PLX TECHNOLOGY INC ## SEIKO EPSON RELIABILITY REPORT DEVICE PART NUMBER: PCI9054-AC50PI (sn-Pb) PACKAGE TYPE: QFP-21 176 PIN 14/July/2005 IC CS QUALITY ASSURANCE DEPARTMENT SEMICONDUCTOR OPERATIONS DIVISION SEIKO EPSON CORPORATION Prepared by: Midori Akaha Approved by: Shinichiro Arikawa ### TEST RESULTS OF RELIABILITY TEST The followings are our reliability report for this device. There is no anomaly, and we assure this device have enough reliability ## **CONTENTS** - RELIABILITY TEST RESULTS - ESD/LATCH-UP TEST RESULTS - RELIABILITY TEST METHOD - ESD/LATCH-UP TEST METHOD - ESTIMATION OF FAILURE IC QUALITY ASSURANVE DEPARTMENT SEMICONDUCTOR OPERATIONS DIVISION SEIKO EPSON CORPORATION 281 Fujimi, Fujimi-machi, Suwa-gun, Nagano-ken, JAPAN 399-0293 TEL. +81-266-61-1211 # [RELIABILITY TEST RESULTS] ## 1. LIFE TEST | No | TEST ITEM | TEST CONDITION | SAMPLE
SIZE | TEST
DURATION | DEVICE
HOURS | FAILURES | REMARKS | |----|------------------------------------|---------------------------|----------------|------------------|-----------------|----------|---------| | 1 | HIGH
TEMPERATURE
WITH BIAS | 125℃, 4.0V, 7.0V,
CLK | 135 | 1,000 H | 135,000 H | 0 | | | 2 | TEMPERATURE/
HUMIDITY WITH BIAS | 85℃, 85%RH, 4.0∨,
7.0∨ | 135 | 1,000 H | 135,000 H | 0 | | ## 2. ENVIRONMENTAL TEST | No | TEST ITEM | TEST CONDITION | SAMPLE
SIZE | TEST
DURATION | FAILURES | REMARKS | |----|--------------------------------|---|----------------|------------------|----------|---------| | 1 | HIGH
TEMPERATURE
STORAGE | Ta=150°C | 45 | 1,000 H | 0 | | | 2 | TEMPERATURE
CYCLING | −65°C ~ 150°C
Each more than 10
minutes | 45 | 200 сус. | 0 | | | 3 | PRESSURE COOKER | Ta=121℃、2.0E5 Pa | 45 | 200 H | 0 | | ### **EPSON** ## 2. ENVIRONMENTAL TEST (Cont'd) | No | TEST ITEM | TEST CONDITION | SAMPLE
SIZE | TEST
DURATION | FAILURES | REMARKS | |----|---------------------------------|-------------------------------|----------------|------------------|----------|---------| | 4 | TERHMAL SHOCK | 0°C∼100°C
Each 5 minutes | 22 | 10 cyc. | 0 | | | 5 | SALT ATMOSPHERE | Ta=35℃、NaCl=5% | 22 | 48 H | . 0 | | | 6 | RESISTANCE TO
SOLDERING HEAT | Pre-conditioning ->
Reflow | 45 | 2 Time | 0 | | | 7 | RESISTANCE TO
SOLVENT | Isopropyl Alcohol | 22 | 1 Time | 0 | | ## 3. MECHANICAL TEST | No | TEST ITEM | TEST CONDITION | SAMPLE
SIZE | TEST
DURATION | FAILURES | REMARKS | |----|--------------------------------|--------------------------------------|----------------|------------------|----------|---------| | 1 | LEAD
INTEGRITY
(TENSION) | 2.5N ,10 seconds | 22 | 1 Time | 0 | | | 2 | LEAD
INTEGRITY
(BEND) | 90° | 22 | 2 Times | 0 | | | 3 | SOLDERABILITY 1 | Steam Aging 4H
→ 215°C, 5 seconds | 22 | 1 Time | 0 | | | 4 | SOLDERABILITY 2 | 150°C、16H
