Name	Bits	Access	Default Value	Description
Compat_bypass	31	0	RW	Enable 5701 legacy EEPROM interface to bypass this interface.
Page Size	30:28	Depends on Flash strapping	RW	These bits indicate the page size of the attached Flash device. They are set automatically depending on the chosen Flash as indicated by the strapping option pins. Page sizes are as follows: 000b: 256 bytes 001b: 512 bytes 010b: 1024 bytes 011b: 2048 bytes 100b: 4096 bytes 101b: 264 bytes 110b: Reserved 111b: reserved

Table 353: NVM Config 1 Register (Offset: 0x7014h) (Cont.)

Name	Bits	Access	Default Value	Description
Address Lockout Enable Status	27	RO	Depends on Addr Lockout state	This bit will be set if the address lockout feature is active; it will be clear otherwise. This bit is read only. Its state can be changed only via a strapping option or bonding option.
Reserved - Safe Erase	26	RO	0	
Flash Size-strap bit 3	25	RO	Pin	Set this bit for a 1-MB device or 0 for 512-KB device. Hard Reset, GRC Reset, and setting command register bit 0 will reset this bit to pin strap.
Protect Mode-strap bit 2	24	RO	pin	Set this bit for Flash devices that implement a write protect function. Hard Reset, GRC Reset, and setting command register bit 0 will reset this bit to pin strap.
Strap bit 5	23	RO	pin	
Strap bit 4	22	RO	pin	
SEE_CLK_DIV	21:11	RW	16	This field is a divisor used to create all 1x times for all EEPROM interface I/O pin timing definitions. A value of 0 means that an SCL transitions at a minimum of each CORE_CLK rising edge. The equation to calculate the clock freq. for SCL is: $\text{CORE_CLK}/(\text{SEE_CLK_DIV} + 1) * 4$ Note: SCL is 4 times slower than 1x time. The default value corresponds to 1.42 MHz.
SPI_CLK_DIV	10:7	RW	4	This field is a divisor used to create all 1x times for all Flash interface I/O pin timing definitions. A divisor of 0 means that an SCK transitions at a minimum of each CORE_CLK rising edge. The equation to calculate the clock freq. for SCK is: $\text{CORE_CLK}/(\text{SPI_CLK_DIV} + 1) * 2$ Note: SCL is 4 times slower than 1x time. The default value corresponds to 6.6 MHz
Status	6:4	RW	0 if flash_mode 7 if buffer_mode X otherwise	This field represents the bit offset in the status command response to interpret as the ready flag.
Reserved - Bitbang Mode	3	RO	0	
Reserved - Pass Mode	2	RO	0	
Buffer Mode	1	RW	Pin	Enable SSRAM Buffered Interface mode
Flash Mode	0	RW	Pin	Enable Flash Interface mode

NVM CONFIG 2 REGISTER (OFFSET: 0x7018H)*Table 354: NVM Config 2 Register (Offset: 0x7018h)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
Status Command	23:16	RW	0x05 if pin strap = ST 0xD7 if pin strap = Atmel	This is the Flash status register read command.
Dummy	15:8	RW	X	
Erase Command	7:0	RW	0x81 if pin strap = Atmel 0xDB if pin strap = STMxx	This is the Flash page erase command. Note: ST25xx does not support page erase, therefore the corresponding command is for sector erase.

NVM CONFIG 3 REGISTER (OFFSET: 0x701Ch)*Table 355: NVM Config 3 Register (Offset: 0x701Ch)*

Name	Bits	Access	Default Value	Description
Read Command	31:24	RW	0x0B if AT26DFXX 0xE8 if AT45DBXX 0x03 if AT45DBXX D 0x03 if STM25PEXX 0x03 if STM45PEXX	This is the Flash/SEEPROM read command. Following this command, any number of bytes may be read up to the end of the Flash memory For SEEPROM (Flash_mode = 0), this is SEEPROM read command. Bits(26:25) are address bits A1 and A0 of SEEPROM The user should modify those two bits based on the value of A1 and A0 assigned to this SEEPROM device.
Reserved - Buffer Write Command	23:16	RO	0	
Write Command	15:8	RW	0x82 if AT26DFXX 0x82 if AT45DBXX 0x0A if STM25PEXX 0x0A if STM45PEXX	Command to write a series of bytes into a selected page in the Flash device. Note: This write command wraps around to the beginning of the page after the internal address counter in the Flash device reaches the end of the page. For SEEPROM (Flash_mode = 0), this is SEEPROM write command. Bits[10:9] are address bits A1 and A0 of SEEPROM. The user should modify those two bits based on the value of A1 and A0 assigned to this SEEPROM device.
Reserved - Buffer Read Command	7:0	RO	0	

SOFTWARE ARBITRATION REGISTER (OFFSET: 0x7020H)

Table 356: Software Arbitration Register (Offset: 0x7020h)

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
REQ5	23	RO	0	Software request bit 5. 1 in this bit indicates that the request5 is active.
ARB_WON5	22	RO	0	Arbitration won bit 5(see bit 8, ARB_WON0)
REQ_CLR5	21	WO	X	Write 1 to clear REQ5 bit.
REQ_SET5	20	WO	X	Write 1 to set REQ5 bit.
REQ4	19	RO	0	Software request bit 4 1 in this bit indicates that the request5 is active.
ARB_WON4	18	RO	0	Arbitration won bit 4 (see bit 8, ARB_WON0).
REQ_CLR4	17	WO	X	Write 1 to clear REQ4 bit.
REQ_SET4	16	WO	X	Write 1 to set REQ4 bit.
REQ3	15	RO	0	Software request bit3 1 in this bit indicates that the request5 is active.
REQ2	14	RO	0	Software request bit2 1 in this bit indicates that the request5 is active
REQ1	13	RO	0	Software request bit1 1 in this bit indicates that the request5 is active
REQ0	12	RO	0	Software request bit 0 When Req_set0 bit is set, this bit will be set
ARB_WON3	11	RO	0	Arbitration won bit 3 (see Bit 8, ARB_WON0)
ARB_WON2	10	RO	0	Arbitration won bit 2 (see Bit 8, ARB_WON0)
ARB_WON1	9	RO	0	Arbitration won bit 1 (see Bit 8, ARB_WON0)
ARB_WON0	8	RO	0	When req0 arbitration is won, this bit will be read as 1. When an operation is complete, then Req_clr0 must be written to clear bit. At that point, the next high priority arb bit will be set if requested. At any time, only one of the ARB_WON[5:0] bits will be read as 1. ARB 0 has the highest priority, and ARB5 has the lowest priority.
REQ_CLR3	7	WO	X	Write 1 to this bit to clear REQ3 bit.
REQ_CLR2	6	WO	X	Write 1 to this bit to clear REQ2 bit.
REQ_CLR1	5	WO	X	Write 1 to this bit to clear REQ1 bit.
REQ_CLR0	4	WO	X	Write 1 to this bit to clear REQ0 bit.
REQ_SET3	3	WO	X	Write 1 to this bit to set REQ3 bit.
REQ_SET2	2	WO	X	Write 1 to this bit to set REQ2 bit.
REQ_SET1	1	WO	X	Write 1 to this bit to set REQ1 bit.
REQ_SET0	0	WO	X	Set software arbitration request bit 0 This bit is set by writing 1.

NVM ACCESS REGISTER (OFFSET: 0x7024H)*Table 357: NVM Access Register (Offset: 0x7024h)*

Name	Bits	Access	Default Value	Description
Reserved	31:2	RO	0	
NVM Access Write Enable	0	RW	0	When 1, allows the NVRAM write command to be issued even if the NVRAM write enable bit of Mode Control register is 0.
NVM Access Enable	0	RW	0	When 0, prevents write access to all other NVRAM registers, except for the Software arbitration register

NVM WRITE1 REGISTER (OFFSET: 0x7028H)*Table 358: NVM Write1 Register (Offset: 0x7028h)*

Name	Bits	Access	Default Value	Description
Reserved	31-24			
Reserved - Status Register Data	23-16	RO	0	
Write Disable Command	15-8	RW	0x4h	Flash write disable command when device with protection function is used. This command will be issued by the Flash interface state machine through SPI interface To Flash device, and make the Flash device write-disabled.
Write Enable Command	7-0	RW	0x6h	Flash write enable command when device with protection function is used. This command will be issued by the Flash interface state machine through SPI interface To Flash device, and make the Flash device write-enabled.

ARBITRATION WATCHDOG TIMER REGISTER (OFFSET: 0x702Ch)*Table 359: Arbitration Watchdog Timer Register (Offset: 0x702Ch)*

Name	Bits	Access	Default Value	Description
TPM Arbitration Lock Timer	31-28	RW	1	This field hold a delay in milliseconds until the TPM will be allowed to access the Flash, even if the LAN has not been given an arbitration grant.
Reserved - TPM Watchdog Timer Value	27-24	Ro	0	
Arbitration Credit	23:8	RW	0x1000000	The arbitration credit (number of words) for the credit based arbitration scheme implemented in hardware.
Reserved	7		0	
Credit Arbitration Enable	6	RW	0	This bit enables the hardware credit based arbitration logic.
TPM Arbitration Lock Timer Enable	5	RW	1	Enable Arbitration Lock timer to allow TPM access to Flash after timeout if LAN has not already requested Flash access.
Reserved	4-0	RO	0	

ADDRESS LOCKOUT BOUNDARY REGISTER (OFFSET: 0x7030H)*Table 360: Address Lockout Boundary Register (Offset: 0x7030h)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
Address Lockout Boundary	23:0	RW	0	This register holds the physical address boundary between LAN and TPM space in the Flash. When the address-based lockout feature is enabled, the LAN will not be able to access Flash addresses beyond this value.

ADDRESS LOCKOUT ADDRESS COUNTER DEBUG REGISTER (OFFSET: 0x7034H)*Table 361: Address Lockout Address Counter Debug Register (Offset: 0x7034h)*

Name	Bits	Access	Default Value	Description
Reserved	31:24	RO	0	
Address Lockout Address Counter	23:0	RO	0	This register can be read to examine the current Flash physical address in the address lockout logic.

NVM AUTO-SENSE STATUS REGISTER (OFFSET: 0x7038H)*Table 362: NVM Auto-Sense Status Register (Offset: 0x7038h)*

Name	Bits	Access	Default Value	Description
Reserved	31:21	RO	0	
Auto Detected Device ID	20:16	RO	0x19	AT45DB021D: 5'b0_0011; AT45DB041D: 5'b0_0000; AT45DB081D: 5'b0_0001; AT45DB161D: 5'b0_0010; AT45DB011B: 5'b0_0100; STM25PE20: 5'b0_1010; STM25PE40: 5'b0_1000; STM25PE80: 5'b0_1001; STM25PE16: 5'b0_1011; STM45PE10: 5'b0_1100; Unsupported AT26: 5'b1_0000; Unsupported AT45: 5'b1_0001; Unsupported ST25: 5'b1_1000; Unsupported ST45: 5'b1_1100
Reserved	15:13	RO	0	
Auto-config State	12:8	RO	0	Auto Config FSM state
Reserved	7:6	RO	0	
Auto Config Successful	5	RO	0	Auto config is successful
Auto Config Enable	4	RO	0	Auto config feature is enabled through pin strap
Reserved - Auto_conf_states	3:1	RO	0	The auto-sense FSM state

Table 362: NVM Auto-Sense Status Register (Offset: 0x7038h) (Cont.)

Name	Bits	Access	Default Value	Description
Auto_config_busy	0	RO	0	1: Auto-config FSM is busy 0: Auto-config is complete

UART REGISTER

DLAB is bit 7 of the Line Control Register (LCR). It enables reading and writing of the Divisor Latch Registers to set the baud rate of the UART. The following is the summary of the UART register map.

Table 363: UART Register

DLAB	Address	Access	Name	Default
0	0x7800	RO	Receive Buffer Register (RBR)	0x00
0	0x7800	WO	Transmit Holding Register (THR)	0x00
1	0x7800	R/W	Divisor Latch (Low) (DLL)	0x00
0	0x7804	R/W	Interrupt Enable Register (IER)	0x00
1	0x7804	R/W	Divisor Latch (High) (DLH)	0x00
X	0x7808	RO	Interrupt Identity Register (IIR)	0x01
X	0x7808	WO	FIFO Control Register (FCR)	0x00
X	0x780c	R/W	Line Control Register (LCR)	0x00
X	0x7810	R/W	Modem Control Register (MCR)	0x00
X	0x7814	RO	Line Status Register (LSR)	0x60
X	0x7818	RO	Modem Status Register (MSR)	0x00
X	0x781c	R/W	Scratch Register (SCR)	0x00

DATA REGISTER (OFFSET: 0x7800)

Receive Buffer Register (RBR) (DLAB=0)

Table 364: Data Register (Offset: 0x7800)

Name	Bits	Access	Default Value	Description
RBR	7:0	RO	0x00	The data in this register is valid only if the Data Ready (DR) bit in the Line Status Register (LSR) is set. In the non-FIFO mode, the data in the RBR must be read before the next data arrives, otherwise it will be overwritten, resulting in an overrun error. In FIFO mode, this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO will be preserved, but any incoming data will be lost. An overrun error will occur.

TRANSMIT HOLDING REGISTER (THR) (DLAB=0)

Table 365: Transmit Holding Register (THR) (DLAB=0)

Name	Bits	Access	Default Value	Description
THR	7:0	WO	0x00	THR contains data to be transmitted on the serial output port (sout). Data can be written to the THR any time that the THR empty (THRE) bit of the Line Status Register (LSR) is set. If FIFOs are not enabled and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten.

DIVISOR LATCH (Low) (DLL) (DLAB=1)

Table 366: Divisor Latch (Low) (DLL) (DLAB=1)

Name	Bits	Access	Default Value	Description
DLL	7:0	RW	0x00	The DLH register in conjunction with DLL register forms a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. It is accessed by first setting the DLAB bit in the Line Control Register. The output baud rate is equal to the input clock frequency divided by sixteen times the value of the baud rate divisor. Baud= (clock freq)/(16 * divisor)

UART INTERRUPT ENABLE REGISTER (OFFSET: 0x7804)

Interrupt Enable Register (IER) (DLAB=0)

Table 367: Interrupt Enable Register (IER) (DLAB=0)

Name	Bits	Access	Default Value	Description
Reserved	7:4		0	
EDSSI	3	RW	0	Enable Modem Status Interrupt
ELSI	2	RW	0	Enable Receiver Line Status Interrupt
ETBEI	1	RW	0	Enable Transmitter Holding Register Empty Interrupt
ERBFI	0	RW	0	Enable Received Data Available Interrupt

Divisor Latch (High) (DLH) (DLAB=1)

Table 368: Divisor Latch (High) (DLH) (DLAB=1)

Name	Bits	Access	Default Value	Description
DLH	7:0	RW	0x00	Divisor Latch (High)

UART CONTROL REGISTER (OFFSET: 0x7808)

Interrupt Identity Register (IIR)

Table 369: Interrupt Identity Register (IIR)

Name	Bits	Access	Default Value	Description
	7:6	RO	0x0	00 - FIFO disable 11-FIFO enable
Interrupt ID	5:4	RO	0x0	reserved
	3:0	RO	0x1	0000 Modem Status changed 0001 No interrupt pending 0010 THR empty 0100 Received Data available 0110 Receiver Status 1100 Character Time out

FIFO Control Register (FCR)

Table 370: FIFO Control Register (FCR)

Name	Bits	Access	Default Value	Description
RCVR trigger	7:6	WO	0	00 = 1 byte in FIFO 01 = 4 bytes in FIFO 10 = 8 bytes in FIFO 11 = 14 bytes in FIFO
Reserved	5:4	WO	0	Reserved
	3	WO	0	DMA mode
	2	WO	0	XMIT FIFO reset
	1	WO	0	RCVR FIFO reset
	0	WO	0	FIFO enable

UART CONTROL REGISTER (OFFSET: 0x780C)

Table 371: UART Control Register (Offset: 0x780C)

Name	Bits	Access	Default Value	Description
DLAB	7	RW	0	DLAB
Break	6	RW	0	Break Control 1 = Sends a break signal by holding the sout line low
Stick Parity	5	RW	0	Not used
EPS	4	RW	0	Parity Select bit
PEN	3	RW	0	Parity Enable
STOP	2	RW	0	Number of stop bits 0= 1 bit 1= 2 bits

Table 371: *UART Control Register (Offset: 0x780C) (Cont.)*

Name	Bits	Access	Default Value	Description
CLS	1:0	RW	0	Number of bits per character 00 = 5 bits 01 = 6 bits 10 = 7 bits 11 = 8 bits

MODEM CONTROL REGISTER (OFFSET: 0x7810)Table 372: *Modem Control Register (Offset: 0x7810)*

Name	Bits	Access	Default Value	Description
	7:5	RW	0x00	Reserved
Loopback	4	RW	0	1= sout is held high, while serial data output is looped back to the sin line internally.
Out2	3	RW	0	This bit is inverted to generate out2#.
Out1	2	RW	0	This bit is inverted to generate out1#.
RTS	1	RW	0	This bit is inverted to generate RTS#.
DTR	0	RW	0	This bit is inverted to generate DTR#.

LINE STATUS REGISTER (OFFSET: 0x7814)Table 373: *Line Status Register (Offset: 0x7814)*

Name	Bits	Access	Default Value	Description
FERR	7	RO	0	RX FIFO Error
TEMT	6	RO	1	Transmitter Empty
THRE	5	RO	1	Transmitter Holding Register Empty
BI	4	RO	0	Break Interrupt
FE	3	RO	0	Framing Error
PE	2	RO	0	Parity Error
OE	1	RO	0	Overrun error
DR	0	RO	0	Data Ready

MODEM STATUS REGISTER (OFFSET: 0x7818)*Table 374: Modem Status Register (Offset: 0x7818)*

Name	Bits	Access	Default Value	Description
DCD	7	RO	0	Compliment of DCD#
RI	6	RO	0	Compliment of RI#
DSR	5	RO	0	Compliment of DSR#
CTS	4	RO	0	Compliment of CTS#
DDCD	3	RO	0	Record DCD# change since last MSR read
TERI	2	RO	0	Record RI# change since last MSR read
DDSR	1	RO	0	Record DSR# change since last MSR read
DCTS	0	RO	0	Record CTS# change since last MSR read

SCRATCH REGISTER (OFFSET: 0x781C)*Table 375: Scratch Register (Offset: 0x781C)*

Name	Bits	Access	Default Value	Description
SCR	7:0	RW	0x00	Scratch Register

CPMU REGISTERS

The following describes the registers which are required by BCM5761 CPMU specifications for configuration.

CPMU CONTROL REGISTER (OFFSET: 0x3600)

This register is reset by POR Reset except for Power-Down bit (bit #2).

Table 376: CPMU Control Register (Offset: 0x3600)

Name	Bits	Access	Default Value	Description
Link Speed based Link Idle Power Mode Enable	31	R/W	0x1	When this bit and Link Idle power mode (bit 9) are both enabled, CPMU will only transition to Link Idle power mode when the link speed is 1G. Valid for BCM5761 & BCM5784 A1 or later
GPHY power-down detection enable	30	R/W	0x0	When this bit is enabled, CPMU detects unexpected GPHY power-down (triggered by GPHY APD or setting the bit 11 of GPHY MII register 0). Valid for BCM5761 & BCM5784 A1 or later
GPHY DLL power-down handshake enable	29	R/W	0x0	When this bit is enabled, CPMU enables the handshaking logic among GPHY, CPMU, and GMAC CLKGEN block. Valid for BCM5761 & BCM5784 A1 or later
Software controlled GPHY Force DLL on	28	R/W	0x0	When this bit is enabled, GPHY DLL will be forced on by CPMU (unless the chip is in Low Power Mode). This bit is intended for ASF. Valid for BCM5761 & BCM5784 A1 or later
Enable GPHY power-down in D0u	27	R/W	0x0	Enable CPMU to power-down GPHY when the device enters D0u. 1: Enable 0: Disable Valid for BCM5761 & BCM5784 A1 or later
CPMU GPHY Reset Attention	26	R/W2C	0x0	This bit is set when GPHY has been reset by CPMU. Generates a host interrupt when enabled by bit 25 of the CPMU Control Status register. Clear this attention by writing 1 to this register
GPHY Reset host coalescing Interrupt Enable	25	RW	0x0	Enable Host Coalescing Interrupt when CPMU issues either Reset or R0bll to GPHY. Once enabled, the interrupt is generated at the de-assertion of either resets. 1: Enable 0: Disable Valid for BCM5761 & BCM5784 A1 or later
GPHY ck25_disable in Low Power Energy Detect Power Mode	24	R/W	0x0	GPHY ck25_disable in Low Power Energy Detect Power Mode 1: CK25 in GPHY is gated (ck25_disable is driven HIGH to GPHY) 0: CK25 in GPHY is active (ck25_disable is driven LOW to GPHY) Valid for BCM5761 & BCM5784 A1 or later

Table 376: CPMU Control Register (Offset: 0x3600) (Cont.)

Name	Bits	Access	Default Value	Description
GPHY ck25_disable in Link Aware Power Mode	23	R/W	0x0	GPHY ck25_disable in Link Aware Power Mode 1: CK25 in GPHY is gated (ck25_disable is driven HIGH to GPHY) 0: CK25 in GPHY is active (ck25_disable is driven LOW to GPHY)
PCIe SerDes Aux Clock Enable	22	R/W	0x0	Enable Aux Clock for PCIe SerDes (pipe_Aux Clk Enable) 1: Enable 0: Disable
Alternate Clock Source Select	21	R/W	0x1	Select Alternate Clock Source 1: USB PLL 0: frequency multiplier
Reserved	20	R/W	0x0	
Reserved	19	R/W	0x0	
Legacy Timer Enable	18	R/W	0x0	This bit controls cpmu_legacy_timer_enable output
Frequency multiplier enable	17	R/W	0x1	Legacy Address: 0x68A0[1] 1: Enable 0: Disable
GPHY 10MB Receive Only Mode Enable	16	R/W	0x0	Enables GPHY 10MB Receive Only Mode when this bit is set to 1
TPM idle clock slowdown enable	15	R/W	0x0	Legacy Address: 0x68A0:[2] 1: Enable TPM core clock slowdown if TPM is idle 0: Disable TPM core clock slowdown if TPM is idle
Link Speed Power Mode Enable	14	R/W	0x0	Enable clock adjustment based on the link speed in mission mode
Reserved	13	R/W	0x0	
Airplane Mode Enable	12	R/W	0x0	Airplane Mode Enable 1: Enable 0: Disable
Low Power Energy Detect Enable	11	R/W	0x0	Legacy Address: 0x6890:[25] Low Power Energy Detect Mode Enable 1 : Enable 0 : Disable
Link Aware Power Mode Enable	10	R/W	0x0	Link Aware Power Mode Enable 1 : Enable 0 : Disable
Link Idle Power Mode Enable	9	R/W	0x0	Link Idle Power Mode Enable 1 : Enable 0 : Disable
IPSEC Idle Select	8	R/W	0x0	IPSEC Idle Select 1: dynamic IPsec idle detection 0: SADB valid bit based idle detection
IPSEC Idle Mode Enable	7	R/W	0x0	IPSEC Processing Idle Mode Enable 1 : Enable 0 : Disable

Table 376: CPMU Control Register (Offset: 0x3600) (Cont.)

Name	Bits	Access	Default Value	Description
IPSEC SHA1 Idle Mode Enable	6	R/W	0x0	IPSEC SHA1 Processing Idle Mode Enable 1 : Enable 0 : Disable
APE Deep Sleep Mode Enable	5	R/W	0x0	Enable APE deep sleep power management mode
APE Sleep Mode Enable	4	R/W	0x0	Enable APE sleep power management mode
Reserved	3	R/W	0x0	
Power-down	2	R/W	0x0	Legacy Address: 0x6804:[20] Force CPMU into Low Power State, LAN function will be powered down (GPHY, PCIe, IPSEC, APE) This bit is cleared by a rising edge of PERST_L
CPMU Register Software Reset	1	R/W SC	0x0	Software reset for resetting all the registers to default
CPMU Software Reset	0	R/W SC	0x0	Software reset for all the CPMU logic expect for registers

LINK SPEED 10MB/No Link Power Mode Clock Policy Register (OFFSET: 0x3604)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 377: Link Speed 10MB/No Link Power Mode Clock Policy Register (Offset: 0x3604)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	
MAC Clock Switch	20:16	R/W	0x17	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)

Table 377: Link Speed 10MB/No Link Power Mode Clock Policy Register (Offset: 0x3604) (Cont.)

Name	Bits	Access	Default Value	Description
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x17	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x0	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x0	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

LINK SPEED 100MB POWER MODE CLOCK POLICY REGISTER (OFFSET: 0x3608)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 378: Link Speed 100MB Power Mode Clock Policy Register (Offset: 0x3608)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	

Table 378: Link Speed 100MB Power Mode Clock Policy Register (Offset: 0x3608) (Cont.)

Name	Bits	Access	Default Value	Description
MAC Clock Switch	20:16	R/W	0x11	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x11	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x0	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x0	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

LINK SPEED 1000MB POWER MODE CLOCK POLICY REGISTER (OFFSET: 0x360C)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 379: Link Speed 1000MB Power Mode Clock Policy Register (Offset: 0x360C)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	
MAC Clock Switch	20:16	R/W	0x0	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x0	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x0	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)

Table 379: Link Speed 1000MB Power Mode Clock Policy Register (Offset: 0x360C) (Cont.)

Name	Bits	Access	Default Value	Description
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x0	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

LINK AWARE POWER MODE CLOCK POLICY REGISTER (OFFSET: 0x3610)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed, and the clock source of the clock policies programmed in this register must be the same as the host access clock policy register.

Table 380: Link Aware Power Mode Clock Policy Register (Offset: 0x3610)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	
MAC Clock Switch	20:16	R/W	0x17	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	

Table 380: Link Aware Power Mode Clock Policy Register (Offset: 0x3610) (Cont.)

Name	Bits	Access	Default Value	Description
APE Clock Switch	12:8	R/W	0x17	Software Controlled APE Clock Speed Select 00000: Reserved 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x1	Software Controlled Flash Clock Speed Select 000: Reserved 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x1	Software Controlled TPM Clock Speed Select 000: Reserved 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

AIRPLANE POWER MODE CLOCK POLICY REGISTER (OFFSET: 3614)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 381: Airplane Power Mode Clock Policy Register (Offset: 3614)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	

Table 381: Airplane Power Mode Clock Policy Register (Offset: 3614) (Cont.)

Name	Bits	Access	Default Value	Description
MAC Clock Switch	20:16	R/W	0x13	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x13	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x1	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x1	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

LINK IDLE POWER MODE CLOCK POLICY REGISTER (OFFSET: 0x3618)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 382: Link Idle Power Mode Clock Policy Register (Offset: 0x3618)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	
MAC Clock Switch	20:16	R/W	0x17 (for A0) 0x13	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x17 (for A0) 0x13	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x0	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)

Table 382: Link Idle Power Mode Clock Policy Register (Offset: 0x3618) (Cont.)

Name	Bits	Access	Default Value	Description
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x0	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

HOST ACCESS CLOCK POLICY REGISTER (OFFSET: 0x361C)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Setting of this clock policy register applies to Link Aware Power Mode, and the clock source of the clock policies programmed in this register must be the same as the link aware clock policy register.

Table 383: Host Access Clock Policy Register (Offset: 0x361C)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	
MAC Clock Switch	20:16	R/W	0x17	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	

Table 383: Host Access Clock Policy Register (Offset: 0x361C) (Cont.)

Name	Bits	Access	Default Value	Description
APE Clock Switch	12:8	R/W	0x17	Software Controlled APE Clock Speed Select 00000: Reserved 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x1	Software Controlled Flash Clock Speed Select 000: Reserved 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x1	Software Controlled TPM Clock Speed Select 000: Reserved 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

APE SLEEP STATE CLOCK POLICY REGISTER (OFFSET: 0x3620)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 384: APE Sleep State Clock Policy Register (Offset: 0x3620)

Name	Bits	Access	Default Value	Description
APE Sleep HCLK Disable	31	R/W	0x1	Software Controlled APE HCLK shutoff in sleep and deep sleep state
Reserved	30:29	R/O	0x0	
Reserved	28:24	R/O	0x0	
Reserved	23:21	R/O	0x0	

Table 384: APE Sleep State Clock Policy Register (Offset: 0x3620) (Cont.)

Name	Bits	Access	Default Value	Description
APE Deep Sleep FCLK Switch	20:16	R/W	0x19	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
Reserved	12:8	R/O	0x0	
Reserved	7:5	R/O	0x0	
APE Sleep FCLK Switch	4:0	R/W	0x9	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (CLK125/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)

CLOCK SPEED OVERRIDE POLICY REGISTER (OFFSET: 0x3624)

This register is reset by POR Reset or CPMU Register Software Reset. Clocks generated by digital frequency multiplier could be up to 3% slower than intended clock speed.

Table 385: Clock Speed Override Policy Register (Offset: 0x3624)

Name	Bits	Access	Default Value	Description
Reserved	31:21	R/O	0x0	

Table 385: Clock Speed Override Policy Register (Offset: 0x3624) (Cont.)

Name	Bits	Access	Default Value	Description
MAC Clock Switch	20:16	R/W	0x0	Software Controlled MAC Core Clock Speed Select 00000: Core = 62.5 MHz (GPHY DLL/2), SHA1 = 240 MHz (USB PLL) 00001: Core = 60.0 MHz (Alt Source/2), SHA1 = 240 MHz (USB PLL) 00011: Core = 30.0 MHz (Alt Source/4), SHA1 = 120 MHz (USB PLL/2) 00101: Core = 15.0 MHz (Alt Source/8), SHA1 = 60 MHz (USB PLL/4) 00111: Core = 7.5 MHz (Alt Source/16, SHA1 = 30 MHz (USB PLL/8) 01001: Core = 3.75 MHz (Alt Source/32, SHA1 = 15 MHz (USB PLL/16) 10001: Core = 12.5 MHz (CK25/2), SHA1 = 60 MHz (Alt Source) 10011: Core = 6.25 MHz (CK25/4), SHA1 = 30 MHz (Alt Source) 10101: Core = 3.125 MHz (CK25/8), SHA1 = 15 MHz (Alt Source) 10111: Core = 1.563 MHz (CK25/16), SHA1 = 7.5 MHz (Alt Source) 11001: Core = 781 KHz (CK25/32), SHA1 = 3.75 MHz (Alt Source) 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2), SHA1 = 25 MHz/12.5 MHz (MII_CLK)
Reserved	15:13	R/O	0x0	
APE Clock Switch	12:8	R/W	0x0	Software Controlled APE Clock Speed Select 00000: 62.5 MHz (GPHY DLL/2) 00001: 60.0 MHz (Alt Source/2) 00011: 30.0 MHz (Alt Source/4) 00101: 15.0 MHz (Alt Source/8) 00111: 7.5 MHz (Alt Source/16) 01001: 3.75 MHz (Alt Source/32) 10001: 25.0 MHz (CK25) 10011: 12.5 MHz (CK25/2) 10101: 6.25 MHz (CK25/4) 10111: 3.125 MHz (CK25/8) 11001: 1.563 MHz (CK25/16) 11111: 25 MHz/12.5 MHz (MII_CLK)
Reserved	7	R/O	0x0	
Flash Clock Switch	6:4	R/W	0x0	Software Controlled Flash Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 010: 25 MHz (CK25)
Reserved	3	R/O	0x0	
TPM Clock Switch	2:0	R/W	0x0	Software Controlled TPM Clock Speed Select 000: 62.5 MHz (GPHY DLL) 001: 60 MHz (Alt Source/2) 100: 6.25 MHz (CK25/4)

CLOCK OVERRIDE ENABLE REGISTER (OFFSET: 0x3628)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 386: Clock Override Enable Register (Offset: 0x3628)

Name	Bits	Access	Default Value	Description
Reserved	31:14	R/O	0x0	
MAC Clock Speed Override Enable	13	R/W	0x0	Enable MAC clock speed override* 1: Enable 0: Disable
APE Clock Speed Override Enable	12	R/W	0x0	Enable APE clock speed override* 1: Enable 0: Disable
Flash Clock Speed Override Enable	11	R/W	0x0	Enable Flash clock override* 1: Enable 0: Disable
TPM Clock Speed Override Enable	10	R/W	0x0	Enable TPM clock override* 1: Enable 0: Disable
Reserved	9	R/O	0x0	
Force USB PLL Disable	8	R/W	0x0	USB PLL Disable* 1: Disable PCIe serves 0: Enable PCIe serves
Reserved	7	R/W	0x0	
Force Flash Clock Disable	6	R/W	0x0	Flash clock Disable* 1: Disable Flash clock 0: Enable Flash clock
Force TPM CLOCK Disable	5	R/W	0x0	TPM clock Disable* 1: Disable TPM clock 0: Enable TPM clock
Force IPSEC CLOCK Disable	4	R/W	0x0	IPSEC core clock Disable* 1: Disable IPSEC core clock 0: Enable IPSEC core clock
Force IPSEC SHA1 CLOCK Disable	3	R/W	0x0	IPSEC SHA1 clock Disable* 1: Disable IPSEC SHA1 clock 0: Enable IPSEC SHA1 clock
Force USB CLK Disable	2	R/W	0x0	USB clock Disable* 1: Disable USB clock 0: Enable USB clock
Force APE FCLK Disable	1	R/W	0x0	APE FCLK clock Disable* 1: Disable APE FCLK clock 0: Enable APE FCLK clock

Table 386: Clock Override Enable Register (Offset: 0x3628) (Cont.)

Name	Bits	Access	Default Value	Description
Force APE HCLK Disable	0	R/W	0x0	APE HCLK Disable* 1: Disable APE HCLK clock 0: Enable APE HCLK clock

Note: Force Disable bit has higher priority than Override Enable.

STATUS REGISTER (OFFSET: 0x362C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 387: Status Register (Offset: 0x362C)

Name	Bits	Access	Default Value	Description
Reserved	31:26	R/O	0x0	
APE status	25:24	R/O		APE Engine Status 11: Reserved 10: Deep Sleep State 01: Sleep State 00: Active State
Reserved	23	R/O	0x0	
WOL ACPI Detection Enable Status	22	R/O		1: ACPI detection enabled 0: ACPI detection disabled
WOL Magic Packet Detection Enable Status	21	R/O		1: Magic Packet Detection enabled 0: Magic Packet Detection disabled
Ethernet link status	20:19	R/O		Ethernet Link Status 11: no link 10: 10mb 01: 100mb 00: 1000mb
Link idle status	18	R/O		Link Idle status 1: Idle 0: Active
IPSEC idle status	17	R/O		IPSEC Engine Idle status 1: Idle 0: Active
IPSEC SHA1 status	16	R/O		IPSEC SHA1 Engine Idle status 1: Idle 0: Active
TPM idle status	15	R/O		TPM Idle status 1: Idle 0: Active

Table 387: Status Register (Offset: 0x362C) (Cont.)

Name	Bits	Access	Default Value	Description
TPM enable status	14	R/O		TPM Enable status 1: Idle 0: Active
VMAIN power status	13	R/O		VMAIN Power Status 1: On 0: Off
Reserved	12:10	R/O	0x0	
Power State	9:8	R/O		Device Power State Status 11: D3 00: D0
Energy Detect Status	7	R/O		Energy Status 1: On 0: Off
CPMU Power State	6:4	R/O		Indicates the current power state of the CPMU.
Power Management State	3:0	R/O		Indicates the current state of hardware power management state machine.

CLOCK STATUS REGISTER (OFFSET: 0x3630)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 388: Clock Status Register (Offset: 0x3630)

Name	Bits	Access	Default Value	Description
Reserved	31:30	R/O	0x0	
Flash CLOCK Disable Status	29	R/O		Flash clock disable status
TPM CLOCK Disable Status	28	R/O		TPM clock disable status
IPSEC CLOCK Disable Status	27	R/O		IPSEC core clock disable status
IPSEC SHA1 CLOCK Disable Status	26	R/O		IPSEC SHA1 clock disable status
APE FCLK Disable Status	25	R/O		APE FCLK clock disable status
APE HCLK Disable Status	24	R/O		APE HCLK clock disable status
Reserved	23:21	R/O	0x0	
MAC Clock Switch Status	20:16	R/O		MAC Core Clock Speed Select Status
Reserved	15:13	R/O	0x0	
APE Clock Switch Status	12:8	R/O		APE Clock Speed Select Status
Reserved	7	R/O	0x0	
Flash Clock Switch Status	6:4	R/O		Flash Clock Speed Select Status
Reserved	3	R/O	0x0	

Table 388: Clock Status Register (Offset: 0x3630) (Cont.)