→ 215°C、5 seconds | 22 | 1 Time | 0 | | ## [ESD/ LATCH-UP TEST RESULTS] ## 1. ESD TEST RESULTS (Broken Voltage) (Sample Size: each n=3) | TEST CONDITION | PIN | VDD LINE - GND | VSS LINE – GND | | |--|-------|----------------|----------------|--| | C=200pF、R=0Ω、1 Time | PIN | 500V | >500V | | | C-200pr \ N-0 \(\frac{1}{2} \) I time | PIN + | 350V | 450V | | | G 100 E D 1 EVO 2 E | PIN - | >4000V | >4000V | | | C=100pF, R=1.5KΩ, 3 Times | PIN + | >4000V | 3500V | | #### 2. LATCH-UP TEST RESULTS (Sample Size: each n=3) | TEST CONDITION | TRIGGER VOLTAGE (Vt) | TRIGGER CURRENT (It) | REMARK | |----------------|----------------------|----------------------|--------| | + Trigger | 2. 0V< | 476.7mA< | * | | – Trigger | 1. 8V< | 555. 8mA< | * | "*" on remark colum means that Latch-up was not occured. The followings are our judgement level; $160 \text{mW} \leq [\text{Tregger Voltage}] \times [\text{Trigger Current}]$ ## RELIABILITY TEST CONDITION AND CRITERIA (1) . | No | TEST ITEM | TEST CONDITION | STANDARD | CRITERIA | |----|------------------------------------|---|--|--| | 1 | HIGH TEMPERATURE
WITH BIAS | Ta=125°C
(Absolute maximum rating) V,
(A certain frequency) Hz | EIAJ-ED-4701/100
Test Method 101
MIL-STD-883
1005 | Must meet the electrical characteristics specification | | 2 | TEMPERATURE/
HUMIDITY WITH BIAS | Ta=85°C、85%RH
(Absolute maximum rating) V、
(A certain frequency) Hz | EIAJ-ED-4701/100
Test Method 102 | Must meet the electrical characteristics specification | | 3 | HIGH
TEMEPERATURE
STORAGE | Ta=150°C | EIAJ-ED-4701/200 Test Method 201 MIL-STD-883 1008 | Must meet the electrical characteristics specification | | 4 | TEMPERATURE
CYCLING | -65°C ~ 150°C
Each more than 10 minutes | EIAJ-ED-4701/100
Test Method 105
MIL-STD-883
1010 | Must meet the electrical characteristics specification | | 5 | PRESSURE COOKER | Ta=121°C、2.0E5 Pa | EIAJ-ED-4701/100
Test Method 103 | Must meet the electrical characteristics specification | | 6 | THERMAL SHOCK | 0°C~100°C
Each 5 minutes | EIAJ-ED-4701/300
Test Method 307
MIL-STD-883
1011 | Must meet the electrical characteristics specification | | 7 | SALT ATMOSPHERE | Ta=35℃、NaCl=5% | EIAJ-ED-4701/200
Test Method 204
MIL-STD-883
1009 | Must meet the electrical characteristics specification | | 8 | RESISTANCE TO
SOLDER HEAT | Pre-conditioning -> Reflow | EIAJ-ED-4701/300
Test Method 301,302 | Must meet the electrical characteristics specification | | 9 | RESISTANCE TO SOLVENT | Isopropyl Alcohol | EIAJ-ED-4701/500
Test Method 501
MIL-STD-883
2015 | The marking shoud be read. | ## RELIABILITY TEST CONDITION AND CRITERIA (2) | No | TEST ITEM | TEST CONDITION | STANDARD | CRITERIA | |----|--|---|--|---| | 10 | LEAD INTEGRITY
(Pull) | Pull: DIP - 10N、QFP - 2.5N
10 seconds | EIAJ-ED-4701/400
Test MethoD 401
MIL-STD-883
2004 | No cut, breakage, and looseness is found. Also, there is no sliding between leads and package body. | | 11 | LEAD INTEGRITY
(BEND) | 90 ° | EIAJ-ED-4701/400
Test Method 401
MIL-STD-883
2004 | No cut, breakage, and looseness is found. Also, there is no sliding between leads and package body. | | 12 | SOLDERABILITY | Steam Aging 4H -> 215°C, 5 seconds | EIAJ-ED-4701/300
Test Method 303
MIL-STD-883
2003 | The specimen shoud have 95% or more of the dipped portion object of evaluation covered with solder, shoud have no concentration of pin holes, coids and other defects at one place, and more over these defects should not account for more than 5% of the overall surface. | | 13 | VIBRATION FATIGUE