Name	Bits	Access	Default Value	Description
TPM Clock Switch Status	2:0	R/O		Controlled TPM Clock Speed Select Status

PCIe STATUS REGISTER (OFFSET: 0x3634)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 389: PCIe Status Register (Offset: 0x3634)

Name	Bits	Access	Default Value	Description
Main State	31:28	R/O		LTSSM state machine status from PCIe 0x7E3C
Detect Sub-state	27:26	R/O		
Polling Substate	25:23	R/O		
Configuration Substate	22:20	R/O		
Recover Substate	19:18	R/O		
RX L0s Substate	17:16	R/O		
RX L0s Substate	15:14	R/O		
L1 Substate	13:12	R/O		
L2 Substate	11:10	R/O		
Disable Substate	9:8	R/O		
Loopback Substate	7:6	R/O		
Reset Substate	5:4	R/O		
Timeout 2 ms	3	R/O		
Timeout 12 ms	2	R/O		
Timeout 24 ms	1	R/O		
Timeout 48 ms	0	R/O		

GPHY CONTROL/STATUS REGISTER (OFFSET: 0x3638)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 390: GPHY Control/Status Register (Offset: 0x3638)

Name	Bits	Access	Default Value	Description
Reserved	31:14	R/O	0x0	
GPHY 10 MB Receive Only Mode TX Idle Debounce Timer	13:12	R/W	0x1	10 MB Receive Only Mode TX Idle Debounce Timer. 0x1 = 6 μ s
Reserved	11	R/O	0x0	
GPHY DLL IDDQ state	10	R/O	0x0	Gphy_iddq_dll_act state
GPHY pwrdsn	9	R/O		CPMU controlled output to GPHY
GPHY set_bias_iddq	8	R/O		CPMU controlled output to GPHY
GPHY force_dll_on	7	R/O		CPMU controlled output to GPHY
GPHY dll_pwrdsn_ok	6	R/O		CPMU controlled output to GPHY
SW controlled POR to GPHY	5	R/W	0x0	This bit is allows the boot code to reset the GPHY during an unexpected shutdown, so that it enters 100BT instead of remaining in the Gig mode to avoid unnecessary power consumption.
GPHY Reset Control	4	RW	0x0	Controls GPHY reset 0: use r0b11_ovrd which only resets the DSP registers 1: use gphy_reset which resets both MII and DSP registers
Reserved	3	R/W	0x0	
GPHY DLL Handshaking Disable	2	R/W	0x0	Legacy Address: 0x6804:[25] When this bit is set, disable GPHY DLL handshaking
BIAS IDDQ	1	R/W	0x0	Legacy Address: 0x6804:[22] When this bit is set, BIAS will be powered down
GPHY IDDQ	0	R/W	0x0	Legacy Address: 0x6804:[21] When this bit is set, GPHY will be powered down

RAM CONTROL REGISTER (OFFSET: 0x363C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 391: RAM Control Register (Offset: 0x363C)

Name	Bits	Access	Default Value	Description
Core RAM Power down	31	R/W	0x0	Legacy Address: 0x6804:[24] Core RAM power down
BD RAM Power down	30	R/W	0x0	Legacy Address: 0x6804:[24] BD RAM power down
Reserved	29:8	R/O	0x0	
Memory Bank 7 Deselect	7	R/W	0x0	When this bit is set, deselect Memory Bank 7
Memory Bank 6 Deselect	6	R/W	0x0	When this bit is set, deselect Memory Bank 6
Memory Bank 5 Deselect	5	R/W	0x0	When this bit is set, deselect Memory Bank 5
Memory Bank 4 Deselect	4	R/W	0x0	When this bit is set, deselect Memory Bank 4
Memory Bank 3 Deselect	3	R/W	0x0	When this bit is set, deselect Memory Bank 3
Memory Bank 2 Deselect	2	R/W	0x0	When this bit is set, deselect Memory Bank 2
Memory Bank 1 Deselect	1	R/W	0x0	When this bit is set, deselect Memory Bank 1
Memory Bank 0 Deselect	0	R/W	0x0	When this bit is set, deselect Memory Bank 0

IPSEC IDLE DETECTION DE-BOUNCE CONTROL REGISTER (OFFSET: 0x3640)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 392: IPSEC Idle Detection De-Bounce Control Register (Offset: 0x3640)

Name	Bits	Access	Default Value	Description
IPSEC Idle Detection De-bounce Timer	31:0	R/W	0x5	<p>De-bounce timer setting for IPSEC processing from active to non-active</p> <p>Unit is in number of CPMU clock cycles</p> <p>Range: up to 2^{32} CPMU clock cycles</p> <p>Default Value (5 CPMU CLK) multiplied by given Core CLK scale parameter below.</p> <p><u>x1</u> 00000: Core = 62.5 MHz (GPHY DLL/2) <u>x1</u> 00001: Core = 60.0 MHz (Alt Source/2) <u>x2</u> 00011: Core = 30.0 MHz (Alt Source/4) <u>x4</u> 00101: Core = 15.0 MHz (Alt Source/8) <u>x8</u> 00111: Core = 7.5 MHz (Alt Source/16) <u>x16</u> 01001: Core = 3.75 MHz (Alt Source/32) <u>x8</u> 10001: Core = 12.5 MHz (CK25/2) <u>x16</u> 10011: Core = 6.25 MHz (CK25/4) <u>x32</u> 10101: Core = 3.125 MHz (CK25/8) <u>x64</u> 10111: Core = 1.563 MHz (CK25/16) <u>x128</u> 11001: Core = 781 KHz (CK25/32), <u>x64</u> 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2)</p>

IPSEC SHA1 IDLE DETECTION DE-BOUNCE CONTROL REGISTER (OFFSET: 0x3644)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 393: IPSEC SHA1 Idle Detection De-Bounce Control Register (Offset: 0x3644)

Name	Bits	Access	Default Value	Description
SHA1 Idle Detection De-bounce Timer	31:0	R/W	0x5	<p>De-bounce timer setting for IPSEC SHA1 processing from active to non-active</p> <p>Unit is in number of CPMU clock cycles.</p> <p>Range: up to 2^{32} CPMU clock cycles</p> <p>Default Value (5 CPMU CLK) multiplied by given Core CLK scale parameter below.</p> <p><u>x1</u> 00000: Core = 62.5 MHz (GPHY DLL/2) <u>x1</u> 00001: Core = 60.0 MHz (Alt Source/2) <u>x2</u> 00011: Core = 30.0 MHz (Alt Source/4) <u>x4</u> 00101: Core = 15.0 MHz (Alt Source/8) <u>x8</u> 00111: Core = 7.5 MHz (Alt Source/16) <u>x16</u> 01001: Core = 3.75 MHz (Alt Source/32) <u>x8</u> 10001: Core = 12.5 MHz (CK25/2) <u>x16</u> 10011: Core = 6.25 MHz (CK25/4) <u>x32</u> 10101: Core = 3.125 MHz (CK25/8) <u>x64</u> 10111: Core = 1.563 MHz (CK25/16) <u>x128</u> 11001: Core = 781 KHz (CK25/32), <u>x64</u> 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2)</p>

CORE IDLE DETECTION DE-BOUNCE CONTROL REGISTER (OFFSET: 0x3648)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 394: Core Idle Detection De-Bounce Control Register (Offset: 0x3648)

Name	Bits	Access	Default Value	Description
Link Idle Detection De-bounce Timer	31:0	R/W	0x20	<p>De-bounce timer setting for core link from active to non-active</p> <p>Unit is in number of CPMU clock cycles</p> <p>Range: up to 2^{32} CPMU clock cycles</p> <p>Default Value (10 CPMU CLK) multiplied by given Core CLK scale parameter below.</p> <p><u>x1</u> 00000: Core = 62.5 MHz (GPHY DLL/2) <u>x1</u> 00001: Core = 60.0 MHz (Alt Source/2) <u>x2</u> 00011: Core = 30.0 MHz (Alt Source/4) <u>x4</u> 00101: Core = 15.0 MHz (Alt Source/8) <u>x8</u> 00111: Core = 7.5 MHz (Alt Source/16) <u>x16</u> 01001: Core = 3.75 MHz (Alt Source/32) <u>x8</u> 10001: Core = 12.5 MHz (CK25/2) <u>x16</u> 10011: Core = 6.25 MHz (CK25/4) <u>x32</u> 10101: Core = 3.125 MHz (CK25/8) <u>x64</u> 10111: Core = 1.563 MHz (CK25/16) <u>x128</u> 11001: Core = 781 KHz (CK25/32), <u>x64</u> 11111: Core = 12.5 MHz/1.25 MHz (MII_CLK/2)</p>

PCIe IDLE DETECTION DE-BOUNCE CONTROL REGISTER (OFFSET: 0x364C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 395: PCIe Idle Detection De-Bounce Control Register (Offset: 0x364C)

Name	Bits	Access	Default Value	Description
PCIe Idle Detection De-bounce Timer	31:0	R/W	0xD	<p>De-bounce timer setting for PCIe link from active to non-active</p> <p>Unit is in number of CPMU clock cycles</p> <p>Range: up to 2^{32} CPMU clock cycles</p> <p>Default: 10 CPMU clocks</p>

ENERGY DETECTION DE-BOUNCE TIMER (OFFSET: 0x3650)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 396: Energy Detection De-Bounce Timer (Offset: 0x3650)

Name	Bits	Access	Default Value	Description
Reserved	31:10	R/O	0x0	
Energy Detect Select	9	R/W	0x0	<p>Legacy Address: 0x6890:[26]</p> <p>1: Use energy_det_apd from GPHY core</p> <p>0: Use output from the energy debounce logic</p>
Select HW_Energy_Det	8	R/W	0x1	<p>This bit selects the source of the System Energy_Det output</p> <p>This bit is allows the boot code to reset the GPHY during an unexpected shutdown, so that it enters 100BT instead of remaining in the Gig mode to avoid unnecessary power consumption</p> <p>1: Select Output of De-bounce Logic</p> <p>0: Select Combination of Software Force_Energy_Det and Output of De-bounce Logic to generate System Energy_Det</p>
Select SW_HW_Oring_Energy_Det	7	R/W	0x0	<p>This bit is allows the boot code to reset the GPHY during an unexpected shutdown, so that it enters 100BT instead of remaining in the Gig mode to avoid unnecessary power consumption</p> <p>1: Generate System Energy_Det by Oaring the SW_Force_Energy_Det with the Output of the De-bounce Logic</p> <p>0: Generate System Energy_Det based on the SW_Force_Energy_Det Output</p>
SW_Force_Energy_Det_Value	6	R/W	0x1	<p>This bit allows the software to control the state of the System Energy_Det signal if the Select_HW_Energy_Det control bit (b12) is 0</p> <p>1: Drive System Energy_Det high</p> <p>0: Drive System Energy_Det low</p>

Table 396: Energy Detection De-Bounce Timer (Offset: 0x3650) (Cont.)

Name	Bits	Access	Default Value	Description
Disable Energy_Det De-bounce Low	5	R/W	0x0	<p>This bit is used to disable the Energy_Det_Debounce_Low Logic from de-bouncing the GPHY Energy_Det_APD signal going low. When disabled, the Energy_Det signal will go low if the GPHY Energy_Det input signal is low for at least 640 ns.</p> <p>0: Enable De-bounce Low 1: Disable De-bounce Low</p>
Disable Energy_Det De-bounce High	4	R/W	0x1	<p>This bit is used to disable the Energy_Det_Debounce_High Logic from de-bouncing the GPHY Energy_Det_APD signal going high. When disabled, the Energy_Det signal will go high if the GPHY Energy_Det input signal is high for at least 640 ns.</p> <p>0: Enable De-bounce High 1: Disable De-bounce High</p>
Energy_Det De-bounce High Limit	3:2	R/W	0x0	<p>This parameter is used to control the de-bounce limit of the GPHY Energy_Det_APD signal going high</p> <p>00: 128 million CPMU clocks (5 seconds if CPMU clock frequency is 25 MHz)</p> <p>01: 256 million CPMU clocks (10 seconds if CPMU clock frequency is 25 MHz)</p> <p>10: 512 million CPMU clocks (20 seconds if CPMU clock frequency is 25 MHz)</p> <p>11: 1024 million CPMU clocks (40 seconds if CPMU clock frequency is 25 MHz)</p>
Energy_Det De-bounce Low Limit	1:0	R/W	0x1	<p>This parameter is used to control the de-bounce limit of the GPHY Energy_Det_APD signal going low</p> <p>00: 128 million CPMU clocks (5 seconds if CPMU clock frequency is 25 MHz)</p> <p>01: 256 million CPMU clocks (10 seconds if CPMU clock frequency is 25 MHz)</p> <p>10: 512 million CPMU clocks (20 seconds if CPMU clock frequency is 25 MHz)</p> <p>11: 1024 million CPMU clocks (40 seconds if CPMU clock frequency is 25 MHz)</p>

DLL LOCK TIMER REGISTER (OFFSET: 0x3654)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 397: DLL Lock Timer Register (Offset: 0x3654)

Name	Bits	Access	Default Value	Description
Alternate Clock Lock Timer	31:16	R/W	0x61FF	<p>This parameter is used to preset the Alternate DLL Lock Timer. This timer is always enabled.</p> <p>Unit is in number of CPMU clock cycles</p> <p>Range: up to 2^{16} CPMU clock cycles</p> <p>Default: 25088 CPMU clocks (1 ms if the CPMU clock frequency is 25 MHz)</p>
Reserved	15:13	R/O	0x0	
Alternate Clock Lock Timer Enable	12	R/W	0x1	This enables the Alternate Clock Lock Timer
GPHY DLL Lock Timer Enable	11	R/W	0x1	<p>Use GPHY DLL lock timer instead of GPHY dll_lock signal</p> <p>1: Enable (use GPHY DLL lock timer)</p> <p>0: Disable (use GPHY dll_lock signal from GPHY)</p>
GPHY DLL Lock Timer	10:0	R/W	0x3FF	<p>GPHY DLL Lock timer value</p> <p>Unit is in number of CPMU clock cycles</p> <p>Range: up to 81920 CPMU clock cycles</p> <p>Default: 1024 CPMU clocks (40.9 μs if the CPMU clock frequency is 25 MHz)</p>

MUTEX REQUEST REGISTER (OFFSET: 0x365C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 398: Mutex Request Register (Offset: 0x365C)

Name	Bits	Access	Default Value	Description
Reserved	31:16	R/O	0x0	
Set Request/Request Pending	15:0	R/W1S	0x0	Writing a 1 to any of these bits pends a Mutex lock request on behalf of a software agent. The bit is subsequently latched by hardware and will read 1 as long as the request is pending. Writing a 0 to a bit will have no effect. Reading this field may return zero or more bits with value 1—each bit with value 1 indicates a pending request.

MUTEX GRANT REGISTER (OFFSET: 0x3660)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 399: Mutex Grant Register (Offset: 0x3660)

Name	Bits	Access	Default Value	Description
Reserved	31:16	R/O	0x0	
Set Request/Request Pending	15:0	R/W1S	0x0	Reading this field returns a maximum of one set bit at any time. The set bit points to the lock owner. If the Mutex is not locked, then a read returns a value 0x0000. Writing a 1 to the already set bit relinquishes the lock and the set bit is cleared. Writing a 1 to an unset bit cancels the corresponding pending request if there was any—and the paring bit in the Mutex_Request_Reg will be cleared. Writing a 0 to any bits has no effect.

GPHY STRAP REGISTER (OFFSET: 0x3664)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 400: GPHY Strap Register (Offset: 0x3664)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W	0x0	Readable and writeable reserved bits

PADRING CONTROL REGISTER (OFFSET: 0x3668)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 401: Padring Control Register (Offset: 0x3668)

Name	Bits	Access	Default Value	Description
Reserved	31:8	R/W		Readable and writeable reserved bits
PERSTL Hys Enable	7	R/W	0x1	Controls Hys. Enable for PERST_L pad
Input only pad drive strength	6:4	R/W	0x2	Controls the drive strength of input only pad “010” = 4 mA
Bi-Dir pad drive strength	3:1	R/W	0x7	Controls the drive strength of bi-dir pad “111” = 12 mA
USB Pad Speed	0	R/W	0x1	Controls the speed of USB pad “1” = 12-MHz operation

HOST ACCESS CONTROL REGISTER (OFFSET: 0x366C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 402: Host Access Control Register (Offset: 0x366C)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W		Readable and writeable reserved bits

LINK IDLE CONTROL REGISTER (OFFSET: 0x3670)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 403: Link Idle Control Register (Offset: 0x3670)

Name	Bits	Access	Default Value	Description
Reserved	31:25	R/W	0	Readable and writeable reserved bits
PCIe Idle	24	R/W	1	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
APE ATP Empty	23	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
APE ATPM Idle	22	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode

Table 403: Link Idle Control Register (Offset: 0x3670) (Cont.)

Name	Bits	Access	Default Value	Description
DBU Idle	21	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
NVM Idle	20	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
SBDI Idle	19	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
RBDI Idle	18	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
MB Idle	17	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
SADB Idle	16	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
WDMA Idle	15	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
RDMA Idle	14	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
MSI Idle	13	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode

Table 403: Link Idle Control Register (Offset: 0x3670) (Cont.)

Name	Bits	Access	Default Value	Description
TXMAC FIFO empty	12	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
RXMAC FIFO empty	11	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
COL = 0	10	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
CRS = 0	9	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
TXAMAC Idle	8	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
RXER = 0	7	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
RXDV = 0	6	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
MDIO Idle	5	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
FTQ empty	4	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode

Table 403: Link Idle Control Register (Offset: 0x3670) (Cont.)

Name	Bits	Access	Default Value	Description
GRC Idle	3	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
MBUF empty	2	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
MA Idle	1	R/W	0	Link idle/Host Access condition control 1: disable this idle condition when entering link idle mode and host access mode 0: enable this idle condition when entering link idle mode and host access mode
No core reset	0	R/W	0	Link idle/Host Access condition control 1: Disable this idle condition when entering link idle mode and host access mode 0: Enable this idle condition when entering link idle mode and host access mode

LINK IDLE STATUS REGISTER (OFFSET: 0x3674)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 404: Link Idle Status Register (Offset: 0x3674)

Name	Bits	Access	Default Value	Description
Reserved	31:0	RO		Readable and writeable reserved bits
PCIe Idle	24	RO		Idle Status 1: Idle 0: Busy
APE ATP Empty	23	RO		Idle Status 1: Idle 0: Busy
APE ATPM Idle	22	RO		Idle Status 1: Idle 0: Busy
DBU Idle	21	RO		Idle Status 1: Idle 0: Busy
NVM Idle	20	RO		Idle Status 1: Idle 0: Busy

Table 404: Link Idle Status Register (Offset: 0x3674) (Cont.)