(Vibration Frequency)
* Only for hollow
package | 100Hz ~ 2000Hz
Sweeping Time: 4 minutes,
Acceleration: 200m/S ²
X·Y·Z each 4 time, 48 minutes | EIAJ-ED-4701/400
Test Method 403
MIL-STD-883
2007 | Must meet the electrical characteristics specification. | | 14 | VIBRATION FATIGUE
(Fixed Frequency)
* Only for hollow
package | 60Hz, Acceleration: 200m/S
X·Y·Z 96 Hours | EIAJ-ED-4701/400
Test Method 403
MIL-STD-883
2005 | Must meet the electrical characteristics specification. | #### [ESD/LATCH-UP TEST PROCEDURE] #### <ESD Test Procedure> In order to determine the susceptibility levels of our device to ESD potential, testing is performed using the test circuit shown in following figures. Reference Standard: EIAJ ED-4701/300-(304) C = 100pF, 1.5 $K\Omega$, 3 Time Reference Standard: EIAJ ED-4701/300-(304), MIL-STD-883, 3015 - (1) After charging the condenser, switch the "SW" and apply the test voltage on each pins. - (2) Measure the all electrical parameters and the functions. - (3) If no failure is found, increase the voltage in steps. Continue testing until failure occurs. #### <Latch-up Test Procedure> In order to determine the susceptibility levels of our device, testing is performed using the test circuit as follows: (A) Measurement of + Trigger Pulse Latch-up (B) Measurement of Trigger Pulse Latch up After increasing 0.1 volts Trigger Pulse step by step, the supply current are measured at each time. When the supply current is found to increase anomaly comparing with the current before stressing, we judge the latch up is occurred and the trigger voltage and trigger current just before latch up occurring is recorded. #### ESTIMATION OF FAILURE RATE We estimate the failure rate of our device using the following method. 1. Acceleration Factor The acceleration factor is estimated from the following equation; Acceleration Factor A = $$\frac{F1}{F0} = \frac{\text{C} \cdot \text{exp} (\beta \cdot \text{VDD} 1 - \text{Ea/KT1})}{\text{C} \cdot \text{exp} (\beta \cdot \text{VDD} 0 - \text{Ea/KT0})}$$ Ea: Activation Energy (0.5 eV) F1: TTF at TO (deg K) K: Boltzman's constant $(8.62 \times 10^{-5} \text{eV} \cdot \text{deg K})$ F0: TTF at T1 (deg K) ru: IIr at II (deg k) β:Voltage Acceleration factor; VDD1: Voltage at acceleration test Empirical constant minimum VDDO: Voltage at use point $\beta = 3$ T1: Temperature at acceleration test C: Constant TO: Temperature at use point The acceleration factor between 125 deg C/ 4.0 V and 40 deg C/ 3.3 V is; $$A = 427.44$$ 2. Intrinsic Failure Rate (IFR) Estimation The failure rate of device in the field under normal operating condition is estimated by following equation. Intrinsic Failure Rate $$F = \frac{r \times \alpha}{\Sigma \quad (n \times T \times A)}$$ $$= \frac{0.92}{135 \times 1000 \times 427.44}$$ $$= 15.94 \quad Fit \qquad (C.L. = 60 \%)$$ r: Number of Failures α : Coefficient of Kai square low n: Sample Size T: Test Duration A: Acceleration Factor r: Failures (If r=0, $r \times \alpha = 0.92$ As a result of the above estimation, the IFR is estimated less than 16 FIT.