Name	Bits	Access	Default Value	Description
SBDI Idle	19	RO		Idle Status 1: Idle 0: Busy
RBDI Idle	18	RO		Idle Status 1: Idle 0: Busy
MB Idle	17	RO		Idle Status 1: Idle 0: Busy
SADB Idle	16	RO		Idle Status 1: Idle 0: Busy
WDMA Idle	15	RO		Idle Status 1: Idle 0: Busy
RDMA Idle	14	RO		Idle Status 1: Idle 0: Busy
MSI Idle	13	RO		Idle Status 1: Idle 0: Busy
TXMAC FIFO empty	12	RO		Idle Status 1: Idle 0: Busy
RXMAC FIFO empty	11	RO		Idle Status 1: Idle 0: Busy
COL = 0	10	RO		Idle Status 1: Idle 0: Busy
CRS = 0	9	RO		Idle Status 1: Idle 0: Busy
TXAMAC Idle	8	RO		Idle Status 1: Idle 0: Busy
RXER = 0	7	RO		Idle Status 1: Idle 0: Busy
RXDV = 0	6	RO		Idle Status 1: Idle 0: Busy

Table 404: Link Idle Status Register (Offset: 0x3674) (Cont.)

Name	Bits	Access	Default Value	Description
MDIO Idle	5	RO		Idle Status 1: Idle 0: Busy
FTQ empty	4	RO		Idle Status 1: Idle 0: Busy
GRC Idle	3	RO		Idle Status 1: Idle 0: Busy
MBUF empty	2	RO		Idle Status 1: Idle 0: Busy
MA Idle	1	RO		Idle Status 1: Idle 0: Busy
No core reset	0	RO		Idle Status 1: Idle 0: Busy

CPMU ENERGY DETECT RAW DEBOUNCE CONTROL 1 REGISTER (OFFSET: 0x3678)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 405: CPMU Energy Detect Raw Debounce Control 1 Register (Offset: 0x3678)

Name	Bits	Access	Default Value	Description
Debounce Time	31:16	R/W	0x03E8	Time to wait after first pulse before the detection starts 5 ms with 500-us resolution
Reserved	15:8	RO	0	
Minimum NLP Period	7:0	R/W	0x0F	Minimum NLP Period 0x0F = 8ms with 500-us resolution

CPMU ENERGY DETECT RAW DEBOUNCE CONTROL 2 REGISTER (OFFSET: 0x367C)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 406: CPMU Energy Detect Raw Debounce Control 2 Register (Offset: 0x367C)

Name	Bits	Access	Default Value	Description
Maximum NLP Period	31:16	R/W	0x0031	Maximum NLP Period X0030 = 24 ms w/ 500 us resolution
Reserved	15:8	RO	0	
NLP count	7:0	R/W	0x10	NLP count for which energy is declared to be present

CPMU DEBUG REGISTER (OFFSET: 0x3680)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 407: CPMU Debug Register (Offset: 0x3680)

Name	Bits	Access	Default Value	Description
Debug bus	31:0	R/O	0x0	Debug bus Default CPMU debug vector [31:0]

CPMU DEBUG SELECT REGISTER (OFFSET: 0x3684)

This register is reset by POR Reset or CPMU Register Software Reset.

Table 408: CPMU Debug Select Register (Offset: 0x3684)

Name	Bits	Access	Default Value	Description
Reserved	31:4	RO	0	
Debug data select	3:0	R/W	0x0	Debug data select 0x0: CPMU debug register points to CPMU debug vector[31:0] 0x1: CPMU debug register points to CPMU debug vector[63:32] 0x2: CPMU debug register points to CPMU debug vector[95:64]

COMMON DEBUG MODE REGISTERS

All registers reset are core reset unless specified.

COMMON DEBUG MUX CONTROL REGISTER (OFFSET: 0x3900)

Table 409: Common Debug Mux Control Register (Offset: 0x3900)

Name	Bits	Access	Default Value	Description
Reserved	31:30	RO	0	
Debug vector clock delay select	29:24	RW	0	Each increment represents 1 inverter delay
Reserved	23	RO	0	
Debug vector clock select	22:20	RW	0	0x0: core_clk 0x1: core_clk 0x2: rsvd 0x3: tlp_clk 0x4: xtal 0x5: core_clk 0x6: ape_clk 0x7: xtal
Reserved	19	RO	0	
Debug vector mode select	18:16	RW	0	0x0: out data is selected by [7:0] 0x1: out data is selected by [7:0] then flopped by clock selected by [29:24] and [22:20] 0x2: out data is selected by [15:8] 0x3: out data is selected by [15:8] then flopped by clock selected by [29:24] and [22:20] 0x4: out data is multiplexed from mode 0 and mode 2 using clock phase 0x5: out data is multiplexed from mode 1 and mode 3 using clock phase 0x6: same as mode 1 except clock select is [7:5] 0x7: same as mode 3 except clock select is [7:5]
Debug vector clock group select 1	15:13			0x0: core_clk 0x1: core_clk 0x2: rsvd 0x3: tlp_clk 0x4: xtal 0x5: core_clk 0x6: ape_clk 0x7: xtal

Table 409: Common Debug Mux Control Register (Offset: 0x3900) (Cont.)

Name	Bits	Access	Default Value	Description
Debug vector select 1	12:8			<p>[7:5] = 0x0: core_clk 0-12: decr_debug_vector 13-25: rce_auth_debug_vector 26-31: rsvd</p> <p>[7:5] = 0x1: core_clk 0-12: tce_debug_vector 13-31: rsvd</p> <p>[7:5] = 0x2: rsvd 0: rsvd</p> <p>[7:5] = 0x3: tlp_clk 0-5: pcie_client_target_debug_vector 6-31: rsvd</p> <p>[7:5] = 0x4: xtal 0-12: cpmu_debug_vector 13-14: eswtch-debug_vector 15-31: rsvd</p> <p>[7:5] = 0x5: core_clk 0-31: ape_debug_vector (core_clk)</p> <p>[7:5] = 0x6: ape_clk 0-31: ape_debug_vector (ape_fclk)</p> <p>[7:5] = 0x7: xtal 0-1: ape_smbus_0_debug_vector_1 2-3: ape_smbus_0_debug_vector_2 4-5: ape_smbus_1_debug_vector_1 6-7: ape_smbus_1_debug_vector_2 8-31: rsvd</p>
Debug vector clock group select 0	7:5			0x0: core_clk 0x1: core_clk 0x2: rsvd 0x3: tlp_clk 0x4: xtal 0x5: core_clk 0x6: ape_clk 0x7: xtal

Table 409: Common Debug Mux Control Register (Offset: 0x3900) (Cont.)

Name	Bits	Access	Default Value	Description
Debug vector select 0	4:0	RW	0	<p>[7:5] = 0x0: core_clk</p> <p>0–12: decr_debug_vector</p> <p>13–25: rce_auth_debug_vector</p> <p>26–31: rsvd</p> <p>[7:5] = 0x1: core_clk</p> <p>0–12: tce_debug_vector</p> <p>13–31: rsvd</p> <p>[7:5] = 0x2: rsvd</p> <p>0: rsvd</p> <p>[7:5] = 0x3: tlp_clk</p> <p>0–5: pcie_client_target_debug_vector</p> <p>6–31: rsvd</p> <p>[7:5] = 0x4: xtal</p> <p>0–12: cpmu_debug_vector</p> <p>13–14: eswtch-debug_vector</p> <p>15–31: rsvd</p> <p>[7:5] = 0x5: core_clk</p> <p>0–31: ape_debug_vector (core_clk)</p> <p>[7:5] = 0x6: ape_clk</p> <p>0–31: ape_debug_vector (ape_fclk)</p> <p>[7:5] = 0x7: xtal</p> <p>0–1: ape_smbus_0_debug_vector_1</p> <p>2–3: ape_smbus_0_debug_vector_2</p> <p>4–5: ape_smbus_1_debug_vector_1</p> <p>6–7: ape_smbus_1_debug_vector_2</p> <p>8–31: rsvd</p>

COMMON DEBUG MUX DEBUG VECTOR REGISTER (OFFSET: 0x3904)

Table 410: Common Debug Mux Debug Vector Register (Offset: 0x3904)

Name	Bits	Access	Default Value	Description
Common debug mux debug vector	31:0	RO	0	CDM output data

PCI EXPRESS REGISTERS

TL REGISTERS

All TL Registers (dbg 0x0xx /0x7Cxx for client designs 0x7CXX) are reset by Core Reset unless specified.

TL Control Register (Offset: 0x0–00)

Table 411: TL Control Register (Offset: 0x0–00)

Name	Bits	Access	Default Value	Description
Enable_Address_Check	24	RW	1	<p>This bit enables checking of the Address field and the Type field in the Transaction Layer Packet</p> <p>1: Enable checking 0: Disable checking</p>
Enable_TC0_Check	23	RW	1	<p>This bit enables non TC0 Traffic Class checking for Transaction Layer Packet</p> <p>1: Enable checking 0: Disable checking</p>
CRC Swap	22	RW	0	<p>This bit controls the swapping of the digest field when ECRC is enabled:</p> <p>0: no swapping 1: swapping</p>
Slv_cmp_dis_ca_error	21	RW	0	<p>This bit controls the DMA Completion Logic to check for completion packet with Completer Abort Completion Status value.</p> <p>0: Enable Checking 1: Disable checking (Active high)</p>
Slv_cmp_dis_ur_error	20	RW	0	<p>This bit controls the DMA Completion Logic to check for completion packet with Unsupported Request value.</p> <p>0: Enable Checking 1: Disable checking (Active high)</p>
Slv_cmp_dis_rsv_error	19	RW	0	<p>This bit controls the DMA Completion Logic to check for completion packet with reserved value.</p> <p>0: Enable Checking 1: Disable checking (Active high)</p>
Enable_MPS_Check	18	RW	1	<p>This bit controls the DMA Completion logic to check for TLP that violates Maximum Payload Size requirement.</p> <p>1: Enable 0: Disable</p>
Slv_cmp_dis_ep_error	17	RW	0	<p>This bit controls the Transaction Layer ability to check or ignore Data Poisoning on incoming TLP:</p> <p>0: Enable Data Poisoning Checking 1: Ignore Data Poisoning</p>

Table 411: TL Control Register (Offset: 0x0-00) (Cont.)

Name	Bits	Access	Default Value	Description
Enable_bytecount_check	16	RW	1	This bit enables the TL's target to check for byte count error on incoming target access 1: Enable checking 0: Disable checking
Not Used	15-14	RW	0	Not Used
Traffic_Class_DR	13-11	RW	0	DMA Read Traffic Class
Traffic_Class_DW	10-8	RW	0	DMA Write Traffic Class
Not Used	7-6	RW	0	Not Used
Completer Timeout Value	5-0	RW	0x2f	Programmable Completion Timeout Timer: Lsb = 1 ms

Transaction Configuration Register (Offset: 0x0-04)

Table 412: Transaction Configuration Register (Offset: 0x0-04)

Name	Bits	Access	Default Value	Description
Enable_Retry_Buffer_Timing _Mod	31	RW	0	This bit is used to allow the Retry Buffer RAM Timing Parameter to be modified if process timing model was incorrect. 0 = Disable 1 = Enable new timing mode
Reserved	30	RW	0	Spare
Msi_single_shot_enable	29	RW	0	Msi single shot mode
If projectLink	29	RW	1	Msi single shot mode
Msi_single_shot_enable				
Reserved	28	RW	0	Spare
Select Core Clock Override	27	RW	0	This bit is used by software to allow it to access PCIe register when the PCIe PLL cannot lock after power up. This bit when set will select the core clock to drive the PCIe logic. This bit is accessible from Core Clock whereas bit 28 of the Clock Control Register is not accessible when there is no PCIe clock. 0: Disable override 1: Enable override
Enable cmpt Pwr Check	25	RW	1	Enable generation of Unexpected Completion Error when the device receives a completion packet during D3-Hot. 0: Disable Checking 1: Enable Checking

Table 412: Transaction Configuration Register (Offset: 0x0–04) (Cont.)

Name	Bits	Access	Default Value	Description
Device Serial No. Override	23	RW	0 1 for Link	Enable the Device Serial No. registers at offset 0x164 & 0x168 can be over written through control/status interface. In addition, this bit when set will prevent the MAC Address from register 410 to be copied over to offset 164 and 168: this means that the firmware must program the MAC Address and then set this bit to 1 to prevent the Device Serial No Registers from changing after Firmware programs the MAC Address at offset 410. 1: Enable override or disable driver from changing the value in register 410 to reflect it in the Device Serial No. Register 0: Disable override or enable driver to change register 410 and reflect the content of 410 in the Device Serial No. Register.
Enable_TC_VC_Filtering_Ch eck	21	RW	1	Enable TC_VC Filtering: 0: Disable Filtering 1: Enable Filtering
Don't_gen_hot_plug_msg	20	RW	1	Disable Stanford from generating Hot-Plug Message when this bit is set 1: Disable Generation 0: Enable Generation
Ignore_hotplug_msg	19	RW	1	Allow Stanford to ignore Hot-Plug Messages 0: Decode Hot-Plug Message 1: Ignore Hot-Plug Message
Msi_multmsg_capable	18-16	RW	0x0	MSI Multiple Message Capable. This field is copied over to the MSI Control Field in the Config.vhd. System software read the Multiple Message Capable field to determine the number of requested messages. 000: 1 001: 2 010: 4 011: 8 100: 16 Stanford can only request a maximum of 1 MSI Message.
Data_select_limit	15-12	RW	0x0	This parameter is used in the PCIe Power Budget Capability Structure to determine the number of Power Conditions that the device support. Default is 4 which means that Stanford support 4 different types of Power Conditions. Stanford can support up to 8 different power conditions. This does not limit the data selecting it only effect the multiplication factor for the selected data. If dataselect >= 7c04[15:12], then multiplication factor will be x1.0 else x0.1.

Table 412: Transaction Configuration Register (Offset: 0x0–04) (Cont.)

Name	Bits	Access	Default Value	Description
Enable_PCIE_1_1_pl	11	RW	1	This bit enables PCIe 1.1 compliance changes in the Physical Layer. 1: Enable Compliance 0: Disable Compliance
Enable_PCIE_1_1_dl	10	RW	1	This bit enables PCIe1.1 compliance changes in the Data Link Layer. This bit is not used. 1: Enable Compliance 0: Disable Compliance
Enable_PCIE_1_1_tl	9	RW	1	This bit enables PCIe1.1 compliance changes in the Transaction Layer specifically for masking training error from the physical layer. 1: Mask Training Error 0: Allow Training Error to log
Reserved	8-7	RW	0x1	Spares
Pcie_power_budget_cap_ena	6	RW	0	This bit is used to control the present of the PCIe Power Budget Capability Structure. 1: Enable 0: Disable
Lom_configuration	5	RW	1	This bit is when set indicates that the power budget for Stanford is included within the system power budget. Structure. 0: Enable (NIC) 1: Disable (LOM)
Concat_select	4	RW	0	This bit is used to control the swapping of the PCIe Device Serial Number
Reserved	3	RW	1	

Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–08)

Table 413: Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–08)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W	0	Spare Register

Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–0C)

Table 414: Write DMA Request Upper Address Diagnostic Register (Offset: 0x0–0C)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W	0	Spare Register

DMA Request Upper Address Diagnostic Register (Offset: 0x0–10)

Table 415: DMA Request Upper Address Diagnostic Register (Offset: 0x0–10)

Name	Bits	Access	Default Value	Description
Reserved	31:0	R/W	0	

Table 415: DMA Request Upper Address Diagnostic Register (Offset: 0x0–10)

Reg_maddr_upr	31:0	RO	0	DMA Request Upper Address (63:32)
---------------	------	----	---	-----------------------------------

DMA Request Lower Address Diagnostic Register (Offset: 0x0–14)**Table 416: DMA Request Lower Address Diagnostic Register (Offset: 0x0–14)**

Name	Bits	Access	Default Value	Description
Reg_maddr_lwr	31:0	RO	0	DMA Request Lower Address (31:0)

DMA Request Length/Byte Enable Diagnostic Register (Offset: 0x0–18)**Table 417: DMA Request Length/Byte Enable Diagnostic Register (Offset: 0x0–18)**

Name	Bits	Access	Default Value	Description
Reg_mlen_be	31:24	RO	0	Reserved
	23:20	RO	0	DMA Request First DW Byte Enabled (3:0)
	19:16	RO	0	DMA Request Last DW Byte Enabled (3:0)
	15:11	RO	0	Reserved
	10:0	RO	0	DMA Request DW Length (10:0)

DMA Request Tag/Attribute/Function Diagnostic Register (Offset: 0x0–1C)**Table 418: DMA Request Tag/Attribute/Function Diagnostic Register (Offset: 0x0–1C)**

Name	Bits	Access	Default Value	Description
Reg_mtag_attr	31:19	RO	0	Reserved
	18:16	RO	0	DMA Request Function (2:0)
	15:13	RO	0	Reserved
	12:8	RO	0	DMA Request Attributes (4:0)
	7:5	RO	0	Reserved
	4:0	RO	0	DMA Request Tag (4:0)

Read DMA Split IDs Diagnostic Register (Offset: 0x0–20)**Table 419: Read DMA Split IDs Diagnostic Register (Offset: 0x0–20)**

Name	Bits	Access	Default Value	Description
Reg_split_id	31:16	RO	0	Read DMA Split Requester ID (15:0)
	15:13	RO	0	Reserved
	12:11	RO	0	Read DMA Split Attributes (1:0)
	10:8	RO	0	Read DMA Split TC (2:0)
	7:5	RO	0	Reserved
	4:0	RO	0	Read DMA Split Tag (4:0)

Read DMA Split Length Diagnostic Register (Offset: 0x0–24)*Table 420: Read DMA Split Length Diagnostic Register (Offset: 0x0–24)*

Name	Bits	Access	Default Value	Description
Reg_split_len	31:13	RO	0	Reserved
	12:0	RO	0	Read DMA Split Initial Byte Count (12:0)

XMT State Machines and Request Diagnostic Register (Offset: 0x0–3C)*Table 421: XMT State Machines and Request Diagnostic Register (Offset: 0x0–3C)*

Name	Bits	Access	Default Value	Description
Reg_sm_r0_r3	31	RO	0	Reserved
	30:28	RO	0	TLP Transmitter Data State Machine
	27:23	RO	0	TLP Transmitter Arbitration State Machine
	22:7	RO	0	Reserved
	6	RO	0	Read DMA Raw Request
	5	RO	0	Write DMA Raw Request
	4	RO	0	Interrupt Msg Gated Request
	3	RO	0	MSI DMA Gated Request
	2	RO	0	Target Completion or Msg Gated Request
	1	RO	0	Read DMA Gated Request
	0	RO	0	Write DMA Gated Request

DMA Completion Misc. Diagnostic Register (Offset: 0x0–58)*Table 422: DMA Completion Misc. Diagnostic Register (Offset: 0x0–58)*

Name	Bits	Access	Default Value	Description
Reg_dma_cmpt_misc2	31:29	RO	0	Not Used
	28:16	RO	0	Split Byte Length Remaining
	15	RO	0	Not Used
	14	RO	0	Last Completion TLP Indicator–splitctl generated
	13	RO	0	Last Completion TLP Indicator–dma_cmpt generated
	12	RO	0	DW Length Remaining In Current Completion TLP Is Greater Than 1
	11	RO	0	Split Transaction Active (Split Pending Block Request)
	10	RO	0	Completion TLP Matches Request without BC/LAddr Checks
	9	RO	0	Completion TLP Matches Request Fully
	8	RO	0	Split DW Data Valid (Address Ack)
	7:4	RO	0	Completion Too Much Data Error Counter
	3:0	RO	0	Frame Dead-Time Error Counter

Split Controller Misc 0 Diagnostic Register (Offset: 0x0–5C)

Table 423: Split Controller Misc 0 Diagnostic Register (Offset: 0x0–5C)

Name	Bits	Access	Default Value	Description
Reg_splitctl_misc0	31:29	RO	0	Lookup Result for Expected Traffic Class
	28:16	RO	0	Lookup Result for Expected Byte Count Remaining
	15:0	RO	0	Lookup Result for Expected Requester ID

Split Controller Misc 1 Diagnostic Register (Offset: 0x0–60)

Table 424: Split Controller Misc 1 Diagnostic Register (Offset: 0x0–60)

Name	Bits	Access	Default Value	Description
Reg_splitctl_misc1	31:16	RO	0	Lookup Result for TO Timer
	15	RO	0	Reserved
	14:8	RO	0	Lookup Result for Expected Lower Address
	7	RO	0	Reserved
	6:5	RO	0	Lookup Result for Expected Attribute
	4:0	RO	0	Lookup Tag

Split Controller Misc 2 Diagnostic Register (Offset: 0x0–64)

Table 425: Split Controller Misc 2 Diagnostic Register (Offset: 0x0–64)

Name	Bits	Access	Default Value	Description
Reg_splitctl_misc2	31	RO	0	Completion TLP Matches Expected Byte Count Remaining
	30	RO	0	Completion TLP Matches Expected Lower Address
	29	RO	0	Completion TLP Matches Valid Tag
	28:16	RO	0	Updated Byte Count
	15:8	RO	0	Reserved
	7:0	RO	0	Split Table Valid Array

TL Register Bus No., Dev. No., Func. No. Register (Offset: 0x0–68)

Table 426: TL Register Bus No., Dev. No., Func. No. Register (Offset: 0x0–68)

Name	Bits	Access	Default Value	Description
Reserved	31:17	RO	0	Reserved
Config Write Indicator	16	RO	0	First config write has been received
Bus number	15:8	RO	0	Registered Attribute
Device number	7:3	RO	0	Registered Requester ID
Function number	2:0	RO	0	Function number

TL Debug Register (Offset: 0x0–6C)*Table 427: TL Debug Register (Offset: 0x0–6C)*

Name	Bits	Access	Default Value	Description
A4 Device Indication Bit	31	RO	0 1 for A4	HIGH: A4
B1 Device Indication Bit	30	RO	0 1 for B1	HIGH: B1

DATA LINK LAYER REGISTERS (DBG 0x1xx/0x7Dxx FOR CLIENT DESIGNS)**Data Link Control Register (Offset: 0x1–00)***Table 428: Data Link Control Register (Offset: 0x1–00)*

Name	Bits	Access	Default Value	Description
Reserved	31:19	–	0	Write as 0, ignore when read
PLL refsel Switch control	18	RW	1	Allow PLL source clock to switch to local crystal at the absence of PCIe ref clock when PERST is low. 1 = Enable switch 0 = Disable switch
Reserved	17	RW	0	
Power Management Control	16	RW	1	Enable power management clock switching (allows core clk to be automatically muxed into PCIe clocks)
Power Down SerDes Transmitter	15	RW	0	Forces SerDes transmitter into low power state (when cleared, transmitter power state is controlled by power management state machine)
Power Down SerDes PLL	14	RW	0	Forces SerDes PLL into low power state (when cleared, PLL power state is controlled by power management state machine)
Power Down SerDes Receiver	13	RW	0	Forces SerDes receiver into low power state (when cleared, receiver power state is controlled by power management state machine)
Enable Beacon	12	RW	1	Enable transmission of In-band Beacon signal when waking system
Automatic Timer Threshold Enable	11	RW	1	1 = Enable automatic calculation of Ack Latency and Replay Timeout Values 0 = Use register values for Ack Latency and Replay Timeout
Enable DLLP Timeout Mechanism	10	RW	1	When set to 1, link is retrained if DLLP receive timer expires without receiving a valid DLLP
Check Receive Flow Control Credits	9	RW	1	Check receive flow control credit consumption and report receive overflow errors when enabled
Link Enable	8	RW	1	Enable the data link layer functions

Table 428: Data Link Control Register (Offset: 0x1–00)

Name	Bits	Access	Default Value	Description
Power Management Control	7:0	RW	FFh	<p>These bits enable automatic power management functions (power up/down or clock gating). 7 = Enable Active State power management</p> <p>6 = Enable PCI-PM power management (clearing this bit does not disable PM_PME message generation)</p> <p>5 = Enable SerDes transmitter power management</p> <p>4 = Enable SerDes PLL power management</p> <p>3 = Enable SerDes receiver power management</p> <p>2 = Enable transaction layer power management (clock gating)</p> <p>1 = Enable data link layer power management (clock gating)</p> <p>0 = Enable physical layer power management (clock gating)</p>

Data Link Status Register (Offset: 0x1–04)

Table 429: Data Link Status Register (Offset: 0x1–04)

Name	Bits	Access	Default Value	Description
Reserved	31:26	RO	0	Write as 0, ignore when read.
PHY Link State*	25:23	RO	100	Current physical layer power state (000=L0, 001=L0s, 010=L1, 011=L2, 100=others)
Power Management State*	22:19	RO	0000	Current state of power management substate machine (see test doc for state mapping)
Power Management Sub-State*	18:17	RO	00	Current state of power management substate machine (see test doc for state mapping)
Data Link Up*	16	RO	0	Data link is up (VC0 initialized)
Reserved	15:11	RO	0	Write as 0, ignore when read
Pme_turn_off status in D0	10	R)/CR	0	Set when the pme_turn_off message is received in D0, Read to clear
Flow Control Update Timeout	9	RO/CR	0	Flow control update timeout error detected (DLLP receive timer expired without receiving valid DLLP)
Flow Control Receive Overflow	8	RO/CR	0	Flow control receive overflow error detected
Flow Control Protocol Error	7	RO/CR	0	Flow control protocol error detected
Data Link Protocol Error	6	RO/CR	0	Data link protocol error detected (pos or neg acknowledgement received with invalid TLP sequence number)
Replay Rollover	5	RO/CR	0	Replay counter rolled over (four consecutive retries without a positive acknowledgement received)
Replay Timeout	4	RO/CR	0	Replay timer expired (no ack received within specified time).
Nak Received	3	RO/CR	0	Negative acknowledgement DLLP was received.
DLLP Error	2	RO/CR	0	Data link layer packet error detected.
Bad TLP Sequence Number	1	RO/CR	0	TLP received with invalid sequence number.
TLP Error	0	RO/CR	0	Transaction layer packet error detected (packet failed data link layer error checks).

Table 429: Data Link Status Register (Offset: 0x1–04) (Cont.)

Name	Bits	Access	Default Value	Description
Note: These bits are for debug only—they will always return 0's (except Data Link Up = 1) when read through the PCI Express interface				

Data Link Attention Register (Offset: 0x1–08)

Table 430: Data Link Attention Register (Offset: 0x1–08)

Name	Bits	Access	Default Value	Description
Reserved	31:5	-	0	Write as 0, ignore when read
Data Link Layer Error Attention Indicator	4	RO	0	Asserted when any of the following bits are set in the data link status register: FC Update Timeout, FC Receive Overflow, FC Protocol Error, Data Link Protocol Error, Replay Rollover or Replay Timeout (read the data link status register to clear this bit).
NAK Received Counter Attention Indicator	3	RO	0	Set when NAK received counter value is greater than or equal to attention threshold. Cleared when counter is read.
DLLP Error Counter Attention Indicator	2	RO	0	Set when DLLP error counter value is greater than or equal to attention threshold. Cleared when counter is read.
TLP Bad Sequence Counter Attention Indicator	1	RO	0	Set when TLP bad sequence counter value is greater than or equal to attention threshold. Cleared when counter is read.
TLP Error Counter Attention Indicator	0	RO	0	Set when TLP error counter value is greater than or equal to attention threshold. Cleared when counter is read.

Data Link Attention Mask Register (Offset: 0x1–0C)

Table 431: Data Link Attention Mask Register (Offset: 0x1–0C)

Name	Bits	Access	Default Value	Description
Reserved	31:8	-	0	Write as 0, ignore when read
Attention Mask	7:5	RW	0	Reserved for additional attention bits
Data Link Layer Error Attention Mask	4	RW	0	Data link error attention bit causes assertion of data link attention output when mask bit is set to 1
NAK Received Counter Attention Mask	3	RW	0	Nak received counter attention bit causes assertion of data link attention output when mask bit is set to 1
DLLP Error Counter Attention Mask	2	RW	0	DLLP error counter attention bit causes assertion of data link attention output when mask bit is set to 1
TLP Bad Sequence Counter Attention Mask	1	RW	0	TLP bad sequence counter attention bit causes assertion of data link attention output when mask bit is set to 1
TLP Error Counter Attention Mask	0	RW	0	TLP error counter attention bit causes assertion of data link attention output when mask bit is set to 1

Next Transmit Sequence Number Debug Register (Offset: 0x1–10)

Table 432: Next Transmit Sequence Number Debug Register (Offset: 0x1–10)

Name	Bits	Access	Default Value	Description
Reserved	31:12	-	0	Write as 0, ignore when read
Next Transmit Sequence Number	11:0	RW	000h	Transmit sequence number for the next TLP to be sent.

Ack'ed Transmit Sequence Number Debug Register (Offset: 0x1–14)

Table 433: Ack'ed Transmit Sequence Number Debug Register (Offset: 0x1–14)

Name	Bits	Access	Default Value	Description
Reserved	31:12	-	0	Write as 0, ignore when read
Ack'ed Transmit Sequence Number	11:0	RW	FFFh	Sequence number for the last transmit TLP to be positively acknowledged.

Purged Transmit Sequence Number Debug Register (Offset: 0x1–18)

Table 434: Purged Transmit Sequence Number Debug Register (Offset: 0x1–18)

Name	Bits	Access	Default Value	Description
Reserved	31:12	-	0	Write as 0, ignore when read
Purged Transmit Sequence Number	11:0	RW	FFFh	Sequence number for the last transmit TLP to be purged from retry buffer.

Receive Sequence Number Debug Register (Offset: 0x1–1C)

Table 435: Receive Sequence Number Debug Register (Offset: 0x1–1C)

Name	Bits	Access	Default Value	Description
Reserved	31:12	-	0	Write as 0, ignore when read
Receive Sequence Number	11:0	RW	FFFh	Receive sequence number for the last good TLP received.

Data Link Replay Register (Offset: 0x1–20)

Table 436: Data Link Replay Register (Offset: 0x1–20)

Name	Bits	Access	Reset	Default Value	Description
Reserved	31:23				
Replay Timeout Value	23:10	RW	Chip (hard 1487d + soft)	Replay timeout value in datalink clock cycles (8 ns)	
Replay Buffer Size	9:0	RW	Chip (hard 64d + soft)	Physical size of retry buffer/16 bytes	

Data Link Ack Timeout Register (Offset: 0x1–24)**Table 437: Data Link Ack Timeout Register (Offset: 0x1–24)**

Name	Bits	Access	Default Value	Description
Reserved	31:11	–	0	Write as 0, ignore when read
Ack Latency Timeout Value	10:0	RW	255d	Ack latency timeout value in data link layer clock cycles (8 ns)

Power Management Threshold Register (Offset: 0x1–28)**Table 438: Power Management Threshold Register (Offset: 0x1–28)**

Name	Bits	Access	Default Value	Description
Reserved	31:24	–	0	Write as 0, ignore when read
L0 Stay time	23:20	RW	0x9	Minimum time in us before re-entering L1
L1 Stay time	19:16	RW	0x2	Minimum time in us that the link must stay in L1
L1 Threshold	15:8	RW	98d	Idle time before entering L1 low power state (unit = 256 ns)
L0s Threshold	7:0	RW	250d	Idle time before entering L0s low power state (unit = 16 ns)

Retry Buffer Write Pointer Debug Register (Offset: 0x1–2C)**Table 439: Retry Buffer Write Pointer Debug Register (Offset: 0x1–2C)**

Name	Bits	Access	Default Value	Description
Reserved	31:11	–	0	Write as 0, ignore when read
Retry Buffer Write Pointer	10:0	RW	0	Address of next DWORD to be written into retry buffer RAM

Retry Buffer Read Pointer Debug Register (Offset: 0x1–30)**Table 440: Retry Buffer Read Pointer Debug Register (Offset: 0x1–30)**

Name	Bits	Access	Default Value	Description
Reserved	31:11	-	0	Write as 0, ignore when read
Retry Buffer Read Pointer	10:0	RW	0	Address of next DWORD to be read from retry buffer RAM

RETRY BUFFER PURGED POINTER DEBUG REGISTER (OFFSET: 0x1–34)

Table 441: Retry Buffer Purged Pointer Debug Register (Offset: 0x1–34)

Name	Bits	Access	Default Value	Description
Reserved	31:11	–	0	Write as 0, ignore when read.
Retry Buffer Purged Pointer	10:0	RW	0	Starting address of next TLP to be purged from retry buffer RAM.

Retry Buffer Read/Write Debug Port 0x1–38

Table 442: Retry Buffer Read/Write Debug Port 0x1–38

Name	Bits	Access	Default Value	Description
Retry Buffer Data	31:0	RW	–	Data written to this address is written into the retry buffer RAM at the retry buffer write address. Reads to this address will return the data stored at the retry buffer read address in the retry buffer RAM.

Error Count Threshold Register (Offset: 0x1–3C)

Table 443: Error Count Threshold Register (Offset: 0x1–3C)

Name	Bits	Access	Default Value	Description
Reserved	31:15	–	0	Write as 0, ignore when read
Bad Sequence Number Count Threshold	14:12	RW	7h	Attention bits are set when error count reaches threshold. Threshold = 2^n
Nak Received Count Threshold	11:8	RW	Fh	Attention bits are set when error count reaches threshold. Threshold = 2^n
DLLP Error Count Threshold	7:4	RW	Fh	Attention bits are set when error count reaches threshold. Threshold = 2^n
TLP Error Count Threshold	3:0	RW	Fh	Attention bits are set when error count reaches threshold. Threshold = 2^n

TL Error Counter Register (Offset: 0x1–40)

Table 444: TL Error Counter Register (Offset: 0x1–40)

Name	Bits	Access	Default Value	Description
Reserved	31:24	-	0	Write as 0, ignore when read
TLP Bad Sequence Number Counter	23:16	RO/CR	0	Counts number of TLPs with bad sequence number received since last read. Counter freezes at max value, and will be cleared to 1 if event occurs simultaneously to read
TLP Error Counter	15:0	RO/CR	0	Counts number of bad TLPs received (includes bad LCRC, bad length or bad sequence number) since last read. Counter freezes at max value, and will be cleared to 1 if event occurs simultaneously to read

*Error Counters freeze at the max value

DLLP Error Counter (Offset: 0x1–44)**Table 445: DLLP Error Counter (Offset: 0x1–44)**

Name	Bits	Access	Default Value	Description
Reserved	31:16	-	0	Write as 0, ignore when read
DLLP Error Counter	15:0	RO/CR	0	Counts number of bad DLLPs received (includes bad LCRC or bad length) since last read. Counter freezes at max value, and will be cleared to 1 if event occurs simultaneously to read.

*Error Counters freeze at the max value.

Nak Received Counter (Offset: 0x1–48)**Table 446: Nak Received Counter (Offset: 0x1–48)**

Name	Bits	Access	Default Value	Description
Reserved	31:16	-	0	Write as 0, ignore when read
Nak Received Counter	15:0	RO/CR	0	Counts number of Nak DLLPs received since last read. Counter freezes at max value, and will be cleared to 1 if event occurs simultaneously to counter read.

Data Link Test Register (Offset: 0x1–4C)**Table 447: Data Link Test Register (Offset: 0x1–4C)**

Name	Bits	Access	Default Value	Description
Reserved	31:16	-	0	Write as 0, ignore when read
Store Receive TLPs	15	RW	0	Write received TLPs into retry buffer instead of transmitted TLPs
Disable TLPs	14	RW	0	Disable transmission of TLPs
Disable DLLPs	13	RW	0	Disable transmission and reception of DLLPs
Force PHY Link Up	12	RW	0	Force PHY link input to data link layer to be up
Bypass Flow Control	11	RW	0	Force flow control init flags to be set and available tx flow control credits to infinite.
Enable RAM Core Clock Margin Test Mode	10	RW	0	Enable retry buffer RAM core clock margin test mode.
Enable RAM Overstress Test Mode	9	RW	0	Enable retry buffer RAM overstress test mode.
Enable RAM Read Margin Test Mode	8	RW	0	Enable retry buffer RAM read margin test mode.
Speed up Completion Timer	7	RW	0	Speed up completion timer and LED blink rate for simulation.
Speed up Replay Timer	6	RW	0	Speed up replay timer for simulation.
Speed up Ack Latency Timer	5	RW	0	Speed up Ack latency timer for simulation.
Speed up PME Service Timer	4	RW	0	Speed up PME service timer for simulation.
Force Purge	3	W/SC	0	Purge the contents of the retry buffer.
Force Retry	2	W/SC	0	Retransmit the contents of the retry buffer.
Invert CRC	1	RW	0	Force entire LCRC to be inverted.

Table 447: Data Link Test Register (Offset: 0x1–4C) (Cont.)

Name	Bits	Access	Default Value	Description
Send Bad CRC Bit	0	RW	0	Force last bit of LCRC to be inverted

Packet BIST Register (Offset: 0x1–50)

Table 448: Packet BIST Register (Offset: 0x1–50)

Name	Bits	Access	Default Value	Description
Reserved	31:24	-	0	Write as 0, ignore when read
Packet Checker Locked	23	RO	0	Packet checker has locked to received data sequence.
Receive Mismatch	22	RO	0	Receive data or packet length did not match pseudo-random sequence. This bit sticks high and can only be cleared by disabling the packet generator test mode or clearing the Transmit Start bit.
Enable Random TLP Length	21	RW	1	1 = Transmit random length TLPs 0 = Transmit fixed length TLPs
TLP Length	20:10	RW	1FFh	Transmit TLP length is equal to this field + 3 DWORDS. When sending random length TLPs, this field is ANDed with the random generator output in order to limit the maximum length
Enable Random IPG Length	9	RW	1	1 = Transmit random length IPGs 0 = Transmit fixed length IPGs
IPG Length	8:2	RW	1Fh	Transmit IPG length is equal to this field + 2 DWORDS. When sending random length IPGs, this field is ANDed with the random generator output in order to limit the maximum length.
Transmit Start	1	RW	1	Start transmitting TLPs. TLP transmission will be halted when this bit is cleared or when error condition occurs (receive data mismatch, DLLP error or TLP error)
Enable Packet Generator Test Mode	0	RW	0	Transmit continuous stream of random or fixed length TLPs containing pseudo-random data, separated by random or fixed length IPGs. If TLPs are looped back, received TLPs are checked vs. expected length and data content. Received TLPs will be passed through retry buffer if the Store Receive TLPs bit is set in the test register.

Link PCIe 1.1 Control Register (Offset: 0x1–54)

Table 449: Link PCIe 1.1 Control Register (Offset: 0x1–54)

Name	Bits	Access	Reset	Default Value	Description
Rtbf_ct[2:0]	31:29	RW	Chip (hard + soft)	0	Timing debug control pins for the retry buffer, normally 0. These bits are only writable when enable_retry_buf_tim_mod in the tlp register (0x7c04 bit31) is set

Table 449: Link PCIe 1.1 Control Register (Offset: 0x1–54) (Cont.)

Name	Bits	Access	Reset	Default Value	Description
Rtbf_sam[1:0]	28:27	RW	Chip (hard + soft)	0	Sense amp debug control pins for the retry buffer, normally 0. These bits are only writable when enable_retry_buf_tim_mod in the tlp register (0x7c04 bit31) is set.
Reserved	26:10	RO		0	Reserved bits
SelocalXtal	9	RW	Hard Reset	0	1: Select Local 25-MHz XTAL 0: Select System 100-MHz Reference Clock based on the state of Bit 18 of 7D00.
L2 PLL Power-down Disable	8	RW	Hard Reset	0	1: Disable PLL power down in L2 0: Enable PLL power down in L2 This control bit is applicable to the scenario PCIe clocks don't switch over to the core_clock. If PCIe clock switch over to the core_clock after entering L2 state. The PLL power-down is controlled by bit4 of register 0x7D00.
L2 D3PM clkreq Disable	7	RW	Hard Reset	0	1: Disable clkreq in L2 D3Cold 0: Enable clkreq in L2 D3Cold
L1 D3PM clkreq Disable	6	RW	Hard Reset	0	If this bit is set, the device will drive clkreq# low which means the system will not turn off the reference clock. 1: Disable clkreq in L1 D3Hot 0: Enable clkreq in L1 D3Hot
L1 ASPM clkreq Disable	5	RW	Hard Reset	0	1: Disable clkreq in L1 ASPM 0: Enable clkreq in L1 ASPM
L1 PLL Power-down Disable	4	RW	Hard Reset	0	1: Disable PLL power down in L1 0: Enable PLL power down in L1
Reserved	3	RO		0	Reserved bit
dASPM10usTimer	2	RW	Chip (hard + soft)	0	Disable ASPM 10 μ s Timer before next ASPM L1 request after naked ASPM L1 request. This is a PCIe 1.1 requirement. Assertion of disable will go back to 1.0a version.
dFFU_EL1	1	RW	Chip (hard + soft)	0	Disable fast flow control update on exit of L1. This is a PCIe 1.1 requirement. If disable is asserted, will go back to 1.0a version.
dFlowCtlUpdate1_1	0	RW	Chip (hard + soft)	0	Disable PCIe 1.1 flow control update rate of 34 μ s. If disable is asserted, will go back to the 1.0a version with 44 μ s update rate.

RESERVED (OFFSET: 0x1-58–0x1-FC)*Table 450: Reserved (Offset: 0x1-58–0x1-FC)*

Name	Bits	Access	Default Value	Description
Reserved	31:0	–	0	Write as 0, ignore when read

Note: Debug and Test registers should never be written during normal operation.

PHY LAYER INTERNAL REGISTERS (DBG 0x2xx/0x7Exx FOR CLIENT DESIGNS)**PHY Mode Register (Offset: 0x2–00)***Table 451: PHY Mode Register (Offset: 0x2–00)*

Name	Bits	Access	Default Value	Description
Reserved	31:2			
Link disable	1	RW	0	Disable the logical PHY layer functions
Soft reset	0	RW	0	Softreset to the phy logical block. This bit will be self cleared after 4 clock cycles.

PHY/Link Status Register (Offset: 0x2–04)*Table 452: PHY/Link Status Register (Offset: 0x2–04)*

Name	Bits	Access	Default Value	Description
Reserved	31:8	RO		
Link partner request loopback	7	RO	0	Link partner requested remote loopback mode during training process.
Link partner disable scrambler	6	RO	0	The link partner disabled the scrambler during training process.
Extended Synch	5	RO	0	Extended synchronization from PCI configuration register. If set, 4K FTS ordered sets must be sent during link recovery.
Polarity inverted	4	RO	0	Lane polarity is inverted
Link Up	3	RO	0	The link training process is completed and link is ready for use
Link training	2	RO	0	The link is in the training process
Receive data valid	1	RO	0	Symbol synchronization is achieved and receive data is valid

PHY/Link LTSSM Control Register (Offset: 0x2–08)*Table 453: PHY/Link LTSSM Control Register (Offset: 0x2–08)*

Name	Bits	Access	Default Value	Description
Reserved	31:8			
DisableScramble	7	RW	0	Disable scrambling and de-scrambling
DetectState	6	RW	0	High layer directs LTSSM to detect state if set. The bit is cleared when LTSSM entered into detect state.

Table 453: PHY/Link LTSSM Control Register (Offset: 0x2–08) (Cont.)

Name	Bits	Access	Default Value	Description
PollingState	5	RW	0	High layer directs LTSSM to Polling state if set. The bit is cleared when LTSSM entered into Polling state.
ConfigState	4	RW	0	High layer directs LTSSM to configuration state if set. The bit is cleared when LTSSM entered into configuration state.
RecovState	3	RW	0	High layer directs LTSSM to recovery state if set. The bit is cleared when LTSSM entered into recovery state.
ExtLBState	2	RW	0	High layer directs LTSSM to external loopback master state if set. The bit is cleared when LTSSM entered into master external loopback state.
ResetState	1	RW	0	High layer directs LTSSM to hot reset state if set. The bit is cleared when LTSSM exited out of the hot reset state.
DisableState	0	RW	0	High layer directs LTSSM to disable state if set. The bit is cleared when LTSSM entered into disable state.

PHY/Link Training Link Number (Offset: 0x2–0C)**Table 454: PHY/Link Training Link Number (Offset: 0x2–0C)**

Name	Bits	Access	Default Value	Description
Reserved	31:8			
Lane Number	7:0	RO	PAD	Lane Number within component

PHY/Link Training Lane Number (Offset: 0x2–10)**Table 455: PHY/Link Training Lane Number (Offset: 0x2–10)**

Name	Bits	Access	Default Value	Description
Reserved	31:8			
Lane Number	7:0	RO	PAD	Lane Number within link

PHY/LINK TRAINING N_FTS (OFFSET: 0x2–14)

Table 456: PHY/Link Training N_FTS (Offset: 0x2–14)

Name	Bits	Access	Reset	Default Value	Description
Reserved	31:24				
Increase TX L0s Exit	23:16	RW		0	Add programmable register to increase TX L0s exit latency. This may be used to offset the extended tx idle/active time in the LP version of the SerDes Analog.
Inbound N_FTS	15:8	RO		0xff	Inbound Maximum number of FTS ordered sets to be sent when transitions from L0s to L0 to achieve bit and framing synchronization.
Outbound N_FTS	7:0	RW	Chip or hot or cold	0x40	Outbound Maximum number of FTS ordered sets to be sent when transitions from L0s to L0 to achieve bit and framing synchronization.
					Note: Setting the default value of 0x40 also requires SerDes Rx register 2 15:8 be set to 0x30.

PHY Attention Register (Offset: 0x2–18)

Table 457: PHY Attention Register (Offset: 0x2–18)

Name	Bits	Access	Default Value	Description
Reserved	31:8			
Hot reset	7	W2C	0	Hot reset event. Set by hot reset and cleared by explicitly writing '1'.
Link down	6	W2C	0	Link down event. When link status transitions from up to down, this event bit will be set.
Training error	5	W2C	0	LTSSM training error.
Buffer overrun	4	W2C	0	Receive elastic buffer overrun.
Buffer underrun	3	W2C	0	Receive elastic buffer underrun.
Receive framing error	2	W2C	0	Receive framing error. Set when receive framing error count exceeds its threshold.
Receive disparity error	1	W2C	0	Receive 8b10b running disparity error. Set when 8b10b disparity count exceeds its threshold.
Receive code error	0	W2C	0	Receive 8b10b-code error. Set when 8b10b-error count exceeds its threshold.

PHY Attention Mask Register (Offset: 0x2–1C)

Table 458: PHY Attention Mask Register (Offset: 0x2–1C)

Name	Bits	Access	Default Value	Description
Reserved	31:8		dqqd	
Hot reset mask	7	RW	0	Hot reset event mask bit.
Link down mask	6	RW	0	Link down event mask bit.

Table 458: PHY Attention Mask Register (Offset: 0x2–1C) (Cont.)

Name	Bits	Access	Default Value	Description
Training error mask	5	RW	0	LTSSM training error mask bit.
Buffer overrun mask	4	RW	0	Receive elastic buffer overrun mask bit.
Buffer underrun mask	3	RW	0	Receive elastic buffer underrun mask bit.
Receive frame error mask	2	RW	0	Receive frame error mask bit.
Receive disparity error mask	1	RW	0	Receive 8b10b running disparity error mask bit.
Receive code error mask	0	RW	0	Receive 8b10b code error mask bit.

PHY Receive Error Counter (Offset: 0x2–20)**Table 459: PHY Receive Error Counter (Offset: 0x2–20)**

Name	Bits	Access	Default Value	Description
disparity error count	31:16	R2C	0	Receive 8b10b running disparity error count
code error count	15:0	R2C	0	Receive 8b10b coding error count

PHY Receive Framing Error Counter (Offset: 0x2–24)**Table 460: PHY Receive Framing Error Counter (Offset: 0x2–24)**

Name	Bits	Access	Default Value	Description
Reserved	31:16		0	
Framing error count	15:0	R2C	0	Receive framing error count

PHY Receive Error Threshold Register (Offset: 0x2–28)**Table 461: PHY Receive Error Threshold Register (Offset: 0x2–28)**

Name	Bits	Access	Default Value	Description
Reserved	31:24	-	0	Write as 0, ignore when read
D3C Re-enter Threshold	23:20	RW	8d	Minimum time in us before re-enter to L1 link state
D3C Exit Threshold	19:16	RW	2d	Minimum time in us before exit from L1 link state.
Reserved	15:12	RO	0	
Frame error threshold	11:8	RW	0xF	Receive frame error threshold. When the frame error count exceeds this threshold, the frame error attention bit is set. Threshold = 2^n , where n=bits(11:8)
disparity error threshold	7:4	RW	0xF	Receive 8b10b running disparity error threshold. When the running disparity error count exceed this threshold, the disparity error will be set. Threshold = 2^n , where n=bits(7:4).
code error threshold	3:0	RW	0xF	Receive 8b10b coding error threshold. When the code error count exceeds threshold, the code error attention bit is set. Threshold = 2^n , where n=bits(3:0).

PHY Test Control Register (Offset: 0x2–2C)

Table 462: PHY Test Control Register (Offset: 0x2–2C)

Name	Bits	Access	Default Value	Description
Reserved	31:28	–		
Polarity check only in polling state	27	RW	1	Configure polarity check only in polling state 1: Polling state only 0: No restriction (?)
Sticky Polarity check	26	RW	0	Configure polarity check sticky 1: Sticky 0: Non-sticky
Reserved	25:11	RW		
Reserved	10:7	RO	0	
PCIe 1.0 mode	6	RW	0	Set this bit for the phy layer LTSSM state machine to meet PCIe 1.0 spec. By default, the LTSSM state machine is in compliant with PCIe 1.0A spec. Note: The changes from PCIe 1.0 to 10.A for the LTSSM and scrambler were published at another time.
PCIe 1.0 scrambler	5	RW	0	Set this bit to program the scrambler in PCIe 1.0 mode. By default, the scrambler is in PCIe 1.0A mode.
Fast symbol lock up	4	RW	0	Set this bit to lock symbol boundary on receiving the first COM. By default, the symbol is lock up on receiving four COMs within 64-symbol time.
Reserved	3	–		
Training bypass	2	RW	0	Set this bit to bypass link initialization and configuration process.
External loopback	1	RW	0	Force remote (external) loopback test mode.
Internal loopback	0	RW	0	Force internal parallel loop back test mode.

PHY/SerDes Control Override (Offset: 0x2–30)

Table 463: PHY/SerDes Control Override (Offset: 0x2–30)

Name	Bits	Access	Default Value	Description
Reserved	31:18			
obsvEleIdleValue	17	RW	0	Override value for the obsvEleIdle signal from SerDes.
obsvEleIdleOverride	16	RW	0	Set to override the obsvEleIdle signal value from SerDes with the value in bit 17 of this register.
pllIsUpValue	15	RW	0	Override value for pllIsUp signal from SerDes.
pllIsUpOverride	14	RW	0	Set to override the pllIsUp signal value from SerDes with the value in bit 15 of this register.
rcvrDetValue	13	RW	0	Override value for rcvrDetected signal from SerDes.
rcvrDetOverride	12	RW	0	Set to override the rcvrDetected signal from SerDes with the value in bit 13 of this register.

Table 463: PHY/SerDes Control Override (Offset: 0x2–30) (Cont.)

Name	Bits	Access	Default Value	Description
rcvrDetTimeControl	11:10	RW	0x0	Time unit of the rcvrDetectionTime: 2'b00: symbol time 2'b01: 64 ns 2'b10: 1 μ s
rcvrDetectionTime	9:0	RW	0x3FF	Time value that the PHY logical layer uses for timing receiver detection sequences.

PHY Timing Parameter Override (Offset: 0x2–34)

Table 464: PHY Timing Parameter Override (Offset: 0x2–34)

Name	Bits	Access	Default Value	Description
ts1NumOverride	31	RW	0	Set to override the TS1 number to be send out in polling active state with the value in bit (27:16) of this register from the spec-defined value.
txIdleMinOverride	30	RW	0	Set to override the min time for a transmitter to stay with the value in bit (15:8) of this register from the spec-defined value.
txIdle2IdleOverride	29	RW	0	Set to override the Max time for electrical idle transition with the value in bit (7:0) of this register from the spec-defined value.
N_TS1InPollingActive	27:16	RW	0x400	Number of TS1 that must be sent our Polling active state.
txIdleMinTime	15:8	RW	0x5	Minimum time (in symbol time) a transmitter must be in electrical idle.
txIdleSetIdleTime	7:0	RW	0x2	maximum time (in symbol time) to transition to a valid electrical idle after sending an electrical idle ordered-set

PHY Hardware Diagnostic1–TX/RX SM States (Offset: 0x2–38)

Table 465: PHY Hardware Diagnostic1–TX/RX SM States (Offset: 0x2–38)

Name	Bits	Access	Default Value	Description
Transmit State Machine State	9:4	RO	0	Transmit state machine states 9:8–TX Data State 7:4–TX Main State
Receive State Machine State	3:0	RO	0	Receive state machine states 3:0–RX Main State

PHY Hardware Diagnostic2—LTSSM States (Offset: 0x2–3C)*Table 466: PHY Hardware Diagnostic2—LTSSM States (Offset: 0x2–3C)*

Name	Bits	Access	Default Value	Description
LTSSM State Machine State	31:0	RO	0	LTSSM state machine states 31:28 -- Main State 27:26 -- Detect substate 25:23 -- Polling substate 22:20 -- Configuration substate 19:18 -- Recover substate 17:16 -- Rx L0s substate 15:14 -- Rx L0s substate 13:12 -- L1 substate 11:10 -- L2 substate 9:8 -- Disable substate 7:6 -- Loopback substate 5:4 -- Reset substate 3:0 -- Reserved

PCI EXPRESS SERDES REGISTERS

This section describes the registers in PCI Express SerDes Macro.

PORT ADDRESS MAP

Port Address(5:0) = PHY Address(4:0) & Reg Address(4) of traditional MII addressing

Table 467: Port Address Map

Port Address(5:0)	Block	Lane
0:28	Reserved	
29	PLL	—
30	TX	Broadcast
31	RX	Broadcast
32	TX	0
33	TX	1
34	TX	2
35	TX	3
36	TX	4
37	TX	5
38	TX	6
39	TX	7
40	TX	8
41	TX	9
42	TX	10
43	TX	11
44	TX	12
45	TX	13
46	TX	14
47	TX	15
48	RX	0
49	RX	1
50	RX	2
51	RX	3
52	RX	4
53	RX	5
54	RX	6
55	RX	7
56	RX	8
57	RX	9
58	RX	10
59	RX	11

Table 467: Port Address Map (Cont.)

Port Address(5:0)	Block	Lane
60	RX	12
61	RX	13
62	RX	14
63	RX	15

MII MAP**Table 468: MII Map**

PHY Address(4:0)	Reg Address(4:0)	Block	Lane
00:0D	XX	Reserved	—
0E	0X	Reserved	—
	1X	PLL	
0F	0X	TX	Broadcast
	1X	RX	Broadcast
10	0X	TX	0
	1X	TX	1
11	0X	TX	2
	1X	TX	3
12	0X	TX	4
	1X	TX	5
13	0X	TX	6
	1X	TX	7
14	0X	TX	8
	1X	TX	9
15	0X	TX	10
	1X	TX	11
16	0X	TX	12
	1X	TX	13
17	0X	TX	14
	1X	TX	15
18	0X	RX	0
	1X	RX	1
19	0X	RX	2
	1X	RX	3
1A	0X	RX	4
	1X	RX	5
1B	0X	RX	6
	1X	RX	7
1C	0X	RX	8
	1X	RX	9
1D	0X	RX	10
	1X	RX	11

Table 468: MII Map (Cont.)

PHY Address(4:0)	Reg Address(4:0)	Block	Lane
1E	0X	RX	12
	1X	RX	13
1F	0X	RX	14
	1X	RX	15

PLL REGISTERS

All PLL Registers are reset by Power On Reset unless specified.

PLL Status (Offset: 0x0)

Table 469: PLL Status (Offset: 0x0)

Name	Bits	Access	Default Value	Description
pllSeqDone	15	RO	0	PLL Startup Sequence is done
freqDone	14	RO	0	PLL Frequency comparison is done
capDone	13	RO	0	PLL range finding stage is done
Reserved	12	RO	0	
pllSeqPass	11	RO	0	PLL Startup Sequence completed successfully
freqPass	10	RO	0	PLL frequency comparison completed successfully
capPass	9	RO	0	PLL range finding stage completed successfully
Reserved	8	RO	0	
Slowdn	7	RO	—	VCO Voltage is too low.
Reserved	6:0	RO	0	

PLL Control (Offset: 0x1)

Table 470: PLL Control (Offset: 0x1)

Name	Bits	Access	Default Value	Description
pllSeqStart	15	RW	1	Enable PLL startup sequencer.
FreqDetRetry_en	14	RW	1	Retry startup sequence when freq detection fails.
FreqDetRestart_en	13	RW	0	Enable sequencer restart when freq detection fails.
FreqMonitor_en	12	RW	0	Continuously perform freq comparison after startup.
CapRetry_en	11	RW	0	Retry startup sequence when range finding fails.
VcoDone_en	10	RW	0	Use VCO done input when high, fixed timer when low.
LinkRestart_en	9	RW	0	Restart PLL sequencer when link status drops.
ByteSyncRestart_en	8	RW	0	Restart PLL sequencer when byte sync is lost.
PllForceDone_en	7	RW	0	Enable sequencer done and sequencer pass overrides.
PllForceDone	6	RW	0	Value for sequencer done override.
PllForcePass	5	RW	0	Value for sequencer pass override.
Slowdn_xor	4	RW	0	Input slowdown input from analog.
PllForceCapDone_en	3	RW	0	Enable cap done override.

Table 470: PLL Control (Offset: 0x1) (Cont.)

Name	Bits	Access	Default Value	Description
PllForceCapDone	2	RW	0	Value for cap done override.
PllForceCapPass	1	RW	1	Force cap pass when set.
PllForcePllLock	0	RW	0	Forces on PLL Lock indicator.

PLL Timer 1 (Offset: 0x2)**Table 471: PLL Timer 1 (Offset: 0x2)**

Name	Bits	Access	Default Value	Description
VcoStopTime	15:8	RW	FFh	Time to wait between VCO voltage adjustment steps (times 120 ns)
VcoStartTime	7:0	RW	FFh	Time to wait before starting PLL range finding (times 120 ns)

PLL Timer 2 (Offset: 0x3)**Table 472: PLL Timer 2 (Offset: 0x3)**

Name	Bits	Access	Default Value	Description
Reserved	15:12	RW	0	
testMuxSel	11:8	RW	Ch	PLL test output mux selector
freqDetTime	7:0	RW	FFh	Time to wait before performing frequency detect test (times 120 ns)

Cap Control (Offset: 0x5)**Table 473: Cap Control (Offset: 0x5)**

Name	Bits	Access	Default Value	Description
Control/Status	15	RW	0	Read back control bits 8:0 when set. Read back status bits 8:0 when cleared.
capRestart	14	RW	0	Restart PLL range finding.
capSelectM_en	13	RW	0	Enable cap select override.
capForceSlowdn_en	12	RW	0	Enable cap slow down override.
capForceAmpDone_en	11	RW	1	Enable amp done and amp pass override.
capForceAmpDone	10	RW	1	Value for amp done override.
capForceAmpPass	9	RW	1	Value for amp pass override.
capForceSlowdn/Slowdn	8	RW	0	Value for cap slow down override/current slow down value.
Reserved/0	7	RW	0	
Reserved/0	6	RW	0	
Reserved/0	5	RW	1	
Reserved/0	4	RW	1	
capSelectM/capSelect	3:0	RW	8h	Value for cap select override/current cap select value.

Freq Detect Counter (Offset: 0x7)*Table 474: Freq Detect Counter (Offset: 0x7)*

Name	Bits	Access	Default Value	Description
Resolution	15:8	RW	20h	Duration of frequency comparison (times 256)
Window	7:0	RW	0	Maximum difference between frequency counter values at the end of comparison

PLL Analog Status 1 (Offset: 0x8)*Table 475: PLL Analog Status 1 (Offset: 0x8)*

Name	Bits	Access	Default Value	Description
pll_range	15:12	RO	–	–
pll_low	11	RO	–	–
rst_watchdg	10	RO	–	–
pll_lock	9	RO	–	–
xgxs_ID	8	RO	–	–
Reserved	7:2	RO	–	–
clkgen_ID	1:0	RO	–	–

PLL Analog Control 1 (Offset: 0xA)*Table 476: PLL Analog Control 1 (Offset: 0xA)*

Name	Bits	Access	Default Value	Description
refl_clkgen	15	RW	0	–
iclkdrv(2:0)	14:12	RW	0	–
iclkdiv2(2:0)	11:9	RW	0	–
id2c(2:0)	8:6	RW	0	–
ibuf(2:0)	5:3	RW	0	–
iclksyn10(2:0)	2:0	RW	011b	–

PLL Analog Control 2 (Offset: 0xB)*Table 477: PLL Analog Control 2 (Offset: 0xB)*

Name	Bits	Access	Default Value	Description
en_p3	15	RW	0	–
enable_ftune	14	RW	1	–
vddr_bgb	13	RW	0	–
Reserved	12:2	RW	0	–
startup	1	RW	0	–
refh_clkgen	0	RW	1	–

PLL Analog Control 3 (Offset: 0xC)*Table 478: PLL Analog Control 3 (Offset: 0xC)*

Name	Bits	Access	Default Value	Description
ick(2:0)	15:13	RW	0	—
icp(2:0)	12:10	RW	0	—
ibmax	9	RW	0	—
ibmode	8	RW	0	—
ibmin	7	RW	0	—
ct_aj	6	RW	0	—
pt_aj	5	RW	0	—
fbsel	4:3	RW	11b	—
disable_wdg	2	RW	0	—
iqp(1:0)	1:0	RW	10b	—

PLL Analog Control 4 (Offset: 0xD)

Table 479: PLL Analog Control 4 (Offset: 0xD)

Name	Bits	Access	Default Value	Description
test_rx	15	RW	0	—
test_pll	14	RW	0	—
test_vc	13	RW	0	—
kvh	12	RW	1	—
iop(2)	11	RW	0	—
iop(0)	10	RW	0	—
iop(1)	9	RW	0	—
icomp(2)	8	RW	0	—
icomp(0)	7	RW	0	—
icomp(1)	6	RW	0	—
icm(2)	5	RW	1	—
icm(0)	4	RW	0	—
icm(1)	3	RW	1	—
ivco(2)	2	RW	1	—
ivco(0)	1	RW	0	—
ivco(1)	0	RW	1	—

TRANSMIT REGISTERS

All Transmit registers are reset by Power On Reset unless specified.

TX STATUS (OFFSET: 0x0)

Table 480: TX Status (Offset: 0x0)

Name	Bits	Access	Default Value	Description
Reserved	15:0	RO	—	—

TX CONTROL (OFFSET: 0x1)

Table 481: TX Control (Offset: 0x1)

Name	Bits	Access	Default Value	Description
tx_reset	15	RW	0	Reset analog transmit logic
enabpacketttest	14	RW	0	Enable built-in packet test
rcvrdetreq_val	13	RW	0	Value for rcvr detect request override
override_rcvrdetreq	12	RW	0	Override rcvr detect request output value
rcvrdet_val	11	RW	0	Value for receiver detected override
override_rcvrdet	10	RW	0	Override receiver detected output value
prbs_order	9:8	RW	0	Select PRBS length 0: 2^7 1: 2^15 2: 2^23 3: 2^31
tx_pwrdown	7	RW	0	Power down analog transmitter
txpol_flip	6	RW	0	Invert transmit output data
elec_idle_val	5	RW	0	Value for electrical idle override
override_ei	4	RW	0	Override electrical idle input value
force external lbpk	3	RW	0	Enables external loopback mode
pre_emph_stair_en	2	RW	0	Enables pre-emph staircase generator
tx_sel	1:0	RW	0	Tx data source select 0: normal data 1: mdio data 2: prbs data 3: pat100 data

TX mdata 0 (Offset: 0x2)

Table 482: TX mdata 0 (Offset: 0x2)

Name	Bits	Access	Default Value	Description
Reserved	15:10	RO	0	—

Table 482: TX mdata 0 (Offset: 0x2) (Cont.)

Name	Bits	Access	Default Value	Description
txMDIOTestData(9:0)	9:0	RW	0	First 10 bits shifted out serially when tx data source select = mdio_data

TX mdata 1 (Offset: 0x3)

Table 483: TX mdata 1 (Offset: 0x3)

Name	Bits	Access	Default Value	Description
Reserved	15:10	RO	0	
txMDIOTestData(19:10)	9:0	RW	0	Last 10 bits shifted out serially when tx data source select = mdio_data

TX Analog Status 1 (Offset: 0x4)

Table 484: TX Analog Status 1 (Offset: 0x4)

Name	Bits	Access	Default Value	Description
tx_id(0:1)	15:14	RO	—	—
Reserved	13:0	RO	—	

TX Analog Control 1 (Offset: 0x5)

Table 485: TX Analog Control 1 (Offset: 0x5)

Name	Bits	Access	Default Value	Description
id2c(2)	15	RW	0	—
rxdet_ctrl(1:0)	14:13	RW	0	—
refl_tx	12	RW	0	—
refh_tx	11	RW	0	—
Reserved	10	RW	0	
divermode	9	RW	0	—
Reserved	8:0	RW	0	

TX Analog Control 2 (Offset: 0x6)

Table 486: TX Analog Control 2 (Offset: 0x6)

Name	Bits	Access	Default Value	Description
icbuf1t(1:2)	15:14	RW	0	—
icbuf2t(0:2)	13:11	RW	0	—
txo_cm(0:1)	10:9	RW	10b	—
idriver(4)	8	RW	0	—
i21mux(0:2)	7:5	RW	0	—
Reserved	4	RW	0	

Table 486: TX Analog Control 2 (Offset: 0x6) (Cont.)

Name	Bits	Access	Default Value	Description
ticksel(0:1)	3:2	RW	0	—
id2c(0:1)	1:0	RW	0	—

TX Analog Control 3 (Offset: 0x7)**Table 487: TX Analog Control 3 (Offset: 0x7)**

Name	Bits	Access	Default Value	Description
preemphasis(0:3)	15:12	RW	5h	—
idriver(0:3)	11:8	RW	Bh	—
ipredriver(0:3)	7:4	RW	3h	—
ifullspd(0:2)	3:1	RW	0	—
icbuf1t(0)	0	RW	0	—

RECEIVE REGISTERS

All Receive Registers are reset by Power On Reset unless specified.

RX Status (Offset: 0x0)**RX Status 0 (Status Select: “000”)****Table 488: RX Status 0 (Status Select: “000”)**

Name	Bits	Access	Default Value	Description
rxsigdet	15	RO	0	—
Reserved	14:13	RO	0	—
rxSeqDone	12	RO	0	—
eb_Overrun	11	RO	0	—
eb_underrun	10	RO	0	—
cdrAcqMode	9	RO	0	—
rx_polarity	8	RO	0	—
Reserved	7:0	RO	0	—

RX Status 1 (Status Select: “001”)**Table 489: RX Status 1 (Status Select: “001”)**

Name	Bits	Access	Default Value	Description
integ_reg(16:1)	15:0	RO	0	—

RX Status 2 (Status Select: "010")*Table 490: RX Status 2 (Status Select: "010")*

Name	Bits	Access	Default Value	Description
vco_reg(15:0)	15:0	RO	0	—

RX Status 3 (Status Select: "011")*Table 491: RX Status 3 (Status Select: "011")*

Name	Bits	Access	Default Value	Description
prbs_lock	15	RO	0	—
prbs_stky	14	RO	0	—
prbs_errors	13:0	RO	0	—

RX Status 4 (Status Select: "100")*Table 492: RX Status 4 (Status Select: "100")*

Name	Bits	Access	Default Value	Description
Reserved	15:4	RO	0	—
shiftMapStatus	3:0	RO	0	—

RX Control (Offset: 0x1)*Table 493: RX Control (Offset: 0x1)*

Name	Bits	Access	Default Value	Description
RxSeqRestart	15	RW	0	Restart receive startup sequencer
shiftMap_SM	14:11	RW	0	Symbol alignment override value
ebAdapter_en	10	RW	0	Enable elastic buffer target value adaptation
override_sigdet_en	9	RW	0	Enable signal detect override
override_sigdet_val	8	RW	0	Value for signal detect override
rx_polarity_force	7	RW	0	Enable rx polarity override
rx_polarity_value	6	RW	0	Value for rx polarity override
force internal lbpk	5	RW	0	Enables internal loopback mode
forceRxSeqDone	4	RW	0	Force receive sequencer done
rxpowerdown	3	RW	0	Power down analog receiver
status_sel	2:0	RW	0	Selector for receive status register inputs

RX Timer 1 (Offset: 0x2)**Table 494: RX Timer 1 (Offset: 0x2)**

Name	Bits	Access	Default Value	Description
CDR Lock Timer Track	15:8	RW	80h	Time to wait in phase tracking mode before asserting receive sequencer done (times 16 ns)
CDR Lock Time Acq	7:0	RW	20h	Time spent in phase acquisition mode (times 1024 ns)

RX CDR Phase (Offset: 0x5)**Table 495: RX CDR Phase (Offset: 0x5)**

Name	Bits	Access	Default Value	Description
phase_freeze_en	15	RW	0	Enable phase freeze override.
phase_freeze_val	14	RW	0	Value for phase freeze override.
freq_freeze_en	13	RW	0	Enable freq freeze override.
freq_freeze_val	12	RW	0	Value for freq freeze override.
Reserved	11	RW	0	
falling_edge	10	RW	0	Use falling edge of receive data for timing recovery.
flip_polarity	9	RW	0	Change feedback direction of timing recovery.
phase_override	8	RW	0	Override phase value.
phase_inc	7	RW	0	Enable phase increment.
phase_dec	6	RW	0	Enable phase decrement.
phase_strobe	5	RW	0	Increment or decrement phase value.
phase_delta	4:0	RW	0	Number of phase steps to increment or decrement phase value when phase_strobe is asserted.

RX CDR Freq (Offset: 0x6)**Table 496: RX CDR Freq (Offset: 0x6)**

Name	Bits	Access	Default Value	Description
Reserved	15:9	RW	0	
freq_override_en	8	RW	0	—
freq_override_val	7:0	RW	0	—

RX CDR BW (Offset: 0x7)**Table 497: RX CDR BW (Offset: 0x7)**

Name	Bits	Access	Default Value	Description
Reserved	15	RW	0	
bwsel_integ_track	14:12	RW	3h	Integral loop bandwidth in tracking mode
Reserved	11	RW	0	
bwsel_integ_acq	10:8	RW	4h	Integral loop bandwidth in acquisition mode
Reserved	7	RW	0	
bwsel_prop_track	6:4	RW	4h	Proportional loop bandwidth in tracking mode
Reserved	3	RW	0	
bwsel_prop_acq	2:0	RW	6h	Proportional loop bandwidth in acquisition mode

RX Test Control (Offset: 0x9)**Table 498: RX Test Control (Offset: 0x9)**

Name	Bits	Access	Default Value	Description
testMuxSel	15:12	RW	0h	Rx test mux output select
Tpctrl	11:7	RW	04h	Subblock test mux output select
prbs_en	6	RW	0	Enable PRBS monitor
prbs_order	5:4	RW	00b	Select PRBS length 0: 2^7 1: 2^15 2: 2^23 3: 2^31
Reserved	3	RW	0	
force_align_SM	2	RW	0	Force symbol alignment
clockCompDisable	1	RW	0	Disable SKP symbol insertion/removal
ebRecenter	0	RW	0	Manually recenter clock compensation FIFO

RX Analog Status (Offset: 0xB)**Table 499: RX Analog Status (Offset: 0xB)**

Name	Bits	Access	Default Value	Description
Reserved	15:0	RO	0	

RX Analog Control 1 (Offset: 0xC)

Table 500: RX Analog Control 1 (Offset: 0xC)

Name	Bits	Access	Default Value	Description
mode_sigos	15	RW	0	—
imin_sigos	14	RW	0	—
imax_sigdet	13	RW	0	—
imode_sigdet	12	RW	0	—
imin_sigdet	11	RW	0	—
refh_rx	10	RW	0	—
refl_rx	9	RW	0	—
tport_en	8	RW	0	—
Reserved	7	RW	0	—
sig_pwrnd	6	RW	0	—
offset_cntl[2:0]	5:3	RW	010b	—
imax_lvlsht	2	RW	0	—
imode_lvlsht	1	RW	0	—
imin_lvlsht	0	RW	0	—

RX Analog Control 2 (Offset: 0xD)

Table 501: RX Analog Control 2 (Offset: 0xD)

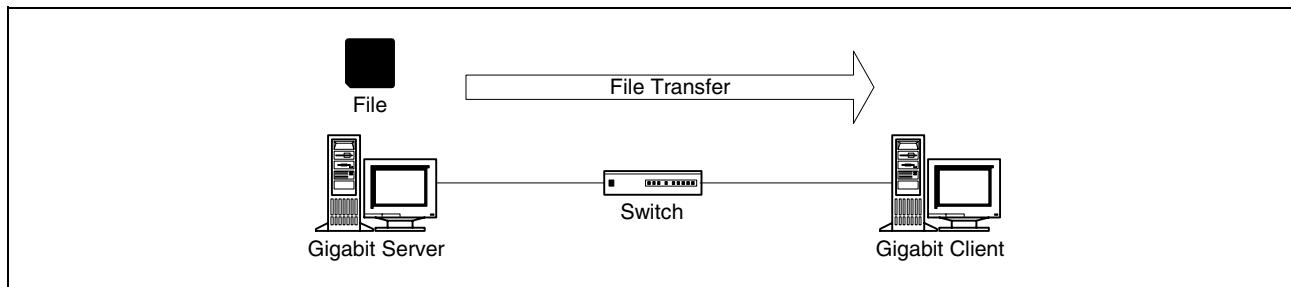
Name	Bits	Access	Default Value	Description
imax_intp	15	RW	1	—
imode_intp	14	RW	1	—
imin_intp	13	RW	0	—
imax_div2	12	RW	0	—
imode_div2	11	RW	0	—
imin_div2	10	RW	0	—
imax_d2c	9	RW	0	—
imode_d2c	8	RW	0	—
imin_d2c	7	RW	0	—
imax_slicerFF	6	RW	0	—
imode_slicerFF	5	RW	0	—
imin_slicerFF	4	RW	0	—
imax_slicerbuf	3	RW	1	—
imode_slicerbuf	2	RW	1	—
imin_slicerbuf	1	RW	0	—
imax_sigos	0	RW	0	—

Appendix A: Flow Control

NOTES

Developers can refer to the IEEE 802.3 Annex 31B specification for detailed information on Ethernet flow control mechanisms.

- Flow control frames use a well-known multicast address, defined in the IEEE 802.1D Bridging specification. The MAC destination address is 01-80-C2-00-00-01
- Bridges and Switches will not forward pause frames to downstream ports.
- A pause frame contains a request_operand that contains a pause_time field. Pause_time specifies the number of quanta, which transmission should be inhibited.
- Pause frames cannot inhibit MAC control Frames
- Pause_time is a two-octet field, which represents a quanta value. The quanta value is based on bit/slot times for the connection speed. Valid pause_times vary from 0 to 65535.
- The pause frame contains a MAC control opcode. 00-01 is reserved for PAUSE MAC control functions.
- MAC control layers will provide two indicators—paused and not paused.
- The Enet source address equals the unicast address of the MAC sublayer, which transmits the pause_frame.
- The receive engine will set a countdown timer, based on the value of pause_time. When the timer expires, the transmit engine may resume send operation
- A Mac sublayer may transmit pause frames with pause_time = 0. The zero value will stop a pause count down, executed by the MAC's link partner. Effectively, a value of zero restarts a link partner's transmit engine, assuming the link partner was inhibited by a previous pause operation.


FLOW CONTROL SCENARIO

This scenario assumes that the Gigabit switch has a 1:1 port mapping, between the Gigabit Server and Client. The switch does not implement header aligned blocking, nor will it drop packets to alleviate buffer pressure. The following constraints are placed on this scenario:

- Client
 - Full-duplex connection at Gigabit speed.
 - Implements flow control.
 - Flow control enabled.
- Switch
 - Does not drop packets.
 - Full-duplex connection to Client.
- Server
 - Gigabit connection.
 - Either half/full-duplex connection at Gigabit speed (i.e., this scenario will cover two subcases).

FILE TRANSFER

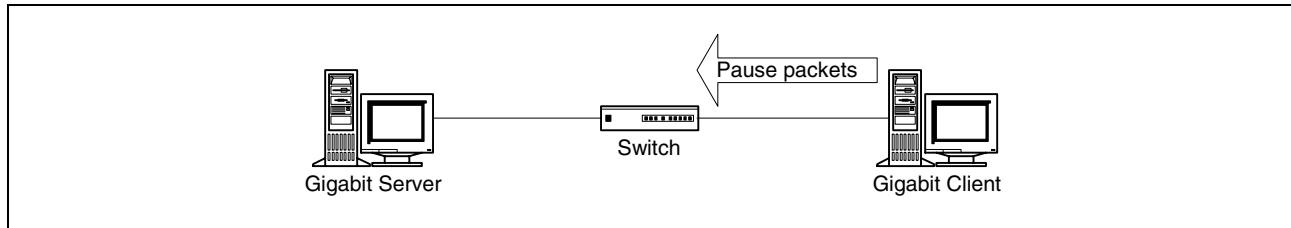

The client begins a FTP session (see [Figure 57](#)). The file size is very large and will take several minutes for a complete transfer, even at Gigabit wire speed.

Figure 57: File Transfer Scenario: FTP Session Begins

SPEED MISMATCH

The Client sends pause frame(s) to the switch (see [Figure 58](#)). The Client's pipe has been saturated, and the RX buffers are almost exhausted. The Client begins sending pause frames, when the RX buffer high-water mark/threshold is hit. Any number of reasons can account for the RX buffer issue. The assumption will be made that the Client PCI bus lack bandwidth to DMA packets, at wire speed, to host memory. The user may be playing a DVD, for example.

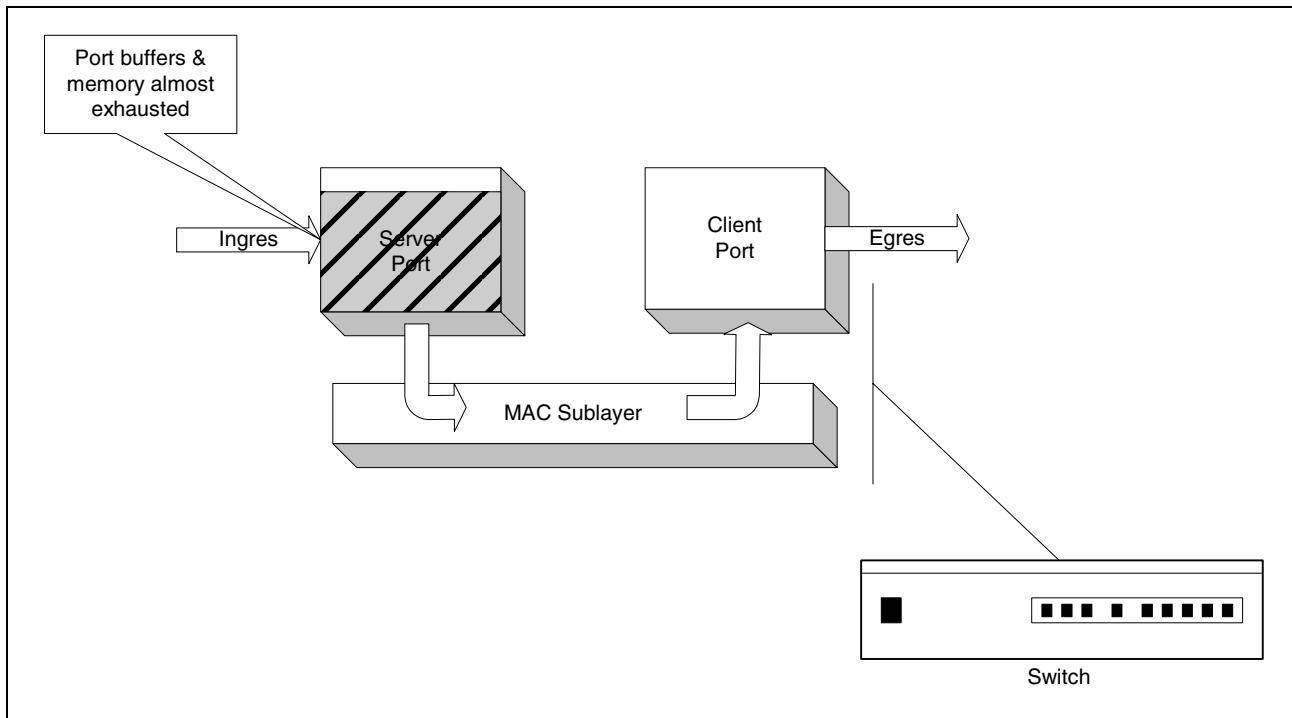


Figure 58: File Transfer Scenario: Speed Mismatch

SWITCH BUFFERS RUN LOW

The switch must wait/inhibit transmission to the Client (see [Figure 59](#)). During the pause interval, the Server is still sending packets to the Switch. The Switch will buffer some packets, but will eventually hit an internal threshold; memory will run short. Since dropping packets is undesirable, the Switch must slow incoming packets from the Server. The duplex mode of the Server's connection will dictate how the switch slows traffic. There are two options:

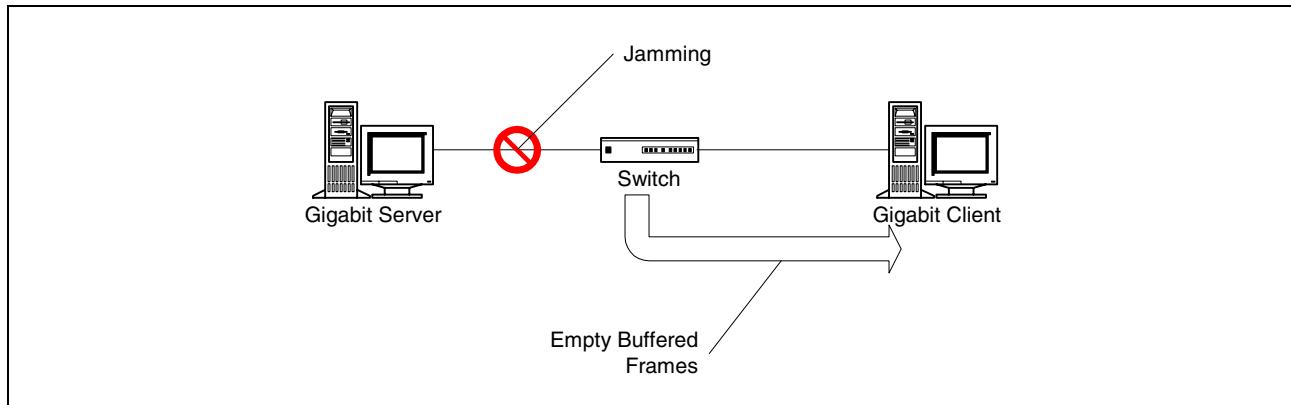

- Jamming (half-duplex)
- Pause frames (full-duplex)

Figure 59: File Transfer Scenario: Speed Buffers Run Low

SWITCH BACKPRESSURE

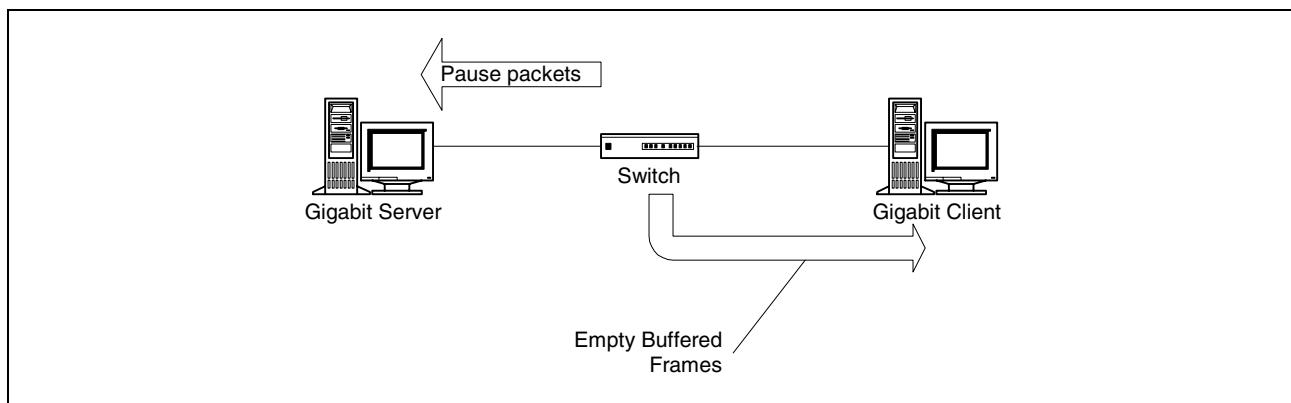

The Switch will jam ports configured with half-duplex link to slow frame transmission (see [Figure 60](#)). In this case, the Server connection must be half-duplex, and then the switch may apply backpressure to the port. The Switch will transmit a jamming pattern, which will prevent the Server from transmitting further packets. The Server's MAC will detect a collision situation, and will back off for a specified interval. The Switch will continue to apply backpressure to the Server Ingress, until the Client egress is available. The Client port will be available when the pause interval expires, and no further pause packets are sent by the Gigabit Client.

Figure 60: File Transfer Scenario: Switch Backpressure

SWITCH FLOW CONTROL

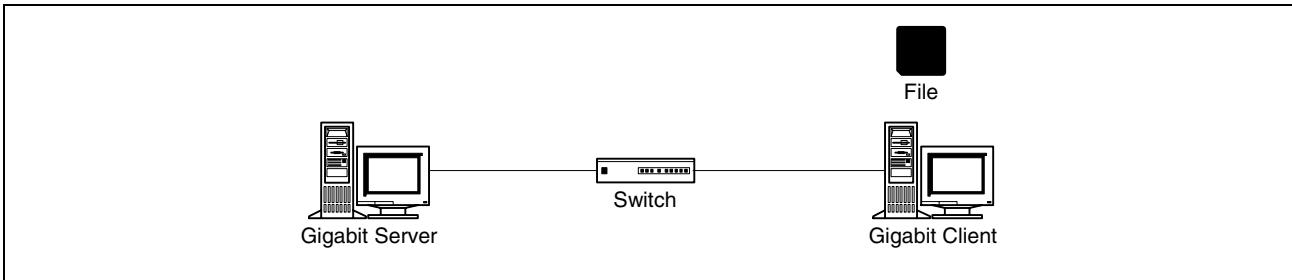

The Switch can only use IEEE 802.3x flow control when the link is configured for full-duplex operation (see [Figure 61](#)). When buffers are near exhaustion, the switch will send a pause frame to the Server. The Server's MAC will be inhibited for a pause_time interval. During the pause interval, the Switch has the opportunity to empty the buffered packets. Once the buffered packets fall below the high water mark, the Switch may send another pause frame, with pause_time = 0, to terminate the Server's pause interval. The Switch may also allow the Server's pause interval to expire. Either way, the Switch no longer will inhibit the Server from sending packets.

Figure 61: File Transfer Scenario: Switch Flow Control

FILE TRANSFER COMPLETE

The Client has caught up with the transmission flow of the Server (see [Figure 62](#)). The Client's RX buffers/memory is below the flow control threshold. The file transfer is complete. This scenario was a worst-case cascade, where the pause delay propagated through the LAN. The Switch could absorb the Client's pause delay, without having to flow control the Server.

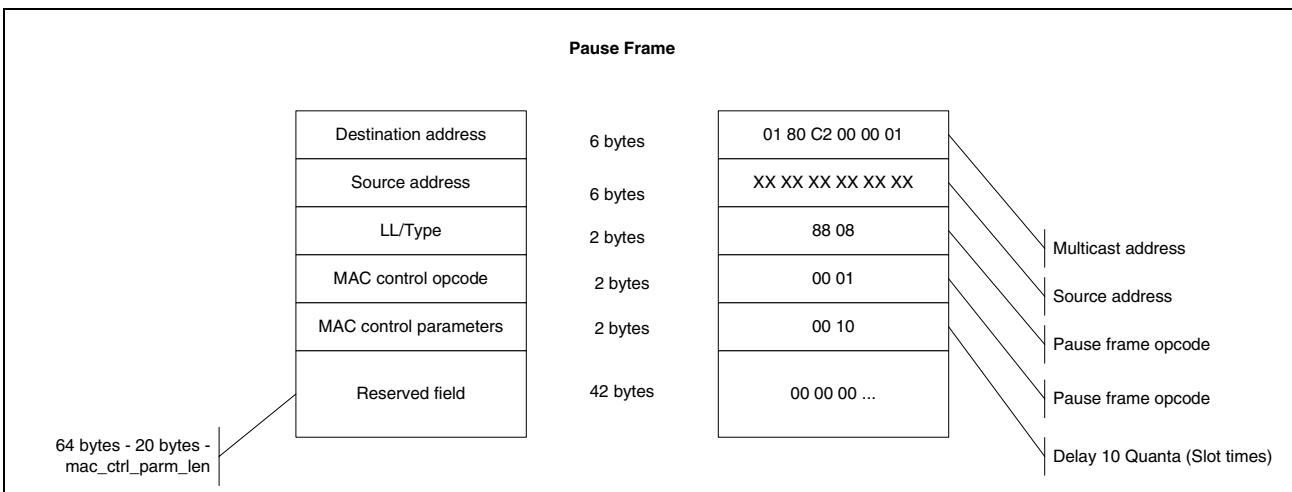


Figure 62: File Transfer Scenario: File Transfer Complete

PAUSE CONTROL FRAME

The minimum size frame is 512 bits or 64 bytes (see [Figure 63](#)). MAC control frames must pad zeros into the unused portion of the payload. A flow control frame contains the following fields:

- Destination address field, set to 01-80-C2-00-00-01
- Source address field set to unique MAC address of sender
- LL/Type field set to the 802_3_MAC_CONTROL value, set to 88-08
- MAC control pause opcode (00-01), pause_time, and reserved field (zeros)

Figure 63: Pause Control Frame

Appendix B: Terminology

Table 502: Terminology

Term	Definition
BD	Buffer Descriptor.
Deferred Procedure Call (DPC)	The ISR may schedule a O/S callback to process interrupts at a later time.
Expansion ROM	PCI devices may optionally expose device specific programs to BIOS. For example, network devices may place PXE bootcode in their expansion ROM region.
Host Coalescing	A hardware block which the Ethernet controller status block. The hardware will drive a line interrupt or MSI.
Interrupt Distribution Queue	The Ethernet controller supports four interrupt distribution queues per class of service. The rules engine may place traffic into RX return rings based on rules checking. Within each class of service, the traffic may further be organized in Interrupt Distribution Queues. For example, frames with errors may be given lower data path priority over frames without errors, all within the same class of service (RX Return Ring).
Interrupt Service Routine (ISR)	A procedure where device interrupts are processed.
Pre-boot execution (PXE)	An industry-standard client/server interface that allows networked computers that are not yet loaded with an operating system to be configured and booted remotely.
Receive BD Initiator	The hardware block that DMA's BDs when receive ring indices are written.
Receive Data and Receive BD Initiator	The hardware block that updates packet buffers, in host memory, after an Ethernet frame is received. The hardware block will also update the BD with information like checksum and VLAN Tags.
Receive Data Completion	The hardware block that updates the host coalescing engine after the packet buffers and BD are DMAed to host memory.
Receive Queue Placement	The hardware block that routes a categorized frame to one of sixteen RX Return rings.
Send BD Initiator	The hardware block that is activated when a Send producer index is updated by host software. The hardware block will DMA a BD from host memory.
Send Data Initiator	The hardware block updates the DMAs in the packet buffers from host memory. The packet buffers are DMAed after the BD has been moved to device local memory.

Broadcom Corporation

5300 California Avenue
Irvine, CA 92617
Phone: 949-926-5000
Fax: 949-926-5203

Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.